首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel 36-kDa endochitinase named chit36 has been isolated and characterized from Trichoderma harzianum Rifai TM. Partial amino acid sequences from the purified protein were used to clone the fungal cDNA, based on polymerase chain reaction with degenerate primers. The complete open reading frame encodes a 344-amino acid protein which shows 84% similarity to a putative chitinase from Streptomyces coelicolor. Chit36 was overexpressed under the pki1 constitutive promoter from Trichoderma reesei via biolistic transformation of T. harzianum TM. Stable transformants showed expression and endochitinase activity of chit36 in glucose-rich medium. Culture filtrates containing secreted CHIT36 as the sole chitinolytic enzyme completely inhibited the germination of Botrytis cinerea conidia. Growth of Fusarium oxysporum f. sp. melonis and Sclerotium rolfsii were significantly inhibited on agar plates on which the Trichoderma transformants had previously been grown.  相似文献   

2.
Protoplasts were isolated from Trichoderma harzianum strain PTh18 using lysing enzymes and self-fusion of T. harzianum protoplasts was carried out using polyethylene glycol in STC buffer. The fused protoplasts of T. harzianum were regenerated and 15 self-fusants were selected to study the chitinase production and biocontrol activity. High chitinase activity was measured in the culture filtrates of most of the self-fusants (87%) than the parent. Among the fusants, the strain SFTh8 produced maximum chitinase with a two-fold increase as compared to the parent strain. All the self-fusants exhibited increased antagonistic activity against Rhizoctonia solani than the parent. The crude chitinase preparation of SFTh8 lysed the mycelia of T. harzianum, Trichoderma viride and Trichoderma reesei and released the protoplasts in higher number than the crude chitinase preparation of parent strain PTh18.  相似文献   

3.
Menendez AB  Godeas A 《Mycopathologia》1998,142(3):153-160
Two experiments of biological control of Sclerotinia sclerotiorum, one in the greenhouse and the other in the field, were carried out with soybean and Trichoderma harzianum as host and antagonist, respectively. Significant control of disease was achieved in both experiments, but there were no significant differences in plant growths. In the greenhouse, the application of T. harzianum as alginate capsules, increased the survival of soybean plants more than 100% with respect to the disease treatment. In the field, T. harzianum treated plants survived 40% more than those from the disease treatment, showing a similar survival level to control plants. Besides, a significant reduction (62.5%) in the number of germinated sclerotia was observed in the Trichoderma treated plot. Chitinase and 1,3-β- glucanase activities were detected when T. harzianum was grown in a medium containing Sclerotinia sclerotiorum cell walls as sole carbon source. In addition, electrophoretic profiles of proteins induced in T. harzianum showed quantitative differences between major bands obtained in the media induced by S. sclerotiorum cell walls and that containing glucose as a sole carbon source. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Among the bacteria and fungi associated from the soil where cowpea was grown and tested for antagonism against Protomycopsis phaseoli , Bacillus sp. inhibited the radial growth, Fusarium oxysporum , yeast, Aspergillus fumigatus , Trichoderma harzianum , Trichoderma koningii and Trichoderma sp. reduced radial growth of P. phaseoli . In vitro studies showed that T. harzianum was an active hyperparasite and more effective in reducing the radial growth of P. phaseoli than T. koningii and Trichoderma sp. Spore suspensions of the three Trichoderma spp. prevented the germination of chlamydospores of P. phaseoli . In the field, when applied as spray, Trichoderma sp. was found to be more active in reducing the spread of leaf smut disease than T. harzianum and T. koningii.  相似文献   

5.
We have used isolates of Trichoderma spp. collected in South-East Asia, including Taiwan and Western Indonesia, to assess the genetic and metabolic diversity of endemic species of Trichoderma. Ninety-six strains were isolated in total, and identified at the species level by analysis of morphological and biochemical characters (Biolog system), and by sequence analysis of their internal transcribed spacer regions 1 and 2 (ITS1 and 2) of the rDNA cluster, using ex-type strains and taxonomically established isolates of Trichoderma as reference. Seventy-eight isolates were positively identified as Trichoderma harzianum/Trichoderma inhamatum (37 strains) Trichoderma virens (16 strains), Trichoderma spirale (8 strains), Trichoderma koningii (3 strains), Trichoderma atroviride (3 strains), Trichoderma asperellum (4 strains), Hypocrea jecorina (anamorph: Trichoderma reesei; 2 strains), Trichoderma viride (2 strains), Trichoderma hamatum (1 strain), and Trichoderma ghanense (1 strain). Analysis of biochemical characters revealed that T. virens, T. spirale, T. asperellum, T. koningii, H. jecorina, and T. ghanense formed clearly defined clusters, thus exhibiting species-specific metabolic properties. In biochemical character analysis T. atroviride and T. viride formed partially overlapping clusters, indicating that these two species may share overlapping metabolic characteristics. This behavior was even more striking with T. harzianum/T. inhamatum where genotypes defined on the basis of ITS1 and 2 sequences overlapped significantly with adjacent genotypes in the biochemical character analysis, and four strains from the same location (Bali, Indonesia) even clustered with species from section Longibrachiatum. The data indicate that the T. harzianum/T. inhamatum group represents species with high metabolic diversity and partially unique metabolic characteristics. Nineteen strains yielded three different ITS1/2 sequence types which were not alignable with any known species. They were also uniquely characterized by morphological and biochemical characters and therefore represent three new taxa of Trichoderma.  相似文献   

6.
丝状真菌瑞氏木霉生产重组蛋白的分子生物学研究进展   总被引:1,自引:0,他引:1  
瑞氏木霉是自然界中普遍存在并有重要经济意义的一种丝状真菌,作为工业生产菌株生产多种水解酶类已有多年历史。本文报道了用基因工程手段对瑞氏木霉进行遗传改造,构造具新性状的重组菌株,用以过量产生同源和异源蛋白类物质的分子生物学研究进展。包括利用CBHI基因的强启动子在瑞氏木霉中过量表达瑞氏木霉内切葡聚糖酶、小牛凝乳蛋白酶、人抗体片段、哈茨木霉几丁质酶、Hormoconisresinae葡萄糖淀粉酶等同源和异源蛋白以及利用在葡萄糖上强表达的启动子生产纤维素酶等遗传工程进展情况。  相似文献   

7.
Chitinase Chit42 from Trichoderma harzianum CECT 2413 is considered to play an important role in the biocontrol activity of this fungus against plant pathogens. Chit42 lacks a chitin-binding domain (ChBD). We have produced hybrid chitinases with stronger chitin-binding capacity by fusing to Chit42 a ChBD from Nicotiana tabacum ChiA chitinase and the cellulose-binding domain from cellobiohydrolase II of Trichoderma reesei. The chimeric chitinases had similar activities towards soluble substrate but higher hydrolytic activity than the native chitinase on high molecular mass insoluble substrates such as ground chitin or chitin-rich fungal cell walls.  相似文献   

8.
Six wild fungal strains, Trichoderma viride, T. harzianum, Gliocladium virens, Aspergillus terreus, A. niger and Tiarosporella phaseolina , isolated from decomposed jute stacks and diseased jute stem, were tested for their cellulolytic and hemicellulolytic activities and compared with T. reesei MCG 77. Filter paper cellulase production by all these wild strains were lower than those produced by T. reesei while some strains ( T. viride, T. harzianum and G. virens ) possessed carboxymethyl cellulase, β-glucosidase, xylanase and β-xylosidase activities comparable to T. reesei. A. terreus and A. niger produced 3·2 and 1·2 times respectively, greater β-glucosidase activity compared to T. reesei when grown on microcrystalline cellulose.  相似文献   

9.
The antagonistic effect of Trichoderma harzianum on a range of seed-borne fungal pathogens of wheat (viz. Fusarium graminearum, Bipolaris sorokiniana, Aspergillus spp., and Penicillium spp.) was assessed. The potential of T. harzianum as a biocontrol agent was tested in vitro and under field conditions. Coculture of the pathogens and Trichoderma under laboratory conditions clearly showed dominance of T. harzianum. Under natural conditions, biocontrol effects were also obtained against the test fungi. One month after sowing, field emergence (plant stand) was increased by 15.93% over that obtained with the control treatment, and seedling infection was reduced significantly. Leaf blight severity was decreased from 22 to 11 at the heading stage, 35 to 31 at the flowering stage, and 86 to 74 at the grain filling stage. At harvest, the number of tillers per plant was increased by 50%, the yield was increased by 31.58%, and the 1,000-seed weight was increased by 21%.  相似文献   

10.
Production of extracellular endochitinase could be increased 5-fold in the mycoparasite fungus Trichoderma harzianum by using the cellulase promoter cbh1 of Trichoderma reesei, whereas the total endochitinase activity increased 10-fold. The cbh1 promoter was not expressed on glucose and sucrose in T. harzianum and was induced by sophorose and on cellulase-inducing medium. The endogenous endochitinase gene was expressed at a low basal level on glucose and sucrose. No specific induction by crab shell chitin or sophorose was observed.  相似文献   

11.
The enzymes from Trichoderma species that degrade fungal cell walls have been suggested to play an important role in mycoparasitic action against fungal plant pathogens. The mycoparasite Trichoderma harzianum produces at least two extracellular beta-1,6-glucanases, among other hydrolases, when it is grown on chitin as the sole carbon source. One of these extracellular enzymes was purified to homogeneity after adsorption to its substrate, pustulan, chromatofocusing, and, finally, gel filtration. The apparent molecular mass was 43,000, and the isoelectric point was 5.8. The first 15 amino acids from the N terminus of the purified protein have been sequenced. The enzyme was specific for beta-1,6 linkages and showed an endolytic mode of action on pustulan. Further characterization indicated that the enzyme by itself releases soluble sugars and produces hydrolytic halli on yeast cell walls. When combined with other T. harzianum cell wall-degrading enzymes such as beta-1,3-glucanases and chitinases, it hydrolyzes filamentous fungal cell walls. The enzyme acts cooperatively with the latter enzymes, inhibiting the growth of the fungi tested. Antibodies against the purified protein also indicated that the two identified beta-1,6-glucanases are not immunologically related and are probably encoded by two different genes.  相似文献   

12.
Trichoderma harzianum parasitizes a large variety of phytopathogenic fungi. Trichoderma harzianum mycoparasitic activity depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall. A gene ( SS10 ) encoding a subtilisin-like protease was cloned from T. harzianum T88, a biocontrol agent effective against soil-borne fungal pathogens. The full-length cDNA was isolated by 5' and 3' rapid amplification of the cDNA ends. The coding region of the gene is 1302 bp long, encoding 433 amino acids of a predicted protein with a molecular mass of 45 kDa and a pI of 6.1. Analysis of the deduced amino acid sequence revealed that this protein had homology to the serine proteases of the subtilisin-like superfamily (subtilases) (EC 3.4.21.) and had a predicted active site made up of the catalytic residues Asp 187, His 218 and Ser 376. Northern experiments demonstrated that SS10 was induced in response to different fungal cell walls. Subtilisin-like protease gene SS10 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. The enzyme activity culminates (17.8 U mL−1) 60 h after induction with galactose. The optimal enzyme reaction temperature was 50 °C and the optimal pH was 8. The subtilisin-like protease exerted broad-spectrum antifungal activity against Alternaria alternata, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia sclerotiorum and Cytospora chrysosperma .  相似文献   

13.
14.
Culture filtrates from Trichoderma harzianum E58, T. reesei CL 847 and Penicillium sp. C 462 were assayed for beta-glucosidase activity using a range of substrates and sugar analysis methods. Although sugar analyses by the dinitrosalicylic acid (DNS) and Nelson-Somogyi methods gave a similar profile, when increasing concentrations of salicin were assayed, considerably higher values were obtained with the DNS assay. The salicin concentration used for the assay greatly influenced the final beta-glucosidase values with higher values obtained for T. harzianum E58 and T. reesei CL 847 at substrate concentrations of 1 mg/mL while optimum values for Penicillium sp. C 462 were obtained at substrate concentrations greater than 3 mg/mL. Low concentrations of salicin and p-nitro-phenyl-beta-D-glucopyranoside (PNPG) gave the same response as cellobiose. Cellobiose should be used at concentrations greater than 3.74 mg/mL to avoid substrate limitation of the beta-glucosidase assay.  相似文献   

15.
Possible role of lectins in mycoparasitism.   总被引:19,自引:1,他引:18  
Y Elad  R Barak    I Chet 《Journal of bacteriology》1983,154(3):1431-1435
Lectin activity in a host-mycoparasite relationship was demonstrated with Rhizoctonia solani and Trichoderma harzianum. Attachment of O but not A and B erythrocytes to hyphae occurred on R. solani but not on its mycoparasite. This phenomenon, which was Ca2+ and Mn2+ dependent, was prevented by galactose, present in T. harzianum cell walls, and by fucose.  相似文献   

16.
Chitinase, beta-1,3-glucanase, and protease activities were formed when Trichoderma harzianum mycelia, grown on glucose as the sole carbon source, were transferred to fresh medium containing cell walls of Botrytis cinerea. Chitobiohydrolase, endochitinase, and beta-1,3-glucanase activities were immunologically detected in culture supernatants by Western blotting (immunoblotting), and the first two were quantified by enzyme-linked immunosorbent assay. Under the same conditions, exogenously added [U-14C]valine was incorporated in acetone-soluble compounds with an apparent M(r) of < 2,000. These compounds comigrated with the peptaibols trichorzianines A1 and B1 in thin-layer chromatography and released [U-14C]valine after incubation in 6N HCl. Incorporation of radioactive valine into this material was stimulated by the exogenous supply of alpha-aminoisobutyric acid, a rare amino acid which is a major constituent of peptaibols. The obtained culture supernatants inhibited spore germination as well as hyphal elongation of B. cinerea. Culture supernatants from mycelia placed in fresh medium without cell walls of B. cinerea did not show hydrolase activities, incorporation of [U-14C]valine into peptaibol-like compounds, and inhibition of fungal growth. Purified trichorzianines A1 and B1 as well as purified chitobiohydrolase, endochitinase, or beta-1,3-glucanase inhibited spore germination and hyphal elongation, but at concentrations higher than those observed in the culture supernatants. However, when the enzymes and the peptaibols were tested together, an antifungal synergistic interaction was observed and the 50% effective dose values obtained were in the range of those determined in the culture supernatants. Therefore, the parallel formation and synergism of hydrolytic enzymes and antibiotics may have an important role in the antagonistic action of T. harzianum against fungal phytopathogens.  相似文献   

17.
Trichoderma harzianum is an effective biocontrol agent of several important plant pathogenic fungi. This Trichoderma species attacks other fungi by secreting lytic enzymes, including beta-1,3-glucanase and chitinolytic enzymes. Superior biocontrol potential may then be found in strains having a high capacity to produce these enzymes. We have therefore evaluated the capacity of six unidentified Trichoderma spp. isolates to produce chitinolytic enzymes and beta-1,3-glucanases in comparison with T. harzianum 39.1. All six isolates demonstrated substantial enzyme activity. However, while the isolates hereafter called T2, T3, T5, and T7 produced lower amounts of enzymes, the activity of isolates T4 and T6 were 2-3 fold higher than that produced by T. harzianum 39.1. A chitinase produced by the T6 isolate was purified by a single ion-exchange chromatography step and had a molecular mass of 46 kDa. The N-terminal amino-acid sequence showed very high homology with other fungal chitinases. Its true chitinase activity was demonstrated by its action on chitin and the failure to hydrolyze laminarin and p-nitrophenyl-beta-N-acetylglucosaminide. The hydrolytic action of the purified chitinase on the cell wall of Sclerotium rolfsii was convincingly shown by electron microscopy studies. However, the purified enzyme had no effect on the cell wall of Rhizoctonia solani.  相似文献   

18.
Montero M  Sanz L  Rey M  Monte E  Llobell A 《The FEBS journal》2005,272(13):3441-3448
A new component of the beta-1,6-glucanase (EC 3.2.1.75) multienzymatic complex secreted by Trichoderma harzianum has been identified and fully characterized. The protein, namely BGN16.3, is the third isozyme displaying endo-beta-1,6-glucanase activity described up to now in T. harzianum CECT 2413. BGN16.3 is an acidic beta-1,6-glucanase that is specifically induced by the presence of fungal cell walls in T. harzianum growth media. The protein was purified to electrophoretical homogenity using its affinity to beta-1,6-glucan as first purification step, followed by chomatofocusing and gel filtration. BGN16.3 has a molecular mass of 46 kDa in SDS/PAGE and a pI of 4.5. The enzyme only showed activity against substrates with beta-1,6-glycosidic linkages, and it has an endohydrolytic mode of action as shown by HPLC analysis of the products of pustulan hydrolysis. The expression profile analysis of BGN16.3 showed a carbon source control of the accumulation of the enzyme, which is fast and strongly induced by fungal cell walls, a condition often regarded as mycoparasitic simulation. The likely involvement beta-1,6-glucanases in this process is discussed.  相似文献   

19.
Trichoderma mycoparasitic activity depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall. We have analysed the extracellular proteome secreted by T. harzianum CECT 2413 in the presence of different fungal cell walls. Significant differences were detected in 2DE maps, depending on the use of specific cell walls or chitin. A combination of MALDI-TOF and liquid chromatography mass spectrometry allowed the identification of a novel aspartic protease (P6281: MW 33 and pI 4.3) highly induced by fungal cell walls. A broad EST library from T. harzianum CECT 2413 was used to obtain the full-length sequence. The protein showed 44% identity with the polyporopepsin (EC 3.4.23.29) from the basidiomycete Irpex lacteus. Lower identity percentages were found with other pepsin-like proteases from filamentous fungi (<31%) and animals (<29%). Northern blot and promoter sequence analyses support the implication of the protease P6281 in mycoparasitism.  相似文献   

20.
The potential of the biocontrol agent Trichoderma harzianum T-203 to trigger plant defense responses was investigated by inoculating roots of cucumber seedlings with Trichoderma in an aseptic, hydroponic system. Trichoderma-treated plants were more developed than nontreated plants throughout the experiment. Electron microscopy of ultrathin sections from Trichoderma-treated roots revealed penetration of Trichoderma into the roots, restricted mainly to the epidermis and outer cortex. Strengthening of the epidermal and cortical cell walls was observed, as was the deposition of newly formed barriers. These typical host reactions were found beyond the sites of potential fungal penetration. Wall appositions contained large amounts of callose and infiltrations of cellulose. The wall-bound chitin in Trichoderma hyphae was preserved, even when the hyphae had undergone substantial disorganization. Biochemical analyses revealed that inoculation with Trichoderma initiated increased peroxidase and chitinase activities within 48 and 72 h, respectively. These results were observed for both the roots and the leaves of treated seedlings, providing evidence that T. harzianum may induce systemic resistance mechanisms in cucumber plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号