首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Epidermal wound healing in regeneratingDugesia tigrina (Planaria) has been studied using scanning electron microscopy (SEM). The normal epidermal surface and its differentiations have been descrebed. Observations on living material reveal the highly dynamic state of the wound in invididual animals and its more or less continously changing size due to the state of activity of the animals. These observations show good agreement with the SEM studies, which allow a clear delineation of cellular details of the wound, the wound margins and the apposing epidermal regions. These details are described. The over-all picture of planarian wound healing that emerges is briefly as follows: Epithelization is characterized by absence of proliferation from the old intact epidermis. Variable contraction of smooth muscle cells reduces the wound size to a certain extent. Simultaneously with this and also during a longer period epidermal cells adjacent to the wound are extending and some become highly attenuated. These two processes together are only to a certain degree effective in wound closure because of a definite epidermal cell deficit which is reflected in the emergence of an epidermal wound edge reflecting the maximal contribution of these two processes to an attempt to close the wound. Complete epithelization is effected by the operation of a third mechanism: Recruitment of cell through flow of subjacent blastemal cells (including rhabdite-forming cells) along the wound border; these cells subsequently occupy a peripheral position in the wound. This process is supplemented by cell immigration and insertion into the adjacent old epidermis and in the wound cell sheet. Rhabdite-forming cells contribute predominantly to this process. Eventually integration between old epidermal cells and the newly recruited cells which differentiate into epidermal cells results in final epithelization. Complete wound healing is based on interactions between the epidermal cell system and the regenerating subepidermal membrane-connective tissue filament-muscle cell system.  相似文献   

2.
Epidermal cell migration during wound healing in Dugesia lugubris   总被引:1,自引:0,他引:1  
The epidermal cells that migrate over the surface during the wound closure stage of head regeneration in Dugesia lugubris s.l. were examined by scanning electron microscopy. The effect of cytochalasin B on epidermal cell migration was also examined. During the first few hours after decapitation epidermal cells at the edges of the wound showed significant changes of shape related to the process of migration that was accomplished approximately 10 h after wounding. Flattening of the marginal cells was associated with active epidermal spreading throughout the healing period. Suitable support for migrating cells appeared to be a rhabditic network attached to the wound tissue. Epidermal cell migration was inhibited by cytochalasin B. These results demonstrate that the basis for cell movement in planarians is similar to that of many other systems.  相似文献   

3.
4.
ObjectivesThe skin exhibits tremendous regenerative potential, as different types of progenitor and stem cells regulate skin homeostasis and damage. However, in vitro primary keratinocytes present with several drawbacks, such as high donor variability, short lifespan, and limited donor tissue availability. Therefore, more stable primary keratinocytes are needed to generate multiple uniform in vitro and in vivo skin models.ResultsWe identified epidermal progenitor cells from primary keratinocytes using Integrin beta 1 (ITGB1) an epidermal stem cell marker markedly decreased after senescence in vitro. Epidermal progenitor cells exhibited unlimited proliferation and the potential for multipotent differentiation capacity. Moreover, they could completely differentiate to form an organotypic skin model including conversed mesenchymal cells in the dermis and could mimic the morphologic and biochemical processes of human epidermis. We also discovered that proliferation and the multipotent differentiation capacity of these cells relied on ITGB1 expression. Eventually, we examined the in vitro and in vivo wound healing capacity of these epidermal progenitor cells.ConclusionsOverall, the findings suggest that these stable and reproducible cells can differentiate into multiple lineages, including human skin models. They are a potentially powerful tool for studying skin regeneration, skin diseases, and are an alternative for in vivo experiments.

Our stable and reproducible epidermal progenitor cells from human epidermis have proliferation and multipotent differentiation potentials, regeneration capacity and could generate in vivo mimic 3D skin model not only for regeneration therapy but also for alternative animal experiments.  相似文献   

5.
The epidermis of 21-day-old leg regenerates of cockroaches (Leucophaea maderae) was cultivated in vitro. Outgrowth of the epidermis only occurred in connexion with haemocytes.Haemocytes contaminating the epidermal explants show strong adherence to epidermal cells. The epidermal cells adhering to moving haemocytes are stretched out to long projections or completely pulled out of the epithelium. When more haemocytes are present, they can form an uninterrupted line at the margin of the epidermis. By the adhesion of marginal cells of the epidermis to the moving haemocytes, the epithelium is apparently pulled out into broad tongues. In these tongues the epidermal cells become highly flattened, especially at the front, and soon begin to divide. Outgrowth in the tongues continues only as long as there are haemocytes at the front. When they have disappeared, outgrowth stops, the flattened epidermal cells detach from the glass surface, round up, and the outgrown tissue may withdraw again.For further analysis of the interactions of haemocytes and epidermal cells the epidermis is placed on a monolayer of haemocytes. The epidermis rapidly grows out on such a monolayer. The epidermal cells either move over or under the haemocytes indicating that there are substances on both sides of the haemocytes which are attractive to the epidermal cells and cause their flattening and outgrowth. Similar outgrowth occurs on fixed monolayers of haemocytes. There is no outgrowth on areas where the monolayer has been scraped away. No principal differences can be found between monolayers consisting almost exclusively of either plasmatocytes or granular haemocytes.The similarities of the observed interactions of haemocytes and epidermal cells to encapsulation and wound healing are pointed out. A hypothesis is presented which assumes that the haemocytes during wound healing not only serve as a mechanical support but also as a chemical guide by which the closure of the wound by epidermal cells is enhanced.  相似文献   

6.
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.  相似文献   

7.
8.
人皮肤表皮干细胞是具有无限增殖潜能以及多向分化能力的专能干细胞,广泛存在于表皮基底层以及毛囊隆突部位。目前,表皮干细胞在分离、纯化、培养等领域都取得了一定进展。表皮干细胞的应用主要在皮肤创面的修复、组织工程皮肤的构建以及基因治疗等领域。本文从干细胞的来源、分离、纯化鉴定、培养与应用等方面进行综述。  相似文献   

9.
To establish a genetic system to study postembryonic wound healing, we characterized epidermal wound healing in Drosophila larvae. Following puncture wounding, larvae begin to bleed but within an hour a plug forms in the wound gap. Over the next couple of hours the outer part of the plug melanizes to form a scab, and epidermal cells surrounding the plug orient toward it and then fuse to form a syncytium. Subsequently, more-peripheral cells orient toward and fuse with the central syncytium. During this time, the Jun N-terminal kinase (JNK) pathway is activated in a gradient emanating out from the wound, and the epidermal cells spread along or through the wound plug to reestablish a continuous epithelium and its basal lamina and apical cuticle lining. Inactivation of the JNK pathway inhibits epidermal spreading and reepithelialization but does not affect scab formation or other wound healing responses. Conversely, mutations that block scab formation, and a scabless wounding procedure, provide evidence that the scab stabilizes the wound site but is not required to initiate other wound responses. However, in the absence of a scab, the JNK pathway is hyperinduced, reepithelialization initiates but is not always completed, and a chronic wound ensues. The results demonstrate that the cellular responses of wound healing are under separate genetic control, and that the responses are coordinated by multiple signals emanating from the wound site, including a negative feedback signal between scab formation and the JNK pathway. Cell biological and molecular parallels to vertebrate wound healing lead us to speculate that wound healing is an ancient response that has diversified during evolution.  相似文献   

10.
When BALB/c 3T3, simian virus 40 (SV40)-transformed 3T3 (SVT2), and revertant variants of the transformed cells are removed by EGTA treatment from the substrate on which they were grown, they leave behind a layer of glycoprotein which has been characterized biochemically (Terry, A. H. and L. A. Culp. 1974. Biochemistry. 13:414.)—substrate-attached material (SAM). The influence of SAM from normal and from transformed cells on cellular attachment to the substrate, morphology, movement, and growth has been examined. All three cell types displayed a 30% higher plating efficiency when grown on 3T3 SAM. The morphology of SVT2 colonies and of individual SVT2 cells was dramatically affected by growth on 3T3 SAM—the cells (a) were more highly spread on the substrate, (b) resisted crawling over neighboring cells, and (c) resisted movement away from the edge of colonies; SVT2 SAM was not effective in causing these changes. A cell-to-substrate attachment assay using thymidine-radiolabeled cells and untreated or SAM-coated cover slips was developed. SVT2 cells attached to 3T3 SAM- or SVT2 SAM-coated cover slips with a faster initial rate and to a higher saturation level than to untreated substrate, whereas 3T3 and revertant cells exhibited no preference; there was no species specificity in these cell-substrate attachment phenomena. Trypsin-released cells attached much more slowly than EGTA-released cells. 3T3 SAM, however, was not effective in lowering the saturation density of mass cultures of virus-transformed cells. These experiments suggest that the substrate-attached glycoproteins of normal cells affect the cellular adhesivity, morphology, movement, and perhaps growth patterns of virus-transformed cells—i.e., causing partial reversion of these properties of transformed cells to those found in contact-inhibited fibroblasts. A model for the involvement of substrate-attached glycoproteins in cell-to-substrate adhesion, and possibly cell-to-cell adhesion, has been proposed.  相似文献   

11.
Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM) to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF) and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing.  相似文献   

12.
Vocal fold epithelial cells likely play an important, yet currently poorly defined, role in healing following injury, irritation and inflammation. In the present study, we sought to identify a possible role for growth factors, epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGFβ1), in epithelial regeneration during wound healing as a necessary first step for uncovering potential signaling mechanisms of vocal fold wound repair and remodeling. Using a rat model, we created unilateral vocal fold injuries and examined the timeline for epithelial healing and regeneration during early and late stages of wound healing using immunohistochemistry (IHC). We observed time-dependent secretion of the proliferation marker, ki67, growth factors EGF and TGFβ1, as well as activation of the EGF receptor (EGFR), in regenerating epithelium during the acute phase of injury. Ki67, growth factor, and EGFR expression peaked at day 3 post-injury. Presence of cytoplasmic and intercellular EGF and TGFβ1 staining occurred up to 5 days post-injury, consistent with a role for epithelial cells in synthesizing and secreting these growth factors. To confirm that epithelial cells contributed to the cytokine secretion, we examined epithelial cell growth factor secretion in vitro using polymerase chain reaction (PCR). Cultured pig vocal fold epithelial cells expressed both EGF and TGFβ1. Our in vivo and in vitro findings indicate that epithelial cells are active participants in the wound healing process. The exact mechanisms underlying their roles in autocrine and paracrine signaling guiding wound healing await study in a controlled, in vitro environment.  相似文献   

13.

Introduction

Leptin, a 16 kDa anti-obesity hormone, exhibits various physiological properties. Interestingly, skin wound healing was proven to delay in leptin-deficient ob/ob mice. However, little is known on the mechanisms of this phenomenon. In this study, we attempted to elucidate a role of leptin in wound healing of skin.

Methods

Immunohistochemical analysis was performed to confirm the expression of the leptin receptor (Ob-R) in human and mouse skin. Leptin was topically administered to chemical wounds created in mouse back skin along with sustained-release absorbable hydrogel. The process of wound repair was histologically observed and the area of ulceration was measured over time. The effect of leptin on the proliferation, differentiation and migration of human epidermal keratinocytes was investigated.

Results

Ob-R was expressed in epidermal cells of human and mouse skin. Topical administration of leptin significantly promoted wound healing. Histological analysis showed more blood vessels in the dermal connective tissues in the leptin-treated group. The proliferation, differentiation/function and migration of human epidermal keratinocytes were enhanced by exogenous leptin.

Conclusion

Topically administered leptin was proven to promote wound healing in the skin by accelerating proliferation, differentiation/function and migration of epidermal keratinocytes and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the skin.  相似文献   

14.
Recent advances in wound healing have made cell therapy a potential approach for the treatment of various types of skin defects such as trauma, burns, scars and diabetic leg ulcers. Cultured keratinocytes have been applied to burn patients since 1981. Patients with acute and chronic wounds can be treated with autologous/allograft cultured keratinocytes. There are various methods for cultivation of epidermal keratinocytes used in cell therapy. One of the important properties of an efficient cell therapy is the preservation of epidermal stem cells. Mesenchymal Stem Cells (MSCs) are major regulatory cells involved in the acceleration of wound healing via induction of cell proliferation, angiogenesis and stimulating the release of paracrine signaling molecules. Considering the beneficial effects of MSCs on wound healing, the main aim of the present study is investigating paracrine effects of Adipose-derived Mesenchymal Stem Cell (Ad-MSCs) on cultivation of keratinocytes with focusing on preservation of stem cells and their differentiation process. We further introduced a new approach for culturing isolated keratinocytes in vitro in order to generate epidermal keratinocyte sheets without using a feeder layer. To do so, Ad-MSC conditioned medium was applied as an alternative to commercial media for keratinocyte cultivation. In this study, the expression of several stem/progenitor cell (P63, K19 and K14) and differentition (K10, IVL and FLG) markers was examined using real time PCR on days 7, 14 and 21 of culture in keratinocytes in Ad-MSC conditioned medium. P63 and α6 integrin expression was also evaluated via flow cytometry. The results were compared with control group including keratinocytes cultured in EpiLife medium and our data indicated that this Ad-MSC conditioned medium is a good alternative for keratinocyte cultivation and producing epidermal sheets for therapeutic and clinical purposes. The reasons are the expression of stem cell and differentiation markers and overcoming the requirement for feeder layer which leads to a xenograft-free transplantation. Besides, this approach has low cost and is easier to perform. However, more in vitro and in vivo experiments as well as safety evaluation required before clinical applications.  相似文献   

15.
Wnt signaling is required for both the development and homeostasis of the skin, yet its contribution to skin wound repair remains controversial. By employing Axin2LacZ/+ reporter mice we evaluated the spatial and temporal distribution patterns of Wnt responsive cells, and found that the pattern of Wnt responsiveness varies with the hair cycle, and correlates with wound healing potential. Using Axin2LacZ/LacZ mice and an ear wound model, we demonstrate that amplified Wnt signaling leads to improved healing. Utilizing a biochemical approach that mimics the amplified Wnt response of Axin2LacZ/LacZ mice, we show that topical application of liposomal Wnt3a to a non-healing wound enhances endogenous Wnt signaling, and results in better skin wound healing. Given the importance of Wnt signaling in the maintenance and repair of skin, liposomal Wnt3a may have widespread application in clinical practice.  相似文献   

16.
The anatomy of leaves and inflorescence peduncles was studied in species of Monotrema (4), Stegolepis (1) and Saxofridericia (1), aiming to contribute to the taxonomy of Rapateaceae. The form and structure of leaf blade midrib and the form of the inflorescence peduncle are diagnostic characteristics for the studied species. Monotrema is distinguished by: epidermal and vascular bundle outer sheath cells containing phenolic compounds in both organs; leaf blade with palisade and spongy chlorenchyma, arm-parenchyma, and air canals between the vascular bundles; leaf sheath with phenolic idioblasts in the mesophyll; inflorescence peduncle with tabular epidermal cells and air canals in the cortex and pith. Such characteristics support the recognition of Monotremoideae, which includes Monotrema. Stegolepis guianensis is distinguished by thick-walled epidermal cells and a plicate chlorenchyma in both organs; leaf blade with subepidermal fiber strands in abaxial surface and a heterogeneous mesophyll; inflorescence peduncle with rounded epidermal cells, a hypodermis with slightly thick-walled cells, and a pith with isodiametric cells and vascular bundles. Saxofridericia aculeata is distinguished by papillate epidermal cells in both organs; unifacial leaf blade with subepidermal fiber strands in both surfaces and a regular chlorenchyma; leaf sheath with a hypodermis in both surfaces and fiber bundles in the mesophyll; inflorescence peduncle with an undefined cortex and a hypodermis with thick-walled cells. S. guianensis shares few characteristics with S. aculeata, supporting their placement in different tribes.  相似文献   

17.

Background and Aims

Epidermal phenolic compounds (mainly flavonoids) constitute a vital screen that protects the leaf from damage by natural ultraviolet (UV) radiation. The effectiveness of epidermal UV-screening depends on leaf anatomy, the content of UV-screening compounds and their spatial uniformity over the leaf area. To investigate in vivo the spatial pattern of the epidermal UV-screen during leaf development, a fluorescence imaging method was developed to map the epidermal UV-absorbance at a microscopic scale. This study was done on oak (Quercus petraea) leaves that were used as a model of woody dicotyledonous leaves.

Methods

The leaf development of 2-year-old trees, grown outdoors, was monitored, at a macroscopic scale, by in vivo measurements of chlorophyll content per unit area and epidermal UV-absorbance using two optical leaf-clip meters. The distribution of pigments within leaves was assessed in vivo spectroscopically. The microscopic images of UV-induced fluorescence and UV-absorbance acquired in vivo during leaf development were interpreted from spectral characteristics of leaves.

Key Results

At a macroscopic scale, epidermal UV-absorbance was high on the upper leaf side during leaf development, while it increased on the lower leaf side during leaf expansion and reached the adaxial value at maturity. At a microscopic scale, in immature leaves, for both leaf sides, the spatial distribution of epidermal UV-absorbance was heterogeneous, with a pattern depending on the flavonoid content of vacuoles in developing epidermal cells. At maturity, epidermal UV-absorbance was uniform.

Conclusions

The spatial pattern of epidermal UV-screen over the area of oak leaves is related to leaf anatomy during development. In vivo spectroscopy and fluorescence imaging of the leaf surface showed the distribution of pigments within the leaf and hence can provide a tool to monitor optically the leaf development in nature.Key words: Blue-green fluorescence, chlorophyll fluorescence, epidermis, flavonoids, leaf development, microscopic imaging, polyphenols, Quercus petraea  相似文献   

18.
19.
In vitro models are a cost effective and ethical alternative to study cutaneous wound healing processes. Moreover, by using human cells, these models reflect the human wound situation better than animal models. Although two-dimensional models are widely used to investigate processes such as cellular migration and proliferation, models that are more complex are required to gain a deeper knowledge about wound healing. Besides a suitable model system, the generation of precise and reproducible wounds is crucial to ensure comparable results between different test runs. In this study, the generation of a three-dimensional full thickness skin equivalent to study wound healing is shown. The dermal part of the models is comprised of human dermal fibroblast embedded in a rat-tail collagen type I hydrogel. Following the inoculation with human epidermal keratinocytes and consequent culture at the air-liquid interface, a multilayered epidermis is formed on top of the models. To study the wound healing process, we additionally developed an automated wounding device, which generates standardized wounds in a sterile atmosphere.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号