首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, many research on the quantity of lignocellulosic waste have been developed. The production, partial purification, and characterisation of ligninolytic enzymes from various fungi are described in this work. On the 21st day of incubation in Potato Dextrose (PD) broth, Hypsizygus ulmarius developed the most laccase (14.83 × 10−6 IU/ml) and manganese peroxidase (24.11 × 10−6 IU/ml), while Pleurotus florida produced the most lignin peroxidase (19.56 × −6 IU/ml). Laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP), all generated by selected basidiomycetes mushroom fungi, were largely isolated using ammonium sulphate precipitation followed by dialysis. Laccase, lignin peroxidase, and manganese peroxidase purification findings indicated 1.83, 2.13, and 1.77 fold purity enhancements, respectively. Specific activity of purified laccase enzyme preparations ranged from 305.80 to 376.85 IU/mg, purified lignin peroxidase from 258.51 to 336.95 IU/mg, and purified manganese peroxidase from 253.45 to 529.34 IU/mg. H. ulmarius laccase (376.85 IU/mg) with 1.83 fold purification had the highest specific activity of all the ligninolytic enzymes studied, followed by 2.13 fold purification in lignin peroxidase (350.57 IU/mg) and manganese peroxidase (529.34 IU/mg) with 1.77-fold purification. Three notable bands with molecular weights ranging from 43 to 68 kDa and a single prominent band with a molecular weight of 97.4 kDa were identified on a Native PAGE gel from mycelial proteins of selected mushroom fungus. The SDS PAGE profiles of the mycelial proteins from the selected mushroom fungus were similar to the native PAGE. All three partially purified ligninolytic isozymes display three bands in native gel electrophoresis, with only one prominent band in enzyme activity staining. The 43 kDa, 55 kDa, and 68 kDa protein bands correspond to laccase, lignin peroxidase, and manganese peroxidase, respectively.  相似文献   

2.
AIMS: To develop strategies for increasing the growth of Lentinula edodes in eucalyptus residues. To this end, we have examined the effects of cereal brans additions on production of mycelial biomass and enzymes. METHODS AND RESULTS: Three isolates of the mushroom shiitake, L. edodes (Berk. Pegler), were evaluated for enzyme and ergosterol production on eucalyptus residue supplemented with 5, 10, 15 and 20% (w/w) of soya, wheat or rice brans. Nitrogen imput on eucalyptus residues accelerated mycelial growth by supplying the L. edodes with this limiting nutrient. High levels of enzymes activities were produced in eucalyptus residues supplemented by soya bran. Comparison of cellulose and xylanase production with manganese peroxidase (MnP) at 20% soya bran indicated that hydrolytic enzymes, but oxidative enzymes were reduced. CONCLUSIONS: Mycelial growth measurements revealed that eucalyptus residues supplemented with cereal brans supported fast growth of L. edodes, indicating that mycelium extension is related to the bioavailability of nitrogen. The type and concentration of nutrient supplement has a considerable effect both on substrate colonization and on the type of hydrolytic and oxidative enzymes produced. These characteristics may be useful for mushroom growing. SIGNIFICANCE AND IMPACT OF THE STUDY: Lentinula edodes is commercially important for edible mushroom production and supplements which enhance growth and enzymes production might also be beneficial for mushroom yields.  相似文献   

3.
白腐真菌分泌的锰过氧化物酶是木质素降解酶系统的主要组分,对木质素解聚,纸浆和染料的脱色均有重要作用.利用裂褶菌F17在自行设计的通气托盘式反应器中,以松木屑、稻草及黄豆粉为混合营养基质进行固态发酵生产锰过氧化物酶.在自制通气托盘式反应器中,裂褶菌F17能够产生锰过氧化物酶,发酵96 h时,最高酶活力达到13.51 U/...  相似文献   

4.
本研究以绒毛栓孔菌为材料,采用液体培养的方法分析其在发酵过程中胞外酶的活性变化,并对其菌丝体生物量和发酵液pH值进行了测定。结果表明:胞外酶活性与菌丝体生长状况密切相关。菌丝体生物量增长呈"S"型,6~8d增长最快,第12天达到最大值,在此过程中漆酶、锰过氧化物酶、淀粉酶、羧甲基纤维素酶、果胶酶和蛋白酶活性均出现高峰。酶活性的变化表明,在液体培养过程中绒毛栓孔菌首先分解木质素,其次利用淀粉和纤维素作为碳源,蛋白质作为氮源。若要获得最大菌丝体生物量,缩短培养时间,就必须在培养过程中保证碳氮源的均衡供给。本试验说明不同的酶其分泌高峰期可以作为判断菌丝体营养利用情况和培养周期的依据,以此获取最大菌丝体生物量,为工业生产利用奠定基础。  相似文献   

5.
Abstract The effect of various incubation conditions and media composition on ligninolytic activity by selected strains of white-rot fungi was determined in solid media. When compared to conventional methods using liquid media or woody substrates, this method is fast, simple and also quantitative. Manganese-dependent peroxidase was easily detected in all strains studied. However, detection of lignin peroxidase required optimisation of both growth medium and enzyme assay conditions. Using this method, we showed that the role of nitrogen and oxygen in ligninolytic activity varies and that conditions must be optimised for each individual even within the same species. Furthermore, several white rot fungi produced manganesedependent peroxidase during the primary growth phase. Keywords: Manganese-dependent peroxidase; Lignin peroxidase; White rot fungus  相似文献   

6.
Phanerochaete chrysosporium produces two classes of extracellular heme proteins, designated lignin peroxidases and manganese peroxidases, that play a key role in lignin degradation. In this study we isolated and characterized a lignin peroxidase-negative mutant (lip mutant) that showed 16% of the ligninolytic activity (14C-labeled synthetic lignin----14CO2) exhibited by the wild type. The lip mutant did not produce detectable levels of lignin peroxidase, whereas the wild type, under identical conditions, produced 96 U of lignin peroxidase per liter. Both the wild type and the mutant produced comparable levels of manganese peroxidase and glucose oxidase, a key H2O2-generating secondary metabolic enzyme in P. chrysosporium. Fast protein liquid chromatographic analysis of the concentrated extracellular fluid of the lip mutant confirmed that it produced only heme proteins with manganese peroxidase activity but no detectable lignin peroxidase activity, whereas both lignin peroxidase and manganese peroxidase activities were produced by the wild type. The lip mutant appears to be a regulatory mutant that is defective in the production of all the lignin peroxidases.  相似文献   

7.
A B Orth  D J Royse    M Tien 《Applied microbiology》1993,59(12):4017-4023
Phanerochaete chrysosporium is rapidly becoming a model system for the study of lignin biodegradation. Numerous studies on the physiology, biochemistry, chemistry, and genetics of this system have been performed. However, P. chrysosporium is not the only fungus to have a lignin-degrading enzyme system. Many other ligninolytic species of fungi, as well as other distantly related organisms which are known to produce lignin peroxidases, are described in this paper. In this study, we demonstrated the presence of the peroxidative enzymes in nine species not previously investigated. The fungi studied produced significant manganese peroxidase activity when they were grown on an oak sawdust substrate supplemented with wheat bran, millet, and sucrose. Many of the fungi also exhibited laccase and/or glyoxal oxidase activity. Inhibitors present in the medium prevented measurement of lignin peroxidase activity. However, Western blots (immunoblots) revealed that several of the fungi produced lignin peroxidase proteins. We concluded from this work that lignin-degrading peroxidases are present in nearly all ligninolytic fungi, but may be expressed differentially in different species. Substantial variability exists in the levels and types of ligninolytic enzymes produced by different white not fungi.  相似文献   

8.
The production of ligninolytic enzymes was studied in surface cultures of the South American white-rot fungus Nematoloma frowardii b19 and four other strains of this ecophysiological group (Clitocybula dusenii b11, Auricularia sp. m37a, wood isolates u39 and u45), which are able to depolymerize low-rank-coal-derived humic acids with the formation of fulvic-acid-like compounds. The fungi produced the three crucial enzymes of lignin degradation – lignin peroxidase, manganese peroxidase and laccase. In the case of N. frowardii b19, laccase and the two peroxidases could be stimulated by veratryl alcohol. Manganese (II) ions (Mn2+) caused a rapid increase of Mn peroxidase activity accompanied by the complete repression of lignin peroxidase. Under nitrogen-limited conditions the growth as well as the production of ligninolytic enzymes was partly repressed. During the depolymerization process of coal humic acids using solid agar media, gradients of ligninolytic enzyme activities toward 2,2′-azinobis(3-ethylbenzthiazoline-6-sulphonate) and syringaldazine were detectable inside the agar medium. Received: 5 August 1996 / Received revision: 13 November 1996 / Accepted: 15 November 1996  相似文献   

9.
不同营养条件下斑玉蕈菌丝生长及产酶特性   总被引:2,自引:0,他引:2  
分析测定了不同营养条件下斑玉蕈菌丝形态特征、生长速度及产酶规律。低碳氮盐培养基上菌丝生长速度最快,但其菌丝非常稀疏,边缘不整齐,在整个生长阶段酶活力(包括漆酶、锰过氧化物酶、木素过氧化物酶、木聚糖酶、纤维素酶)较低,营养不足对该菌菌丝生长速度影响不明显,但对菌丝形态和酶活有很大的影响;低氮条件下最先产生木质素过氧化物酶,说明限氮条件可以刺激木质素过氧化物酶的产生;高无机盐条件下最先产生漆酶和锰过氧化物酶,但菌丝生长速度较慢,酶活性比较低,浓度过高会影响菌丝生长。结果表明,不同的营养条件对斑玉蕈的菌丝生长及多种酶活性有很大影响,这为斑玉蕈改变营养条件调节菌丝生长速度、菌丝形态以及基质降解提供了理论依据,同时对斑玉蕈栽培过程中基质的高效利用、缩短生产周期、降低生产成本具有重要的指导意义。  相似文献   

10.
Phanerochaete chrysosporium is a white rot fungus which secretes a family of lignin-degrading enzymes under nutrient limitation. PSBL-1 is a mutant of this organism that generates the ligninolytic system under nonlimiting conditions during primary metabolism. Lignin peroxidase, manganese peroxidase, and glyoxal oxidase activities for PSBL-1 under nonlimiting conditions were 4- to 10-fold higher than those of the wild type (WT) under nitrogen-limiting conditions. PSBL-1 was still in the log phase of growth while secreting the enzymes, whereas the WT had ceased to grow by this time. As in the WT, manganese(II) increased manganese peroxidase activity in the mutant. However, manganese also caused an increase in lignin peroxidase and glyoxal oxidase activities in PSBL-1. Addition of veratryl alcohol to the culture medium stimulated lignin peroxidase activity, inhibited glyoxal oxidase activity, and had little effect on manganese peroxidase activity in PSBL-1, as in the WT. Fast protein liquid chromatography (FPLC) analysis shows production of larger amounts of isozyme H2 in PSBL-1 than in the WT. These properties make PSBL-1 very useful for isolation of large amounts of all ligninolytic enzymes for biochemical study, and they open the possibility of scale-up production for pratical use.  相似文献   

11.
白腐菌木质素降解酶及其在木质素降解过程中的相互作用   总被引:2,自引:0,他引:2  
木质素是一类不易降解的生物物质,在自然界中,白腐真菌对木质素的降解能力最强.白腐真菌降解木质素主要依靠分泌的三种酶:木质素过氧化物酶(Lip)、锰过氧化物酶(MnP)和漆酶(Lac).对白腐真菌分泌的三种木质素降解酶在性质、分布等方面进行了比较,系境地介绍三种木质素降解酶的催化作用,并阐述其在木质素降解过程中的相互作用.  相似文献   

12.
A B Orth  M Denny    M Tien 《Applied microbiology》1991,57(9):2591-2596
Phanerochaete chrysosporium is a white rot fungus which secretes a family of lignin-degrading enzymes under nutrient limitation. PSBL-1 is a mutant of this organism that generates the ligninolytic system under nonlimiting conditions during primary metabolism. Lignin peroxidase, manganese peroxidase, and glyoxal oxidase activities for PSBL-1 under nonlimiting conditions were 4- to 10-fold higher than those of the wild type (WT) under nitrogen-limiting conditions. PSBL-1 was still in the log phase of growth while secreting the enzymes, whereas the WT had ceased to grow by this time. As in the WT, manganese(II) increased manganese peroxidase activity in the mutant. However, manganese also caused an increase in lignin peroxidase and glyoxal oxidase activities in PSBL-1. Addition of veratryl alcohol to the culture medium stimulated lignin peroxidase activity, inhibited glyoxal oxidase activity, and had little effect on manganese peroxidase activity in PSBL-1, as in the WT. Fast protein liquid chromatography (FPLC) analysis shows production of larger amounts of isozyme H2 in PSBL-1 than in the WT. These properties make PSBL-1 very useful for isolation of large amounts of all ligninolytic enzymes for biochemical study, and they open the possibility of scale-up production for pratical use.  相似文献   

13.
The ultrastructural distribution of the sugar-oxidizing enzyme pyranose 2-oxidase (POD) in hyphae of Phanerochaete chrysosporium K-3 grown under liquid culture conditions optimal for the enzyme's production was studied by transmission electron microscopy immunocytochemistry. Using the 3-dimethylaminobenzoic acid-3-methyl-2-benzothiazolinone hydrazone hydrochloride H(2)O(2) peroxidase spectrophotometric assay, POD was detected in mycelial extracts from days 7 to 18, with maximum activity recorded on day 12. Onset of POD activity occurred in the secondary phase of hyphal development at a time of stationary growth, glucose limitation, and pH increase. POD was also detected extracellularly in the culture fluid from days 7 to 18, with maximum activity recorded on day 13. At early stages of development (3 to 4 days), using anti-POD antibodies and immunogold labeling, POD was localized in multivesicular and electron-dense bodies and in cell membrane regions. After 10 to 12 days of growth, at maximum POD activity, POD was concentrated within the periplasmic space where it was associated with membrane-bound vesicles and other membrane structures. At later stages of development (17 to 18 days), when the majority of hyphae were lysed, POD was observed associated with residual intracellular membrane systems and vesicles. Transmission electron microscopy immunocytochemical studies also demonstrated an extracellular distribution of the enzyme at the stationary growth phase, showing its association with fungal extracellular slime. In studies of ligninolytic cultures of the same fungus, POD was found to have a similar intracellular and extracellular distribution in slime as that recorded for cultures grown with cornsteep. POD's peripheral cytoplasmic distribution shows similarities to the cellular distribution of that reported previously for H(2)O(2)-dependent lignin and manganese peroxidases in P. chrysosporium.  相似文献   

14.
Five bacterial strains were isolated and purified (CSA101 to CSA105) from the sediment core of the effluent released from the Century Pulp and Paper Mill Ltd., India. These strains were grown in minimal salt medium (MSM) containing pulp (10% as a carbon source). The production of lignin peroxidase, CMCase, Fpase, and xylanase together with protein and reducing sugar by all bacterial strains was observed. All of the bacterial isolates responded differently with respect to growth and ligninocellulolytic enzyme production. The maximum lignin peroxidase (LiP) was obtained from the cell extract of Bacillus sp. (CSA105) strain, which was used for purification, fractionation and characterization. The culture filtrate from Bacillus sp. (CSA105) was purified with ammonium sulfate precipitation. Crude protein was desalted by dialyzing with Tris buffer. The lignolytic enzyme produced in the liquid medium was fractionated by gel filtration on Sephadex G-100. In the present study, 12.4-fold purification of LiP enzyme was obtained and 35.85% yield of lignin peroxidase was achieved in the cell extract of Bacillus sp. (CSA105). Lignin peroxidase enzyme plays an important role in lignin degradation process. The ligninolytic enzymes were produced by all of the bacterial strains but maximum lignin peroxidase activity was found in cell extract of CSA105. On the basis of the results obtained, the bacterial strain (CSA105) was found most suitable for the purification of the LiP enzyme.  相似文献   

15.
Several analytical methods were compared to evaluate characteristic wood decaying fungi for their potential to depolymerise lignin on spruce wood particles. Wood samples were treated with the white rot fungi Phlebia brevispora, Ceriporiopsis subvermispora, Merulius tremellosus, Pycnoporus sanguineus, Trametes pubescens and with the brown rot fungus Gloeophyllum trabeum. The UV absorbancies of crude ethanol extracts, total extractives content from sequential extraction, ligninolytic enzyme activities, lignin solubilisation and decrease of lignin content were compared. It was shown, that, in early decay stages, UV absorbancies of crude ethanol extracts and total extractives content correlate well with lignin degradation, increase of acid soluble lignin and increased production of ligninolytic enzymes (total peroxidase). Lignin content was determined using FT-NIR spectroscopy as well as by wet-chemical analysis, indicating a very good correlation between the two methods. According to the different analytical methods, the tested fungi can be classified into three categories based on their characteristic behaviour: brown rot, “slow” and “fast” white rot.  相似文献   

16.
The relationship between growth, nutrient nitrogen assimilation, and the appearance of ligninolytic activity was examined in stationary batch cultures of the wood-destroying hymenomycete Phanerochaete chrysosporium Burds. grown under conditions optimized for lignin metabolism. A reproducible sequence of events followed inoculation: 0 to 24 h, germination, linear growth, and depletion of nutrient nitrogen; 24 to 48 h, cessation of linear growth and derepression of ammonium permease activity (demonstrating nitrogen starvation); 72 to 96 h, appearance of ligninolytic activity (synthetic 14C-lignin leads to 14CO2). Experiments with cycloheximide demonstrated that appearance of ligninolytic activity occurs irrespective of the presence of lignin; lignin did not induce additional activity. Addition of NH4+ to cultures immediately prior to the time of appearance of the ligninolytic system delayed its appearance, suggesting that the NH4+ led to interference with synthesis of the enzyme system. Addition of NH4+ to ligninolytic cultures resulted in an eventual, temporary decrease in ligninolytic activity. The results suggest that all or essential protein components of the ligninolytic enzyme system are synthesized as part of a series of physiological ("secondary metabolic") events that are initiated by nutrient nitrogen starvation.  相似文献   

17.
Lentinula edodes (Berk.) Pegler is found in nature on dead broadleaf trees, but it is commercially produced on different substrates. The question of adaptation to different lignocellulosic substrates was addressed by measuring enzyme activities produced by six strains that were cultivated on wheat straw and that were able to produce sporophores. Despite quantitative variations, each strain of L. edodes had similar patterns of enzyme secretion into the wheat straw log matrix. Two peaks of carbohydrase activities were observed, the first relating to the early mycelial growth during the first days after spawning and the second during sporophore extension. Laccase activity in the early stage of colonization was related to the degradation of soluble phenolic compounds present in wheat straw. Manganese peroxidase activity was associated with mycelia th. The strains with the earlier production and higher yield were able to hydrolyse and utilize straw cell wall components soon aft er inoculation, and developed high metabolic activities.  相似文献   

18.
A Box-Wilson central composite design was applied to optimize copper, veratryl alcohol and l-asparagine concentrations for Trametes trogii (BAFC 212) ligninolytic enzyme production in submerged fermentation. Decolorization of different dyes (xylidine, malachite green, and anthraquinone blue) by the ligninolytic fluids from the cultures was compared. The addition of copper stimulated laccase and glyoxal oxidase production, but this response was influenced by the medium N-concentration, with improvement higher at low N-levels. The medium that supported the highest ligninolytic production (22.75 U/ml laccase, 0.34 U/ml manganese peroxidase, and 0.20 U/ml glyoxal oxidase) also showed the greatest ability to decolorize the dyes. Only glyoxal oxidase activity limited biodecoloration efficiency, suggesting the involvement of peroxidases in the process. The addition of 1-hydroxybenzotriazole (a known laccase mediator) to the ligninolytic fluids increased both their range and rate of decolorization. The cell-free supernatant did not decolorize xylidine, poly R-478, azure B, and malachite green as efficiently as the whole broth, but results were similar in the case of indigo carmine and remazol brilliant blue R. This indicates that the mycelial biomass may supply other intracellular or mycelial-bound enzymes, or factors necessary for the catalytic cycle of the enzymes. It also implies that this fungus implements different strategies to degrade dyes with diverse chemical structures.  相似文献   

19.
A M Cancel  A B Orth    M Tien 《Applied microbiology》1993,59(9):2909-2913
Phanerochaete chrysosporium is a white rot fungus which secretes a family of lignin-degrading enzymes under nutrient limitation. In this work, we investigated the roles of veratryl alcohol and lignin in the ligninolytic system of P. chrysosporium BKM-F-1767 cultures grown under nitrogen-limited conditions. Cultures supplemented with 0.4 to 2 mM veratryl alcohol showed increased lignin peroxidase activity. Addition of veratryl alcohol had no effect on Mn-dependent peroxidase activity and inhibited glyoxal oxidase activity. Azure-casein analysis of acidic proteases in the extracellular fluid showed that protease activity decreased during the early stages of secondary metabolism while lignin peroxidase activity was at its peak, suggesting that proteolysis was not involved in the regulation of lignin peroxidase activity during early secondary metabolism. In cultures supplemented with lignin or veratryl alcohol, no induction of mRNA coding for lignin peroxidase H2 or H8 was observed. Veratryl alcohol protected lignin peroxidase isozymes H2 and H8 from inactivation by H2O2. We conclude that veratryl alcohol acts as a stabilizer of lignin peroxidase activity and not as an inducer of lignin peroxidase synthesis.  相似文献   

20.
Pant D  Adholeya A 《Biodegradation》2007,18(5):647-659
Selected isolates of fungi were grown on wheat straw and corncob in the presence of different moistening agents such as water, molasses, potato dextrose broth and distillery effluent. All the fungal isolates responded differently with respect to growth and ligninolytic enzyme production. Fungal growth on different substrates was checked by calculating ergosterol content, which varied widely within a single species when grown on different substrates. The maximum laccase production was obtained for Aspergillus flavus TERI DB9 grown on wheat straw with molasses. For manganese peroxidase, highest production was in Aspergillus niger TERI DB20 grown on corncob with effluent. Among the two isolates positive for lignin peroxidase, the highest production was in Fusarium verticillioides ITCC 6140. This immobilized fungal biomass was then used for decolorization of effluent from a cane molasses based distillery. Maximum decolorization (86.33%) was achieved in Pleurotus ostreatus (Florida) Eger EM 1303 immobilized on corncob with molasses in a period of 28 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号