首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary conservation of substructure architecture between yeast iso-1-cytochrome c and the well-characterized horse cytochrome c is studied with limited proteolysis, the alkaline conformational transition and global unfolding with guanidine-HCl. Mass spectral analysis of limited proteolysis cleavage products for iso-1-cytochrome c show that its least stable substructure is the same as horse cytochrome c. The limited proteolysis data yield a free energy of 3.8 ± 0.4 kcal mol−1 to unfold the least stable substructure compared with 5.05 ± 0.30 kcal mol−1 for global unfolding of iso-1-cytochrome c. Thus, substructure stabilities of iso-1-cytochrome c span only ∼1.2 kcal mol−1 compared with ∼8 kcal mol−1 for horse cytochrome c. Consistent with the less cooperative folding thus expected for the horse protein, the guanidine-HCl m-values are ∼3 kcal mol−1M−1 versus ∼4.5 kcal mol−1M−1 for horse versus yeast cytochrome c. The tight free energy spacing of the yeast cytochrome c substructures suggests that its folding has more branch points than for horse cytochrome c. Studies on a variant of iso-1-cytochrome c with an H26N mutation indicate that the least and most stable substructures unfold sequentially and the two least stable substructures unfold independently as for horse cytochrome c. Thus, important aspects of the substructure architecture of horse cytochrome c, albeit compressed energetically, are preserved evolutionally in yeast iso-1-cytochrome c.  相似文献   

2.
  • 1.1. The results of chemically crosslinking yeast cytochrome c peroxidase with both horse and yeast iso-1 ferricytochromes c have been studied by a combination of gel electrophoresis and proton NMR spectroscopy.
  • 2.2. The complexes were formed at a variety of potassium phosphate concentrations ranging from 10 to 300 mM using the water soluble crosslinking agent, EDC (l-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide).
  • 3.3. The primary crosslinking product in both cases is the 1:1 covalent complex, but, for each pair of partner proteins the yield of the 1:1 crosslinked complex varies with the salt concentration.
  • 4.4. Furthermore, at low salt concentrations the yield of the 1:1 covalent complex involving horse cytochrome c is much larger than the yield of the 1:1 covalent complex formed with yeast iso-1 cytochrome c, whereas at high salt concentrations the situation is reversed.
  • 5.5. Proton NMR spectroscopy, in combination with gel electrophoresis, provides evidence for the formation of different types of 1:1 complexes for the peroxidase/yeast cytochrome c pair and has been used to study the effect of changes in the solution ionic strength upon both the peroxidases/horse cytochrome c and the peroxidase/yeast cytochrome c complexes.
  • 6.6. This work indicates that electrostatic interactions between proteins play a dominant role in formation of complexes between cytochrome c peroxidase and horse ferricytochrome c, whereas the hydrophobic effect plays a comparatively larger role in stabilizing complexes between cytochrome c peroxidase and yeast iso-1 ferricytochrome c.
  相似文献   

3.
The structural gene CYC7 for yeast iso-2-cytochrome c was previously identified by isolating a mutant, cyc7-1-1, totally lacking iso-2-cytochrome c and demonstrating that revertants of this mutant contained iso-2-cytochrome c with an altered primary structure (Downie et al., 1977). In this paper we describe a variety of different types of mutants that completely or partially lack iso-2-cytochrome c due to mutations in either the structural gene, CYC7, or unlinked “regulatory” genes. The iso-2-cytochrome c-deficient mutants were isolated by benzidine staining of over 3 × 105 colonies from ?? strains (cytoplasmic petites) that lacked iso-1-cytochrome c due to the deletion cyc1-1 and that contain abnormally high levels of iso-2-cytochrome c due to a chromosomal translocation, CYC7-1, adjacent to the normal structural gene CYC7 +. The cytochrome c content of mutants not staining with the benzidine reagents was estimated by low temperature spectroscopy, and 139 mutants containing significantly decreased levels of iso-2-cytochrome c were analyzed genetically by complementation with previously identified cyc mutants. In this way 50 mutants at the cyc2 and cyc3 loci were identified along with a group of 62 mutants of the structural gene cyc7. The different types of mutants of the structural gene which were uncovered and which were more or less anticipated included those that completely lacked iso-2-cytochrome c, those that were suppressible by UAA or UAG suppressors, those that lacked iso-2-cytochrome c but had increased levels after growth at lower temperatures, and those that exhibited visibly altered ca absorption bands of iso-2-cytochrome c. Iso-2-cytochrome c mutants with altered primary structures were obtained from intragenic revertants of several of these mutants, confirming our earlier conclusion that cyc7 is the structural gene. In addition we observed an unexpected class of mutants that lacked iso-2-cytochrome c when in the ?? state but contained approximately the CYC7-1 parental level when in the ?+ state. Two of these mutants, cyc7-1-47 and cyc7-1-49, were shown to contain altered iso-2-cytochromes c. The different contents of the abnormal iso-2cytochromes c suggest that cytochrome c has different environments in ?+ and ?? mitochondria and that the ?+ condition may stabilize certain altered proteins.  相似文献   

4.
NADPH-cytochrome c reductase of yeast microsomes was purified to apparent homogeneity by solubilization with sodium cholate, ammonium sulfate fractionation, and chromatography with hydroxylapatite and diethylaminoethyl cellulose. The purified preparation exhibited an apparent molecular weight of 83,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The reductase contained one molecule each of flavin-adenine dinucleotide and riboflavin 5′-phosphate, though these were dissociative from the apoenzyme. The purified reductase showed a specific activity of 120 to 140 μmol/min/mg of protein for cytochrome c as the electron acceptor. The reductase could reduce yeast cytochrome P-450, though with a relatively slow rate. The reductase also reacted with rabbit liver cytochrome P-450 and supported the cytochrome P-450-dependent benzphetamine N-demethylation. It can, therefore, be concluded that the NADPH-cytochrome c reductase is assigned for the cytochrome P-450 reductase of yeast. The enzyme could also reduce the detergent-solubilized cytochrome b5 of yeast. So, this reductase must contribute to the electron transfer from NADPH to cytochrome b5 that observed in the yeast microsomes.  相似文献   

5.
The Km and Vmax values characterizing the reaction of baker's yeast iso-I-cytochrome c, whether tri-methylated or not at lysine residue 72, with crude preparations of cytochrome c peroxidase, cytochrome c oxidase and succinate cytochrome c oxidoreductase from Saccharomyces cerevisiae are similar. These results, as well as the redox potential values, the auto-oxidability parameters and the circular dichroism spectra, strongly suggest that the biological methylation of yeast cytochrome c does not alter its functional properties. The functional characteristics of baker's yeast iso-I-cytochrome c are similar to those of horse heart cytochrome c and yeast iso-2-cytochrome c.  相似文献   

6.
H. Roberts  B. Hess 《BBA》1977,462(1):215-234
The steady-state kinetics of purified yeast cytochrome c oxidase were investigated at low ionic strength where the electrostatic interaction with cytochrome c is maximized. In 10 mM cacodylate/Tris (pH 6.5) the oxidation kinetics of yeast iso-1-cytochrome c were sigmoidal with a Hill coefficient of 2.35, suggesting cooperative binding. The half-saturation point was 1.14 μM. Horse cytochrome c exhibited Michaelis-Menten kinetics with a higher affinity (Km = 0.35 μM) and a 100% higher maximal velocity.In 67 mM phosphate the Hill coefficient for yeast cytochrome c decreased to 1.42, and the species differences in Hill coefficients were lessened. Under the latter conditions, a yeast enzyme preparation partially depleted of phospholipids was activated on addition of diphosphatidylglycerol liposomes. When the enzyme was incorporated into sonicated yeast promitochondrial particles the apparent Km for horse cytochrome c was considerably lower than the value for the isolated enzyme.ATP was found to inhibit both the isolated oxidase and the membrane-bound enzyme. With the isolated enzyme in 10 mM cacodylate/Tris, 3 mM ATP increased the half-saturation point with yeast cytochrome c 3-fold, without altering the maximal velocity or the Hill coefficient. 67 mM phosphate abolished the inhibition of the isolated oxidase by ATP.The increase in affinity for cytochrome c produced by binding the oxidase to the membrane was not observed in the presence of 3 mM ATP, with the result that the membrane-bound enzyme was more sensitive to inhibition by ATP. ADP was a less effective inhibitor than ATP, and did not prevent the inhibition by ATP.It is proposed that non-specific electrostatic binding of cytochrome c to phospholipid membranes, followed by rapid lateral diffusion, is responsible for the dependence of the affinity on the amount and nature of the phospholipids and on the ionic strength.ATP may interfere with the membrane-facilitated binding of cytochrome c by a specific electrostatic interaction with the membrane or by binding to cytochrome c.  相似文献   

7.
Bovine heart cytochrome c oxidase and rat liver mitochondria were crosslinked in the presence and absence of cytochrome c. Biimidate treatment of purified cytochrome oxidase, which results in the crosslinkage of all of the oxidase protomers except subunit I when ? 20% of the free amines are modified, inhibits ascorbate-N,N,N′,N′-tetramethyl-p-phenylene diamine oxidase activity. Intermolecular crosslinking of cytochrome oxidase molecules, which results in the formation of large enzyme aggregates displaying rotational correlation times ? 1 ms, does not affect oxidase activity. Crosslinking of mitochondria covalently binds the cytochrome bc1 and aa3 complexes to cytochrome c, and inhibits steady-state oxidase activity. Addition of cytochrome c to purified cytochrome oxidase or to cytochrome c-depleted mitoplasts increases this inhibition slightly. Cytochrome c oligomers act as competitive inhibitors of native cytochrome c; however, crosslinking of cytochrome c to cytochrome c-depleted mitoplasts or purified cytochrome oxidase results in a catalytically inactive complex. These experiments indicate that cytochrome c oxidase subunit interactions are required for activity, and that cytochrome c mobility may be essential for electron transport between cytochrome c reductase and oxidase.  相似文献   

8.
Tryptophan located at position 59 in vertebrate cytochromes c and at position 64 in yeast iso-1-cytochrome c is an evolutionarily invariant residue that is believed to be essential to the operation of the cytochrome c molecule. We show that this residue is replaced in at least partially functional iso-1-cytochromes c from cyc1 revertants of the yeast Saccharomyces cerevisiae. Tryptophan, tyrosine and leucine are found at position 64 in the revertants from the cyc1-84 mutant, confirming the genetic evidence (Sherman et al., 1974) that the mutant contains an UAG nonsense codon and establishing that the site of the mutation corresponds to the normal tryptophan 64. In a revertant from the cyc1.189 mutant, position 64 is occupied by a residue of phenylalanine. All three altered proteins are unstable, implying that tryptophan 64 has an essential and unique role for maintaining the normal structure of the cytochrome c molecule. In addition the iso-1-cytochrome c with leucine 64 and tyrosine 64 have greatly reduced biological activities, while iso-1-cytochrome c with the phenylalanine replacement has at least 20% of the wild-type activity or more. It remains uncertain whether the reduced specific activities are due to distorted tertiary structures or due to the specific lack of the tryptophan residue that may also have a direct functional role.  相似文献   

9.
Structural gene for yeast iso-2-cytochrome c.   总被引:14,自引:0,他引:14  
Protein analysis and genetic studies have led to the identification of the structural genes of iso-1-cytochrome c and iso-2-cytochrome c, which constitute, respectively, 95% and 5% of the total amount of cytochrome c in the yeast Saccharomyces cerevisiae. The structural gene CYC1 for iso-1-cytochrome c was previously identified by Sherman et al. (1966) and the structural gene CYC7 for iso-2-cytochrome c is identified in this investigation. A series of the following mutations were selected by appropriate procedures and shown by genetic tests to be allelic: CYC7+ →CYC7-1 →cyc7-1-1 →CYC7-1-1-A, etc., where CYC7 + denotes the wild-type allele determining iso-2-cytochrome c; CYC7-1 denotes a dominant mutant allele causing an approximately 30-fold increase of iso-2-cytochrome c with a normal sequence, and was used as an aid in selecting deficient mutants; cyc7-1-1 denotes a recessive mutant allele causing complete deficiency of iso-2-cytochrome c; and CYC7-1-1-A denotes an intragenic revertant having an altered iso-2-cytochrome c at the same level as iso-2-cytochrome c in the CYC7-1 strains. The suppression of cyc7-1-1 with the known amber suppressor SUP7-a indicated that the defect in cyc7-1-1 was an amber (UAG) nonsense codon. Sequencing revealed a single amino acid replacement of a tyrosine residue for the normal glutamine residue at position 24 in iso-2-cytochrome c from the suppressed cyc7-1-1 strain and also in five revertants of cyc7-1-1, of which three were due to extragenic suppression and two to intragenic reversion. The nature of the mutation that elevated the level of normal iso-2-cytochrome c in the CYC7-1 strain was not identified, although it occurred at or very near the CYC7 locus but outside the translated portion of the gene and it may be associated with a chromosomal aberration. Genetic studies demonstrated that CYC7 is not linked to CYC1, the structural gene for iso-1-cytochrome c.  相似文献   

10.
The inhibitors of protein synthesis, chloramphenicol and cycloheximide, were added to cultures of yeast undergoing glucose derepression at different times during the growth cycle. Both inhibitors blocked the increase in activity of coenzyme QH2-cytochrome c reductase, suggesting that the formation of complex III of the respiratory chain requires products of both mitochondrial and cytoplasmic protein synthesis.The possibility that precursor proteins synthesized by either cytoplasmic or mitochondrial ribosomes may accumulate was investigated by the sequential addition of cycloheximide and chloramphenicol (or the reverse order) to cultures of yeast undergoing glucose derepression. When yeast cells were grown for 3 hr in medium containing cycloheximide and then transferred to medium containing chloramphenicol, the activity of cytochrome oxidase increased at the same rate as the control during the first hour in chloramphenicol. These results suggest that some accumulation of precursor proteins synthesized in the mitochondria had occurred when cytoplasmic protein synthesis was blocked during the growth phase in cycloheximide. In contrast, essentially no products of mitochondrial protein synthesis accumulated as precursors for either oligomycin-sensitive ATPase or complex III of the respiratory chain during growth of the cells in cycloheximide.When yeast were grown for 3 hr in medium containing chloramphenicol followed by 1 hr in cycloheximide, the activities of cytochrome oxidase and succinate-cytochrome c reductase increased at the same rate as the control, while the activities of oligomycin-sensitive ATPase and NADH or coenzyme QH2-cytochrome c reductase were nearly double that of the control. These data suggest that a significant accumulation of mitochondrial proteins synthesized in the cytoplasm had occurred when the yeast cells were grown in medium containing sufficient chloramphenicol to block mitochondrial protein synthesis. The possibility that proteins synthesized in the cytoplasm may act to control the synthesis of mitochondrial proteins for both oligomycin-sensitive ATPase and complex III of the respiratory chain is discussed.  相似文献   

11.
《BBA》1987,890(2):127-133
A photosynthetic reaction center complex has been purified from an aerobic photosynthetic bacterium, Erythrobacter species OCh 114. The reaction center was solubilized with 0.45% lauryldimethylamine N-oxide and purified by DEAE-Sephacel column chromatography. Absorption spectra of both reduced and oxidized forms of the reaction center were very similar to those of the reaction center from Rhodopseudomonas sphaeroides R-26 except for the contributions due to cytochrome and carotenoid. 1 mol reaction center contained 4 mol bacteriochlorophyll a, 2 mol bacteriopheophytin a, 4 mol cytochrome c-554, 2 mol ubiquinone-10, and carotenoid. The reaction center consisted of four different polypeptides of 26, 30, 32 and 42 kDa. The last one retained heme c. Absorbance at 450 nm oscillated with the period of two on consecutive flashes. The light-minus-dark difference spectrum had two peaks at 450 nm and 420 nm, indicating that odd flashes generated a stable ubisemiquinone anion and even flashes generated quinol. o-Phenanthroline accelerated the re-reduction of flash-oxidized reaction centers, indicating that o-phenanthroline inhibited the electron transfer between QA and QB. The cytochrome (cytochrome c-554) in the reaction center was oxidized on flash activation. The midpoint potential of the primary electron acceptor (QA) was determined by measuring the extent of oxidation of cytochrome c-554 at various ambient potentials. The mid-point potential of QA was −44 mV, irrespective of pH between 5.5 and 5.9.  相似文献   

12.
Cytochrome P-450 was purified from microsomes of anaerobically grown yeast to a specific content of 12–15 nmoles per mg of protein with a yield of 10–30%. Upon sodium dodecylsulfate/polyacrylamide gel electrophoresis, the purified preparation yielded a major protein band having a molecular weight of about 51,000 together with a few faint bands. It was free from cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c (P-450) reductase. In the oxidized state it exhibited a low-spin type absorption spectrum, and its reduced CO complex showed a Soret peak at 447–448 nm. It was reducible by NADPH in the presence of an NADPH-cytochrome c reductase preparation purified from yeast microsomes. Its conversion to the cytochrome P-420 form was much slower than that of hepatic cytochrome P-450.  相似文献   

13.
A cytochrome aa 3-type oxidase was isolated with and without a c-type cytochrome (cytochrome c-557) from Methylococcus capsulatus Bath by ion-exchange and hydrophobic chromatography in the presence of Triton X-100. Although cytochrome c-557 was not a constitutive component of the terminal oxidase, the cytochrome c ascorbate-TMPD oxidase activity of the enzyme decreased dramatically when the ratio of cytochrome c-557 to heme a dropped below 1:3. On denaturing gels, the purified enzyme dissociated into three subunits with molecular weights of 46,000, 28,000 and 20,000. The enzyme contains two heme groups (a and a 3), absorption maximum at 422 nm in the resting state, at 445 and 601 nm in the dithionite reduced form and at 434 and 598 nm in the dithionite reduced plus CO form. Denaturing gels of the cytochrome aa 3-cytochrome c-557 complex showed the polypeptides associated with cytochrome aa 3 plus a heme c-staining subunit with a molecular weight of 37,000. The complex contains approximately two heme a, one heme c, absorption maximum at 420 nm in the resting state and at 421, 445, 522, 557 and 601 nm in the dithionite reduced form. The specific activity of the purified enzyme was 130 mol O2/min · mol heme a compared to 753 mol O2/min · mol heme a when isolated with cytochrome c-557.Abbreviations MMO methan monooxygenase - sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - TMPD N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride - Na2EDTA disodium ethylenediamine-tetraacetic acid  相似文献   

14.
Tateo Yamanaka  Keiko Fujii 《BBA》1980,591(1):53-62
Cytochrome a-type terminal oxidase was purified from Thiobacillus novellus to an electrophoretically homogeneous state and some of its properties were studied.The enzyme shows absorption peaks at 428 and 602 nm in the oxidized form, and at 442 and 602 nm in the reduced form. The CO compound of the reduced enzyme shows peaks at 431 and 599 nm. The enzyme has 1 mol of haem a and 1 g-atom of copper per 55 600 g and is composed of two kinds of subunit, of 32 000 and 23 000 daltons, respectively.The enzyme reacts rapidly with tuna, bonito and yeast cytochromes c as well as with T. novellus cytochrome c, while it reacts slowly with horse and cow cytochromes c. The reduction product of oxygen catalysed by the enzyme is water.  相似文献   

15.
Reversible thermal denaturation of cytochrome c-552 from the extremely thermophilic bacterium Thermus thermophilus was studied by circular dichroism and fluorescence spectroscopy. Thermal denaturation in the presence of guanidine hydrochloride is completely reversible. The thermodynamic parameters for the reaction have been calculated based on a two-state mechanism. The free energy change on denaturation (ΔG) at 25 °C in the absence of denaturant is estimated to be 28.5 ± 0.15 kcal/mol, which is larger than that of cytochrome c from mesophilic organisms. The temperature of maximum stability is approximately 27 °C, which is higher than those of cytochromes c from mesophilic organisms (9 to 12 °C). The temperature dependences of the enthalpy and entropy changes are similar to those of cytochromes c from mesophilic organisms. The heat capacity change on denaturation is between 1250 and 1680 cal/deg mole, which is similar to those of cytochromes c from mesophilic organisms (1500 to 2500 cal/deg mol). From these results, it has been concluded that T. thermophilus cytochrome c is more stable than cytochromes c from mesophilic organisms by virtue of the fact that the free energy change for denaturation is greater and has its maximum at a higher temperature.  相似文献   

16.
1.
1. The ascorbate reducibility of cytochrome c (beef or horse heart) in its complexes with cytochrome c oxidase (beef heart) and cytochrome c peroxidase (yeast) has been studied.  相似文献   

17.
Transient protein interactions mediate many vital cellular processes such as signal transduction or intermolecular electron transfer. However, due to difficulties associated with their structural characterization, little is known about the principles governing recognition and binding in weak transient protein complexes. In particular, it has not been well established whether binding hot spots, which are frequently found in strong static complexes, also govern transient protein interactions. To address this issue, we have investigated an electron transfer complex of physiological partners from yeast: yeast iso-1-cytochrome c (Cc) and yeast cytochrome c peroxidase (CcP). Using isothermal titration calorimetry and NMR spectroscopy, we show that Cc R13 is a hot-spot residue, as R13A mutation has a strong destabilizing effect on binding. Furthermore, we employ a double-mutant cycle to illustrate that Cc R13 interacts with CcP Y39. The present results, in combination with those of earlier mutational studies, have enabled us to outline the extent of the energetically important Cc-CcP binding region. Based on our analysis, we propose that binding energy hot spots, which are prevalent in static protein complexes, could also govern transient protein interactions.  相似文献   

18.
K. Kusai  T. Yamanaka 《BBA》1973,325(2):304-314
A thiosulphate-cytochrome c reductase was highly purified from Chlorobium thiosulphatophilum and its properties were studied. The enzyme catalyses reduction with Na2S2O3 of c cytochromes, including cytochrome c-551 of the bacterium. Cytochrome c (555, C. thiosulphatophilum) does not react directly with the enzyme at an appreciable rate but stimulates greatly the reduction by the enzyme of cytochrome c-551 with Na2S2O3. The reduction of c cytochromes catalysed by the enzyme is strongly inhibited by cyanide and sulphite.Cytochrome c (553, C. thiosulphatophilum), a c-type cytochrome with covalently bound flavin, was found to catalyse reduction with sulphide of c cytochromes, including cytochrome c-555. The reaction is strongly inhibited by cyanide. Cyanide seems to combine strongly with cytochrome c-553 probably at the flavin moiety. Thus, the absorption spectrum attributable to flavin of the haemoprotein is changed on addition of cyanide, and neither the original spectrum nor the activity reappears even after the cyanide-treated cytochrome has been subjected to gel filtration with a Sephadex G-25 column or to isoelectric focusing.  相似文献   

19.
Cytochrome P-448, a type of cytochrome P-450, from brewer's yeast (Saccharomyces cerevisiae) grown under conditions of glucose repression was isolated and purified. Triton X-100 in very low concentration proved to be very effective in stabilizing P-448 in the microsomal fraction and later prevented its conversion to cytochrome P-420 through solubilization with various ionic and nonionic detergents. Highest yields were obtained with 1% sodium cholate, in the presence of 0.1% Triton X-100 and reduced glutathione. A novel combination of hydrophobic adsorption and other chromatographic techniques was used for the purification of cytochrome P-448. These involve the use of amino octyl-Sepharose 4B, instead of the low-yielding aminohexyl derivative, followed by the fast-running hydroxyapatite-cellulose column. Finally, the use of DEAE-Sephacel was found to increase greatly the purity of the cytochrome P-448 obtained. The molecular weight of this preparation was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr, 55,500). Using the known molar extinction coefficient of the carbon monoxide-difference spectrum the estimate of degree of purity of cytochrome P-448 obtained by this purification procedure was between 88 and 97%. Electrophoresis also showed that this preparation was completely homogeneous and assays showed that it was also completely free of cytochrome bs, cytochrome c reductase and cytochrome P-420. Purified cytochrome P-448 reconstituted with cytochrome P-450 (cytochrome c) reductase, isolated from yeast, showed 10-fold higher aryl hydrocarbon hydroxylase activity with benzo[a]pyrene as a substrate than the corresponding microsomal fraction enzyme. Kinetics of benzo[a]pyrene hydroxylation were determined: Km (33 μm) was comparable with that reported for purified hepatic cytochrome P-448. The number of binding sites of microsomal and purified cytochromes P-450 (from liver of phenobarbital-induced rats) and yeast cytochrome P-448 with benzo[a]pyrene has been determined using and equilibrium gel filtration method. There is one binding site in each case (contrast with six sites for microsomal enzymes). The Scatchard plot gives number of binding sites, apparent association constants (K), and the equivalent dissociation constants (Ks). Comparison is made with spectral dissociation constants for these enzymes and benzo[a]pyrene. Thus the proportion bound, dissociation constant (Ks), and stoichiometry of rat liver (phenobarbital induced) and yeast cytochrome P-448 with benzo[a]pyrene were compared with corresponding values for microsomal fractions of both systems. Purified enzymes had higher Ks values in both cases, and the proportion of enzyme that bound benzo[a]pyrene was high (53%) for liver and this value is 100% for purified enzyme from yeast, which is the same as the value obtained for the microsomal enzyme from yeast.  相似文献   

20.
Three c-type cytochromes isolated from Nitrobacter agilis were purified to apparent homogeneity: cytochrome c-553, cytochrome c-550 and cytochrome c-549, 554. Their amino acid composition and other properties were studied. Cytochrome c-553 was isolated as a partially reduced form and could not be oxidized by ferricyanide. The completely reduced form of the cytochrome had absorption maxima at 419, 524 and 553 nm. It had a molecular weight of 25 000 and dissociated into two polypeptides of equal size of 11 500 during SDS gel electrophoresis. The isoelectric point of cytochrome c-553 was pH 6.8. The ferricytochrome c-550 exhibited an absorption peak at 410 nm and the ferrocytochrome c showed peaks at 416, 521 and 550 nm. The molecular weight of the cytochrome estimated by gel filtration and by SDS gel electrophoresis was 12 500. It had an Em(7) value of 0.27 V and isoelectric point pH 8.51. The N-terminal sequence of cytochrome c-550 showed a clear homology with the corresponding portions of the sequences of other c-type cytochromes. Cytochrome c-549, 554 possessed atypical absorption spectra with absorption peaks at 402 nm as oxidized form and at 419, 523, 549 and 554 nm when reduced with Na2S2O4. Its molecular weight estimated by gel filtration and SDS polyacrylamide gel electrophoresis was 90 000 and 46 000, respectively. The cytochrome had an isoelectric point of pH 5.6. Cytochrome c-549, 554 was highly autoxidizable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号