首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of novel fused thiophene derivatives have been prepared and identified as potent inhibitors of MEK. The SAR data of selected examples and the in vivo profiling of compound 13 h demonstrates the functional activity of this class of compounds in HT-29 PK/PD models.  相似文献   

2.
Finding new therapies to assist in the treatment of cancer is a major challenge of clinical research. Small molecules that inhibit different molecular targets at the different levels of the MAPK pathway have been developed. Several MEK inhibitors have been examined in early-phase clinical trials and the current state of clinical results using these therapies is presented here.  相似文献   

3.
The MAPK pathway is identified as one of the most important pathways involved in cell proliferation and differentiation. A key kinase in the pathway, the Mitogen-activated protein kinase kinase (MEK) is recognized as a promising target for antitumor drugs. Structure-based design and optimization of known MEK inhibitors resulted in identification of compound 10a as a potent non-ATP competitive MEK inhibitor in both in vitro and in vivo tests.  相似文献   

4.
A novel series of pyrrole inhibitors of MEK kinase has been developed using structure-based drug design. Optimization of the series led to the identification of potent inhibitors with good pharmaceutical properties.  相似文献   

5.
There is no therapy for chronic fibroproliferative diseases, in spite of the fact that current health statistics suggest that these (which include cardiovascular disease, pulmonary fibrosis, diabetic nephropathy, liver cirrhosis and systemic sclerosis) have been estimated to cause approximately 45% of the deaths in the developed world. Recently, many studies have shown that mitogen activated protein kinases (MAPKs) are activated in response to fibrogenic agents and contribute to the formation and function of the myofibroblast, the critical cell type responsible for excessive scarring. A recent report by Madala and colleagues (Am J Respir Cell Mol Biol, 2011) has provided a proof-of-concept study showing that the specific MEK inhibitor ARRY-142886 (ARRY) can both suppress the progression of fibrosis and reverse an animal model of lung fibrosis. Thus MEK inhibition could be a valuable method to treat lung fibrosis.  相似文献   

6.
Inhibition of the protein kinase, MEK1, is a potential approach for the treatment of cancer. Inhibitors may act by prevention of activation (PoA), which involves interfering with phosphorylation of nonactivated MEK1 by the upstream kinase, B-RAF. Modulation also may occur by inhibition of catalysis (IoC) during phosphorylation of the downstream substrate, ERK2, by activated MEK1. Here, five MEK inhibitors are characterized in terms of binding affinity, PoA, and IoC. The compounds are a butadiene (U-0126), an N-alkoxy amide (CI-1040), two CI-1040 analogues (an anthranilic acid and an N-alkyl amide), and a cyanoquinoline. Some compounds give different mechanisms of inhibition (ATP-competitive, noncompetitive, or uncompetitive) in PoA compared to IoC or show a change in potency between the assays. The inhibitors also exhibit different shifts in potency when either PoA or IoC is compared with binding to nonactivated MEK. The inhibitor potency ranking, therefore, is dependent upon the assay format. When the ATP concentration equals K m, IoC IC 50 increases in the order CI-1040 approximately cyanoquinoline < anthranilic acid approximately U-0126 < alkyl amide. Conversely, the K d from nonactivated MEK1 for four of the compounds varies between more than 6-fold lower and over 18-fold higher than this IC 50, with U-0126 having the lowest K d and CI-1040 having the highest. In PoA when the ATP concentration equals K m, U-0126 has the lowest IC 50, becoming more potent than CI-1040, the cyanoquinoline, and the anthranilic acid. These observations have implications for understanding structure-activity relationships of MEK inhibitors and illustrate how assays can be designed to favor different compounds.  相似文献   

7.
8.
A series of substituted 7-alkenyl 4[3-chloro-4-(1-methyl-1H-imidazol-2-ylsulfanyl)]anilino-3-quinolinecarbonitrile analogs were synthesized and evaluated as MEK1 kinase inhibitors. The synthetic details, structure-activity relationships, biological activity, and selected oral exposure studies of these analogs are described. From these studies, compound 5m was chosen as a strong candidate for further evaluation. The selectivity of 5m was ascertained against a panel of 17 kinases, where activity was observed against EGFR, Src, Lyn, and IR kinases. Western blot studies in WM-266 cells demonstrated that 5m inhibited phosphorylation of ERK, while additional kinase pathways tested showed no inhibition at up to 10 microM of 5 m. PK studies, as well as a xenograft and in vivo biomarker studies are described for 5m.  相似文献   

9.
The present study was carried out to assess the possible role of mitogen-activated protein kinase (MAPK) in the meiosis-inducing action of the AMP-activated protein kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Cumulus cell-enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured 4 hr in Eagle's minimum essential medium containing dbcAMP plus increasing concentrations of AICAR or okadaic acid (OA). OA is a phosphatase inhibitor known to stimulate both meiotic maturation and MAPK activation and served as a positive control. Both OA and AICAR were potent inducers of meiotic resumption in mouse oocytes and brought about the phosphorylation (and thus, activation) of MAPK, but by different kinetics: MAPK phosphorylation preceded GVB in OA-treated oocytes, while that resulting from AICAR treatment appeared only after GVB. The MEK inhibitors, PD98059 and U0126, blocked the meiotic resumption induced by AICAR but not that induced by OA. Although the MEK inhibitors suppressed MAPK phosphorylation in both OA- and AICAR-treated oocytes, meiotic resumption was not causally linked to MAPK phosphorylation in either group. Furthermore, AICAR-induced meiotic resumption in Mos-null oocytes (which are unable to stimulate MAPK) was also abrogated by PD98059 treatment. A non-specific effect of the MEK inhibitors on AICAR accessibility to the oocyte was discounted by showing that they failed to suppress either nucleoside uptake or AICAR-stimulated phosphorylation of acetyl CoA carboxylase (ACC), a substrate of AMPK. The suppression of AICAR-induced maturation by MEK inhibitors must, therefore, be occurring by actions unrelated to MEK stimulation of MAPK; consequently, it would be prudent to consider this possible non-specific action of the inhibitors when they are used to block MAPK activation in mouse oocytes.  相似文献   

10.
A novel series of benzhydroxamate esters derived from their precursor anthranilic acids have been prepared and have been identified as potent MEK inhibitors. 2-(2-Chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide, CI-1040, was the first MEK inhibitor to demonstrate in vivo activity in preclinical animal models and subsequently became the first MEK inhibitor to enter clinical trial. CI-1040 suffered however from poor exposure due to its poor solubility and rapid clearance, and as a result, development of the compound was terminated. Optimization of the diphenylamine core and modification of the hydroxamate side chain for cell potency, solubility, and exposure with oral delivery resulted in the discovery of the clinical candidate N-(2,3-dihydroxy-propoxy)-3,4-difluoro-2-(2-fluoro-4-iodo-phenylamino)-benzamide PD 0325901.  相似文献   

11.
A homogenous TR-FRET-based in vitro coupling assay for the MAP3Ks–MEK1–ERK2 kinase cascade was established and was used to screen for inhibitors of the ERK/MAPK pathway. A series of coumarin derivatives were identified from the screen. These compounds potently inhibit the activation of the unactivated human MEK1 by upstream MAP3Ks (including BRAF and COT), but do not inhibit the activity of the activated MEK1. In addition, the potency of these compounds in inhibiting MEK1 activation is not affected by varying the ATP concentration, suggesting that these inhibitors are not competitive with ATP. As expected, the coumarin compounds potently inhibit LPS-induced TNF production and ERK phosphorylation in THP-1 cells, with the most potent compound having an IC50 of 90 nM. Molecular modeling studies suggest that these coumarins bind to an allosteric site in the inactive conformation of MEK1. This site has been shown to be utilized by the biarylamine series of MEK inhibitors such as PD318088. Very interestingly, the identified coumarin derivatives are almost identical to a series of inhibitors recently reported that block LPS-induced TNF production. Our findings have therefore raised the possibility that other naturally occurring or synthetic coumarins with anti-cancer and anti-inflammatory activities might exert their biological function through the inhibition of MEK1.  相似文献   

12.
3-Hydroxy-4-carboxyalkylamidino-5-arylamino-isothiazoles were discovered as potent in vitro MEK1 inhibitors.  相似文献   

13.
In 3T3-L1 adipocytes, insulin activates three major signaling cascades, the phosphoinositide 3-kinase (PI3K) pathway, the Cbl pathway, and the mitogen-activated protein kinase (MAPK) pathway. Although PI3K and Cbl mediate insulin-stimulated glucose uptake by promoting the translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane, the MAPK pathway does not have an established role in insulin-stimulated glucose uptake. We demonstrate in this report that PI3K inhibitors also inhibit the MAPK pathway. To investigate the role of the MAPK pathway separately from that of the PI3K pathway in insulin-stimulated glucose uptake, we used two specific inhibitors of MAPK kinase (MEK) activity, PD-98059 and U-0126, which reduced insulin-stimulated glucose uptake by approximately 33 and 50%, respectively. Neither MEK inhibitor affected the activation of Akt or PKCzeta/lambda, downstream signaling molecules in the PI3K pathway. Inhibition of MEK with U-0126 did not prevent GLUT4 from translocating to the plasma membrane, nor did it inhibit the subsequent docking and fusion of GLUT4-myc with the plasma membrane. MEK inhibitors affected glucose transport mediated by GLUT4 but not GLUT1. Importantly, the presence of MEK inhibitors only at the time of the transport assay markedly impaired both insulin-stimulated glucose uptake and MAPK signaling. Conversely, removal of MEK inhibitors before the transport assay restored glucose uptake and MAPK signaling. Collectively, our studies suggest a possible role for MEK in the activation of GLUT4.  相似文献   

14.
Using PD325901 as a starting point for identifying novel allosteric MEK inhibitors with high cell potency and long-lasting target inhibition in vivo, truncation of its hydroxamic ester headgroup was combined with incorporation of alkyl and aryl ethers at the neighboring ring position. Whereas alkoxy side chains did not yield sufficient levels of cell potency, specifically substituted aryloxy groups allowed for high enzymatic and cellular potencies. Sulfamide 28 was identified as a highly potent MEK inhibitor with nanomolar cell potency against B-RAF (V600E) as well as Ras-mutated cell lines, high metabolic stability and resulting long half-lives. It was efficacious against B-RAF as well as K-Ras driven xenograft models and showed—despite being orally bioavailable and not a P-glycoprotein substrate—much lower brain/plasma exposure ratios than PD325901.  相似文献   

15.
The structure-based design, synthesis, and biological evaluation of two novel series of potent and selective MEK kinase inhibitors are described herein. The elaboration of a lead pyrrole derivative to a bicyclic dihydroindolone core provided compounds with high potency and good drug-like pharmaceutical properties. Further scaffold modification afforded a series of dihydroindolizinone inhibitors, including an orally available advanced preclinical MEK inhibitor with potent in vivo antitumor efficacy.  相似文献   

16.
The development of potent, orally bioavailable, and selective series of 5-amino-3-hydroxy-N(1-hydroxypropane-2-yl)isothiazole-4-carboxamidine inhibitors of MEK1 and MEK-2 kinase is described. Optimization of the carboxamidine and the phenoxyaniline group led to the identification of 55 which gave good potency as in vitro MEK1 inhibitors, and good oral exposure in rat.  相似文献   

17.

Background

The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAFV600 mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway.

Methodology/Principal Findings

The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance.

Conclusions/Significance

Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors.  相似文献   

18.
The Raf/MEK1/2 [mitogen-activated protein kinase/ERK (extracellular-signal-regulated kinase) kinase 1/2]/ERK1/2 signalling pathway is frequently activated in human tumours due to mutations in BRAF or KRAS. B-Raf and MEK1/2 inhibitors are currently undergoing clinical evaluation, but their ultimate success is likely to be limited by acquired drug resistance. We have used colorectal cancer cell lines harbouring mutations in B-Raf or K-Ras to model acquired resistance to the MEK1/2 inhibitor selumetinib (AZD6244). Selumetinib-resistant cells were refractory to other MEK1/2 inhibitors in cell proliferation assays and exhibited a marked increase in MEK1/2 and ERK1/2 activity and cyclin D1 abundance when assessed in the absence of inhibitor. This was driven by a common mechanism in which resistant cells exhibited an intrachromosomal amplification of their respective driving oncogene, B-Raf V600E or K-RasG13D. Despite the increased signal flux from Raf to MEK1/2, resistant cells maintained in drug actually exhibited the same level of ERK1/2 activity as parental cells, indicating that the pathway is remodelled by feedback controls to reinstate the normal level of ERK1/2 signalling that is required and sufficient to maintain proliferation in these cells. These results provide important new insights into how tumour cells adapt to new therapeutics and highlight the importance of homoeostatic control mechanisms in the Raf/MEK1/2/ERK1/2 signalling cascade.  相似文献   

19.
目的:观察鞘内注射丝裂原活化蛋白激酶抑制剂U0126对吗啡依赖及戒断大鼠戒断症状和痛敏行为以及脊髓神经元NOS表达的影响。方法:采用吗啡依赖及戒断模型,分为正常对照组、依赖组、戒断组(戒断1h)、U0126组,分别作行为学评分(n=8)、免疫组织化学(n=6)和免疫印迹检测(n=4)。结果:①鞘内注射U0126可明显减轻吗啡依赖大鼠戒断症状,戒断组戒断症状评分为28.6±4.89,U0126组为22.5±4.09(P〈0.05);戒断组TEA评分为13.5±2.55,U0126组为10.0±2.76(P〈0.05);②鞘内注射U0126可明显减少L5节段脊髓背角Fos阳性神经元的数目,U0126组为287±54,低于戒断组(380±71,P〈0.05);③U0126组nNOS和iNOS阳性神经元的数目分别为180±32、10.8±2.8,均低于戒断组(239±45,16.8±5.1,P〈0.05),两给药组脊髓NOS蛋白的表达也显著减少。结论:MEK抑制剂能减轻吗啡依赖及戒断大鼠的戒断症状和在脊髓水平抑制NOS的表达,表明ERK可能参与调控NOS的表达。  相似文献   

20.
Activating mutations of the NRAS (neuroblastoma rat sarcoma viral oncogene) protein kinase, present in many cancers, induce a constitutive activation of both the RAS-RAF-MEK-ERK mitogen-activated protein kinase (MAPK) signal transduction pathway and the PI(3)K-AKT-mTOR, pathway. This in turn regulates the formation of the eIF4F eukaryotic translation initiation complex, comprising the eIF4E cap-binding protein, the eIF4G scaffolding protein and the eIF4A RNA helicase, which binds to the 7-methylguanylate cap (m(7)G) at the 5′ end of messenger RNAs. Small molecules targeting MEK (MEKi: MEK inhibitors) have demonstrated activity in NRAS-mutant cell lines and tumors, but resistance sets in most cases within months of treatment. Using proximity ligation assays, that allows visualization of the binding of eIF4E to the scaffold protein eIF4G, generating the active eIF4F complex, we have found that resistance to MEKi is associated with the persistent formation of the eIF4F complex in MEKi-treated NRAS-mutant cell lines. Furthermore, inhibiting the eIF4A component of the eIF4F complex, with a small molecule of the flavagline/rocaglate family, synergizes with inhibiting MEK to kill NRAS-mutant cancer cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号