首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cell surface glycoprotein CD47 on target cells can bind to the inhibitory receptor SIRPalpha on macrophages to inhibit phagocytosis of antibody sensitized blood cells. The aim of this study was to determine if CD47 dose-dependently can regulate macrophage uptake of IgG-opsonized RBCs. CD47(+/-) RBCs express about 50% of the CD47 level found on CD47(+/+) RBCs. When injected into CD47(+/+) mice, CD47(+/-) RBCs showed a significantly faster antibody-mediated clearance as compared with CD47(+/+) RBCs injected into the same recipient. In vitro phagocytosis experiments confirmed that CD47(+/-) RBCs were taken up significantly more than CD47(+/+) RBCs, but significantly less than CD47(-/-) RBCs. A reduction in RBC CD47 expression just below 50% of that in normal RBCs can significantly accelerate RBC clearance by macrophages in the presence of RBC autoantibodies. This may have relevance for transfusion of stored RBCs, where loss of CD47 is seen over time, and in clearance of these cells by antibody-dependent phagocytosis.  相似文献   

2.
Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.  相似文献   

3.
肿瘤进展与人免疫系统间的联系已经被广泛研究,有许多免疫分子已被证实参与其中。CD47(整合素相关蛋白)为一种免疫球蛋白超家族成员,在人免疫系统中发挥着重要功能。研究表明CD47在肿瘤细胞表面也有高表达,其高表达与肿瘤的生长、转移及复发等密切相关。肿瘤细胞表面的CD47与巨噬细胞表面的SIRPα相互作用,并发出“别吃我”的免疫抑制性信号,从而保护肿瘤细胞免受巨噬细胞吞噬。因此,开发以CD47为靶点的拮抗剂可阻断此抑制性信号,从而增强巨噬细胞的吞噬效应,以达到增强抗肿瘤免疫反应的目的。最新研究证实,CD47拮抗剂在T细胞介导的抗肿瘤免疫反应中也发挥了重要作用。本文将对CD47分子的结构功能、在抗肿瘤免疫反应中的作用及以其为靶点的拮抗剂研究进展进行综述,以期为进一步的药物开发及临床研究等提供参考。  相似文献   

4.
Receptor activator of NF-kB Ligand (RANKL) is an essential requirement for osteoclastogenesis and its activity is neutralized by binding to the soluble decoy receptor osteoprotegerin (OPG). The purpose of this work was to study the effects of RANKL and OPG during osteoclastogenesis using the murine monocytic cell line RAW 264.7 that can differentiate into osteoclasts in vitro. RAW 264.7 cells plated at 10(4) cells/cm(2) and cultured for 4 days in the presence of RANKL represent the optimal culture conditions for osteoclast differentiation, with an up-regulation of all parameters related to bone resorption: tartrate resistant acid phosphatase (TRAP), calcitonin receptor (CTR), RANK, cathepsin K, matrix metalloproteinase (MMP)-9 mRNA expressions. RANKL and OPG biological effects vary according to the differentiation state of the cells: in undifferentiated RAW 264.7 cells, TRAP expression was decreased by OPG and RANKL, RANK expression was inhibited by OPG, while MMP-9 and cathepsin K mRNA expressions were not modulated. In differentiated RAW 264.7 cells, RANKL and OPG both exert an overall inhibitory effect on the expression of all the parameters studied. In these experimental conditions, OPG-induced MMP-9 inhibition was abrogated in the presence of a blocking anti-RANKL antibody, suggesting that part of OPG effects are RANKL-dependent.  相似文献   

5.
CD47 and death signaling in the immune system   总被引:4,自引:0,他引:4  
Receptor-mediated death signaling plays a critical role both in proper control of immune responses and in killing of target cells by T cells. In addition to the recognized death receptors which all belong to the tumor necrosis factor receptor family, recent studies suggest that also other cell surface antigens may be involved in apoptotic signaling in the immune system. New data on the Ig family member CD47 implicate a functional role of this molecule in growth regulation of lymphocytes and suggest that the antigen mediates cell death by activating a non-classical form of apoptosis. This mini review will focus on CD47 as a possible death receptor on lymphocytes and also summarize some of the current knowledge on death control in the immune system.  相似文献   

6.
In vitro studies have shown that CD44 is involved in the fusion process of osteoclast precursor cells. Yet, in vivo studies do not support this, since an osteopetrotic phenotype has not been described for CD44 knock-out (CD44 k.o.) mice. This discrepancy may suggest that the role of CD44 in fusion may depend on the microenvironment of osteoclast formation. We investigated osteoclast formation of CD44 k.o. and wild-type mice under three conditions: in vitro, both on plastic and on bone and in vivo by analyzing osteoclast number, and size in long bones from wild-type and CD44 k.o. mice. Bone marrow cells from wild-type and CD44 k.o. mice were analyzed for their capacity to form osteoclasts on plastic and on bone in the presence of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL). On plastic, the number of multinucleated tartrate resistant acid phosphatase (TRAP) positive cells in CD44 k.o. cultures was twofold higher than in wild-type cultures. On bone, however, equal numbers of osteoclasts were formed. Interestingly, the total number of osteoclasts formed on bone proved to be higher than on plastic for both genotypes, strongly suggesting that osteoclastogenesis was stimulated by the bone surface, and that CD44 is not required for osteoclast formation on bone. Functional analyses showed that bone resorption was similar for both genotypes. We further studied the osteoclastogenic potential of wild-type bone marrow cells in the presence of CD44 blocking antibodies. Osteoclastogenesis was not affected by these antibodies, a further indication that CD44 is not required for the formation of multinucleated cells. Finally, we analyzed the in vivo formation of osteoclasts by analyzing long bones from wild-type and CD44 k.o. mice. Morphometric analysis revealed no difference in osteoclast number, nor in number of nuclei per osteoclasts or in osteoclast size. Our in vitro experiments on plastic showed an enhanced formation of osteoclasts in the absence of CD44, thus suggesting that CD44 has an inhibitory effect on osteoclastogenesis. However, when osteoclasts were generated on bone, no differences in number of multinucleated cells nor in bone resorption were seen. These observations are in agreement with in vivo osteoclast characteristics, where no differences between wild-type and CD44 k.o. bones were encountered. Therefore, the modulating role of CD44 in osteoclast formation appears to depend on the microenvironment.  相似文献   

7.
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air−liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.  相似文献   

8.
9.
目的:探讨CD47在急性白血病患者骨髓白血病细胞的表达及其临床意义。方法:选择2013年5月-2015年5月在我院确诊的急性白血病患者101例作为研究对象,其中急性淋巴细胞白血病50例(ALL组),急性髓系白血病51例(AML组)。另选取同期在我院接受体检的健康志愿者39例作为对照组。采用流式细胞仪检测白血病细胞表面CD47的表达情况,并分析CD47表达与急性白血病患者临床疗效及复发情况的关系。结果:急性白血病患者白血病细胞CD47的阳性表达率明显高于健康对照组,差异具有统计学意义(P0.05);而ALL组与AML组患者白血病细胞CD47的阳性表达率比较差异无统计学意义(P0.05);CD47阴性表达的急性白血病患者CR率显著高于阳性表达者,差异具有统计学意义(P0.05);ALL组和AML组CD47阴性表达患者CR率显著高于CD47阳性表达患者,差异具有统计学意义(P0.05),但两组之间比较,差异无统计学意义(P0.05);CD47阳性表达的急性白血病患者复发率显著高于阴性表达患者,差异具有统计学意义(P0.05);ALL组和AML组CD47表达阳性患者复发率明显高于阴性患者,差异具有统计学意义(P0.05),但两组之间比较差异无统计学意义(P0.05)。结论:急性白血病患者白血病细胞表面CD47的表达异常升高,且与白血病患者的疗效和预后有关,CD47可能作为一种急性白血病的诊断及疗效和预后的辅助评估指标。  相似文献   

10.
CD47 is involved in neurite differentiation in cultured neurons, but the function of CD47 in brain development is largely unknown. We determined that CD47 mRNA was robustly expressed in the developing cerebellum, especially in granule cells. CD47 protein was mainly expressed in the inner layer of the external granule layer (EGL), molecular layer, and internal granule layer (IGL), where granule cells individually become postmitotic and migrate, leading to neurite fasciculation. At postnatal day 8 (P8), CD47 knockout mice exhibited an increased number of proliferating granule cells in the EGL, whereas the CD47 agonist peptide 4N1K increased the number of postmitotic cells in primary granule cells. Knocking out the CD47 gene and anti‐CD47 antibody impaired the radial migration of granule cells from the EGL to the IGL individually in mice and slice cultures. In primary granule cells, knocking out CD47 reduced the number of axonal collaterals and dendritic branches; by contrast, overexpressing CD47 or 4N1K treatment increased the axonal length and numbers of axonal collaterals and dendritic branches. Furthermore, the length of the fissure between Lobules VI and VII was decreased in CD47 knockout mice at P21 and at 14 wk after birth. Lastly, CD47 knockout mice exhibited increased social interaction at P21 and depressive‐like behaviors at 10 wk after birth. Our study revealed that the cell adhesion molecule CD47 participates in multiple phases of granule cell development, including proliferation, migration, and neurite differentiation implying that aberrations of CD47 are risk factors that cause abnormalities in cerebellar development and atypical behaviors.© 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 463–484, 2015  相似文献   

11.
12.
CD47 or integrin-associated protein promotes cell death in blood and tumor cells. Recently, CD47 signaling has been identified in neurons as well. In this study, we investigated the role of CD47 in neuronal cell death. Exposure of primary mouse cortical neurons to the CD47 ligand thrombospondin-1 or the specific CD47-activating peptide 4N1K induced cell death. Activation of CD47 elevated levels of active caspase 3 and increased the generation of reactive oxygen species (ROS) in a time-dependent manner. Both ROS scavengers and caspase inhibitors attenuated cell death. But ROS scavenging did not reduce the activation of caspase 3, and combination treatments with a caspase inhibitor plus free radical scavenger did not yield additive protection. Taken together, these data suggest that parallel and redundant pathways of oxidative stress and caspase-mediated cell death are involved. We conclude that CD47 mediates neuronal cell death through caspase-dependent and caspase-independent pathways.  相似文献   

13.
14.
The vitronectin receptor, alphavbeta3 integrin, plays an important role in tumor cell invasion, angiogenesis, and phagocytosis of apoptotic cells. CD47, a member of the multispan transmembrane receptor family, physically and functionally associates with vitronectin receptor (VnR). Although vitronectin (Vn) is not a ligand of CD47, anti-CD47 and beta3 mAbs suppress Vn, but not fibronectin (Fn) binding and function. Here, we show that anti-CD47, anti-beta3 mAb and Vn, but not Fn, inhibit sCD23-mediated proinflammatory function (TNF-alpha, IL-12, and IFN-gamma release). Surprisingly, anti-CD47 and beta3 mAbs do not block sCD23 binding to alphav+beta3+ T cell lines, whereas Vn and an alphav mAb (clone AMF7) do inhibit sCD23 binding, suggesting the VnR complex may be a functional receptor for sCD23. sCD23 directly binds alphav+beta3+/CD47(-) cell lines, but coexpression of CD47 increases binding. Moreover, sCD23 binds purified alphav protein and a single human alphav chain CHO transfectant. We conclude that the VnR and its associated CD47 molecule may function as a novel receptor for sCD23 to mediate its proinflammatory activity and, as such, may be involved in the inflammatory process of the immune response.  相似文献   

15.
Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the world, and the incidence and death rate of OSCC in men is twice that of women. CD47 is a ubiquitous cell surface transmembrane protein, also known as integrin-related protein (IAP). Previous studies have pointed out that CD47 can inhibit the growth of OSCC, but the detailed mechanism is not clear. This study aimed to explore the effect of CD47 gene expression profiles in OSCC. The OSCC cell lines, OECM-1 and OC-2, overexpressed CD47, and the expression profiles of mRNAs were analyzed through next-generation sequencing (NGS) with a bioinformatic approach. A total of 14 differentially expressed genes (DEGs) were listed. In addition, ingenuity pathway analysis (IPA) was used to analyze the molecular function (MF), biological process (BP), and cellular component (CC) network signaling. The human protein atlas (HPA) database was used to analyze gene expression and the survivability of human cancer. The results found that HSPA5, HYOU1, and PDIA4 were involved in the IPA network and when highly expressed, mediated the survivability of cancer. In addition, HSPA5 was positively and significantly correlated with CD47 expression (p < 0.0001) and induced by CD47-overexpression in the OECM-1 and OC-2 OSCC cancer cell lines. These findings provide important insights into possible new diagnostic strategies, including unfolded protein for OSCC-targeting CD47.  相似文献   

16.
CD47 is a signaling receptor for the matricellular protein thrombospondin-1 and a counter-receptor for signal regulatory protein-α (SIRPα) on macrophages. Following its initial discovery in 1992 as a cell surface protein that is over-expressed by ovarian carcinoma, elevated CD47 expression has emerged as a negative prognostic factor for a variety of cancers. CD47 is also a potential therapeutic target based on the ability of CD47 blockade to cause regression of tumors in mice, and a humanized CD47 antibody has recently entered phase I clinical trials. CD47 blockade may control tumor growth by inhibiting thrombospondin-1 signaling or by preventing inhibitory SIRPα signaling in tumor-associated macrophages. A recent publication by Lee et al. (Hepatology 60:179–191, 2014) provides evidence that blocking CD47 signaling specifically depletes tumor-initiating stem cells in hepatocellular carcinoma and implicates cathepsin-S/protease-activated receptor-2 signaling in mediating this therapeutic response.  相似文献   

17.
CD47, a receptor for thrombospondin-1, limits two important regulatory axes: nitric oxide-cGMP signaling and cAMP signaling, both of which can promote mitochondrial biogenesis. Electron microscopy revealed increased mitochondrial densities in skeletal muscle from both CD47 null and thrombospondin-1 null mice. We further assessed the mitochondria status of CD47-null vs WT mice. Quantitative RT-PCR of RNA extracted from tissues of 3 month old mice revealed dramatically elevated expression of mRNAs encoding mitochondrial proteins and PGC-1α in both fast and slow-twitch skeletal muscle from CD47-null mice, but modest to no elevation in other tissues. These observations were confirmed by Western blotting of mitochondrial proteins. Relative amounts of electron transport enzymes and ATP/O2 ratios of isolated mitochondria were not different between mitochondria from CD47-null and WT cells. Young CD47-null mice displayed enhanced treadmill endurance relative to WTs and CD47-null gastrocnemius had undergone fiber type switching to a slow-twitch pattern of myoglobin and myosin heavy chain expression. In 12 month old mice, both skeletal muscle mitochondrial volume density and endurance had decreased to wild type levels. Expression of myosin heavy chain isoforms and myoglobin also reverted to a fast twitch pattern in gastrocnemius. Both CD47 and TSP1 null mice are leaner than WTs, use less oxygen and produce less heat than WT mice. CD47-null cells produce substantially less reactive oxygen species than WT cells. These data indicate that loss of signaling from the TSP1-CD47 system promotes accumulation of normally functioning mitochondria in a tissue-specific and age-dependent fashion leading to enhanced physical performance, lower reactive oxygen species production and more efficient metabolism.  相似文献   

18.
The host immune system generally serves as a barrier against tumor formation. Programmed death-ligand 1 (PD-L1) is a critical “don't find me” signal to the adaptive immune system, whereas CD47 transmits an anti-phagocytic signal, known as the “don't eat me” signal, to the innate immune system. These and similar immune checkpoints are often overexpressed on human tumors. Thus, dual targeting both innate and adaptive immune checkpoints would likely maximize anti-tumor therapeutic effect and elicit more durable responses. Herein, based on the variable region of atezolizumab and consensus variant 1 (CV1) monomer, we constructed a dual-targeting fusion protein targeting both CD47 and PD-L1 using “Knobs-into-holes” technology, denoted as IAB. It was effective in inducing phagocytosis of tumor cells, stimulating T-cell activation and mediating antibody-dependent cell-mediated cytotoxicity in vitro. No obvious sign of hematological toxicity was observed in mice administered IAB at a dose of 100 mg/kg, and IAB exhibited potent antitumor activity in an immune-competent mouse model of MC38. Additionally, the anti-tumor effect of IAB was impaired by anti-CD8 antibody or clodronate liposomes, which implied that both CD8+ T cells and macrophages were required for the anti-tumor efficacy of IAB and IAB plays an essential role in the engagement of innate and adaptive immune responses. Collectively, these results demonstrate the capacity of an elicited endogenous immune response against tumors and elucidate essential characteristics of synergistic innate and adaptive immune response, and indicate dual blockade of CD47 and PD-L1 by IAB may be a synergistic therapy that activates both innate and adaptive immune response against tumors.  相似文献   

19.
The present study focused on whether it is possible to expand monocytic cells from CD34+ progenitor cells by using macrophage colony-stimulating factor (M-CSF) in the absence and presence of mast cell growth factor (MGF) and IL-6. It was demonstrated that CD34+ cells differentiate without expansion to functional mature monocytic cells in the presence of M-CSF or combinations of M-CSF plus IL-6 and MGF. A different response pattern was observed for the number of clonogenic cells. The addition of IL-6 or both IL-6 and MGF to M-CSF containing cultures resulted in significant higher numbers of colony-forming unit-macrophage (CFU-M) as tested in clonogenic and3H-thymidine assays. Furthermore, M-CSF plus both IL-6 and MGF appeared to be the most potent combination to preserve the monocytic precursor in cell suspension culture assays. These results indicate that IL-6 and MGF in conjunction with M-CSF affect CD34+ cells especially at precursor level without distinct effect on the more mature stages. Secondly we studied whether M-CSF is only critical for the monocytic lineage or also affects dendritic cell (DC) development. Indeed, we were able to culture CD83+ DC from CD34+ progenitor cells in the presence of M-CSF in conjunction with TNF-α, IL-4, and MGF although their absolute number is almost threefold lower than the number of CD83+ cells yielded from GM-CSF plus TNF-α, IL-4, and MGF stimulated CD34+ cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号