首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Throughout spermatogenesis, leptotene spermatocytes traverse the blood–testis barrier (BTB) to enter the adluminal compartment of the seminiferous epithelium for continued development. At the same time, the integrity of the BTB, which is constituted by co-existing tight junctions (TJ), basal ectoplasmic specializations (basal ES) and desmosome-like junctions, must be maintained since a breach in barrier function can result in spermatogenic arrest and even infertility. There is evidence to suggest that drug transporters may function at the BTB, but little is known about how they contribute to spermatogenesis. In this study, we investigate the role of P-glycoprotein (P-gp), a drug efflux pump, in BTB dynamics. A survey by RT-PCR revealed several transporter genes to be expressed by the testis, including Mdr1 (gene symbol for P-gp), Mrp1, Abcc5 and Slc15a1. It was also demonstrated that P-gp localizes to the BTB in all stages of the seminiferous epithelial cycle in the adult rat testis, as well as to the Sertoli cell–elongated spermatid interface in stages VII and VIII. We continued our study by examining the levels of several transporters in the testis following oral administration of Adjudin, a compound known to affect Sertoli–germ cell adhesion. In this experiment, the steady-state levels of P-gp, MRP1, ABCG1 and SLC15A1 were all found to increase by several-fold within hours of Adjudin treatment during junction restructuring. More importantly, an increase in P-gp association with TJ proteins (e.g., occludin, claudin-11 and JAM-A) was noted when testis lysates from Adjudin-treated rats were used for co-immunoprecipitation experiments, suggesting that P-gp may enhance BTB function during Sertoli–germ cell junction restructuring.  相似文献   

2.
Throughout spermatogenesis, leptotene spermatocytes must traverse the blood-testis barrier (BTB) at stages VIII-XI to gain entry into the adluminal compartment for continued development. However, the mechanism underlying BTB restructuring remains somewhat elusive. In this study, interleukin 1 alpha (IL1A) was administered intratesticularly to adult rats in order to assess its effects on spermatogenesis. IL1A was shown to perturb Sertoli-germ cell adhesion, resulting in germ cell loss from approximately 50% of seminiferous tubules by 15 days posttreatment. Equally important, the functional integrity of the BTB was compromised when inulin-fluorescein isothiocyanate was detected in the adluminal compartment of the seminiferous epithelium following its administration via the jugular vein. Interestingly, IL1A did not affect the steady-state levels of proteins that confer BTB function, namely OCLN, CLDN1, F11R, TJP1, and CDH2. Instead, the localizations of OCLN, F11R, and TJP1 in the seminiferous epithelium were altered; these proteins appeared to move away from sites of cell-cell contact. Moreover, IL1A was shown to perturb the orderly arrangement of filamentous actin at the BTB and apical ectoplasmic specialization with distinct areas illustrating loss of actin filaments. Taken collectively, these results suggest that IL1A-induced BTB disruption is not mediated via the reduction of target protein levels. Instead, IL1A's primary cellular target appears to be the Sertoli cell actin cytoskeleton. It is possible that localized production of IL1A by Sertoli and/or germ cells in vivo results in BTB restructuring, and this may facilitate the movement of leptotene spermatocytes across the BTB.  相似文献   

3.
During spermatogenesis, preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium, must traverse the blood-testis barrier (BTB) to gain entry to the adluminal compartment for further development at late stage VIII and early stage IX of the epithelial cycle. As such, the timely opening and closing of the BTB is crucial to spermatogenesis. A compromise in this process can lead to infertility. Moreover, the BTB is unique in its relative localization in the seminiferous epithelium compared to the tight junctions (TJs) found in other epithelia. Sertoli cell TJs are situated near the basal lamina in the testis, closest to the basement membrane (a modified form of extracellular matrix [ECM]), unlike TJs found in other epithelia, which are found nearest the apical portion of an epithelium, farthest away from ECM. Needless to say, BTB function in the testis is maintained by intricate regulatory mechanisms. In addition to hormones and cytokines, nitric oxide (NO) was recently shown to be a putative TJ regulator in the testis. Perhaps equally important, TJ dynamics in the testis were shown to be regulated, at least in part, by occludin, a TJ-integral membrane protein, via the NO/soluble guanylate cyclase/cGMP/protein kinase G signaling pathway. This minireview summarizes recent advances in the field regarding the role of NO in testicular function, with special emphasis regarding its role in TJ dynamics and the likely implications of these studies for male contraceptive development.  相似文献   

4.
The blood–testis barrier (BTB) separates the seminiferous epithelium into the adluminal and basal compartments. During murine spermatogenesis, preleptotene/leptotene spermatocytes migrate from the basal to the adluminal compartment through the BTB during stages VIII–IX. In the present study, we focused on the tight junction (TJ) molecules and analyzed their spatiotemporal expression during the murine seminiferous epithelial cycle. Structural analysis revealed that the principal components of the BTB, for example, claudin‐3, claudin‐11, occludin, and zonula occludens‐1 (ZO‐1), were localized at the basal and luminal sides of the preleptotene/leptotene spermatocytes during the migration stages (VIII–IX). Although we detected claudin‐11, occludin, and ZO‐1 throughout spermatogenesis, claudin‐3 was only detected during stages VI–IX. Quantitative PCR using dissected seminiferous tubules from three stages (Early: II–VI, Middle: VII–VIII, Late: IX–I) clarified that the mRNA levels of TJ molecules were not correlated with the histoplanimetrical protein levels during spermatogenesis. Additionally, tubulobulbar complexes, considered to be involved in the internalization of TJ, were observed at the BTB site. Furthermore, a significant reduction in the mRNA levels of genes for the degradation of occludin (Itch) and endocytic recycling (Rab13) were observed during the Late and Middle stages, respectively. Therefore, we hypothesized that the lag between mRNA and protein expression of TJ molecules may be due to posttranslational modulation, for example, tubulobulbar complexes and endocytic recycling processes. In conclusion, these findings indicate that the integrity of the BTB is maintained throughout spermatogenesis, and the stage‐specific localization of claudin‐3 protein plays an important role in regulating BTB permeability. Mol. Reprod. Dev. 77: 630–639, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.  相似文献   

6.
During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid development to proceed without interference of the host immune system. A key feature of the BTB is its continuous remodeling within the Sertoli cells, the major somatic component of the seminiferous epithelium. This remodeling is necessary to allow the transport of germ cells towards the seminiferous tubule interior, while maintaining intact barrier properties. Here we demonstrate that the actin nucleation promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) provides an essential function necessary for BTB restructuring, and for maintaining spermatogenesis. Our data suggests that the N-WASP-Arp2/3 actin polymerization machinery generates branched-actin arrays at an advanced stage of BTB remodeling. These arrays are proposed to mediate the restructuring process through endocytic recycling of BTB components. Disruption of N-WASP in Sertoli cells results in major structural abnormalities to the BTB, including mis-localization of critical junctional and cytoskeletal elements, and leads to disruption of barrier function. These impairments result in a complete arrest of spermatogenesis, underscoring the critical involvement of the somatic compartment of the seminiferous tubules in germ cell maturation.  相似文献   

7.
In the mammalian testis, preleptotene and leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) at late stage VIII through early stage IX of the epithelial cycle during spermatogenesis, entering the adluminal compartment for further development. However, until recently the regulatory mechanisms that regulate BTB dynamics remained largely unknown. We provide a critical review regarding the significance of cytokines in regulating the 'opening' and 'closing' of the BTB. We also discuss how cytokines may be working in concert with adaptors that selectively govern the downstream signaling pathways. This process, in turn, regulates the dynamics of either Sertoli-Sertoli tight junction (TJ), Sertoli-germ cell adherens junction (AJ), or both junction types in the epithelium, thereby permitting TJ opening without compromising AJs, and vice versa. We also discuss how adaptors alter their protein-protein association with the integral membrane proteins at the cell-cell interface via changes in their phosphorylation status, thereby altering adhesion function at AJ. These findings illustrate that the testis is a novel in vivo model to study the biology of junction restructuring. Furthermore, a molecular model is presented regarding how cytokines selectively regulate TJ/AJ restructuring in the epithelium during spermatogenesis.  相似文献   

8.
Sertoli cell tight junction dynamics: their regulation during spermatogenesis   总被引:11,自引:0,他引:11  
During spermatogenesis, developing preleptotene and leptotene spermatocytes must translocate from the basal to the adluminal compartment of the seminiferous epithelium so that fully developed spermatids (spermatozoa) can be released to the tubular lumen at spermiation. It is conceivable that the opening and closing of the inter-Sertoli tight junctions (TJs) that constitute the blood-testis barrier are regulated by an array of intriguingly coordinated signaling pathways and molecules. Several molecules have been shown to regulate Sertoli cell TJ dynamics; they include, for example, transforming growth factor beta3 (TGFbeta3), occludin, protein kinase A, protein kinase C, and signaling pathways such as the TGFbeta3/p38 mitogen-activated protein kinase pathway. Yet the mechanisms that regulate these events are essentially not known. This minireview summarizes some of the recent advances in the study of TJ dynamics in the testis and reviews several models that can be used to study TJ dynamics. It also highlights specific areas for future research toward understanding the precise physiological relationship between junction dynamics and spermatogenesis.  相似文献   

9.
During spermatogenesis in mammalian testes, junction restructuring takes place at the Sertoli–Sertoli and Sertoli–germ cell interface, which is coupled with germ cell development, such as cell cycle progression, and translocation of the germ cell within the seminiferous epithelium. In the rat testis, restructuring of the blood–testis barrier (BTB) formed between Sertoli cells near the basement membrane and disruption of the apical ectoplasmic specialization (apical ES) between Sertoli cells and fully developed spermatids (spermatozoa) at the luminal edge of the seminiferous epithelium occur concurrently at stage VIII of the seminiferous epithelial cycle of spermatogenesis. These two processes are essential for the translocation of primary spermatocytes from the basal to the apical compartment to prepare for meiosis, and the release of spermatozoa into the lumen of the seminiferous epithelium at spermiation, respectively. Cytokines, such as TNFα and TGFβ3, are present at high levels in the microenvironment of the epithelium at this stage of the epithelial cycle. Since these cytokines were shown to disrupt the BTB integrity and germ cell adhesion, it was proposed that some cytokines released from germ cells, particularly primary spermatocytes, and Sertoli cells, would induce restructuring of the BTB and apical ES at stage VIII of the seminiferous epithelial cycle. In this review, the intricate role of cytokines and testosterone to regulate the transit of primary spermatocytes at the BTB and spermiation will be discussed. Possible regulators that mediate cytokine-induced junction restructuring, including gap junction and extracellular matrix, and the role of testosterone on junction dynamics in the testis will also be discussed.  相似文献   

10.
During spermatogenesis, both adherens junctions (AJ) (such as ectoplasmic specialization (ES), a testis-specific AJ type at the Sertoli cell-spermatid interface (apical ES) or Sertoli-Sertoli cell interface (basal ES) in the apical compartment and BTB, respectively) and tight junctions (TJ) undergo extensive restructuring to permit germ cells to move across the blood-testis barrier (BTB) as well as the seminiferous epithelium from the basal compartment to the luminal edge to permit fully developed spermatids (spermatozoa) to be sloughed at spermiation. However, the integrity of the BTB cannot be compromised throughout spermatogenesis so that postmeiotic germ cell-specific antigens can be sequestered from the systemic circulation at all times. We thus hypothesize that AJ disruption in the seminiferous epithelium unlike other epithelia, can occur without compromising the BTB-barrier, even though these junctions, namely TJ and basal ES, co-exist side-by-side in the BTB. Using an intratesticular androgen suppression-induced germ cell loss model, we have shown that the disruption of AJs indeed was limited to the Sertoli-germ cell interface without perturbing the BTB. The testis apparently is using a unique physiological mechanism to induce the production of both TJ- and AJ-integral membrane proteins and their associated adaptors to maintain BTB integrity yet permitting a transient loss of cell adhesion function by dissociating N-cadherin from beta-catenin at the apical and basal ES. The enhanced production of TJ proteins, such as occludin and ZO-1, at the BTB site can supersede the transient loss of cadherin-catenin function at the basal ES. This thus allows germ cell depletion from the epithelium without compromising BTB integrity. It is plausible that the testis is using this novel mechanism to facilitate the movement of preleptotene and leptotene spermatocytes across the BTB at late stage VIII through early stage IX of the epithelial cycle in the rat while maintaining the BTB immunological barrier function.  相似文献   

11.
It has been established that experimental avitaminosis A in rats results in a 'Sertoli cell-only situation' after about 10 weeks, and that replacing the vitamin immediately reinitiates spermatogenesis. The present study deals with testicular recovery after prolonged deprivation (up to 19 weeks). The Sertoli cell-only situation reached under this condition was thought to be refractory to Vitamin A replacement. However, spermatogenesis did reinitiate about 11 weeks after vitamin restoration, although in an atypical manner. The blood-testis barrier, normally assembled when spermatocytes reaches the zygotene stage, remained under this condition permeable to the lanthanum intercellular tracer. Concomitantly, primary spermatocytes normally found in the adluminal compartment isolated by the barrier (zygotene onward) became massively apoptotic. All the tubules containing early spermatocytes (preleptotene or leptotene cells), normally found in the basal compartment, exhibited normal features with no signs of degeneration. Based on these results, a possible relationship between blood-testis barrier assembly and spermatocyte differentiation is proposed.  相似文献   

12.
Park CJ  Lee JE  Oh YS  Shim S  Nah WH  Choi KJ  Gye MC 《Theriogenology》2011,75(3):445-458
The expression of claudin-1 and -11, tight junctions (TJs) proteins was examined in immature and adult pheasant (Phasianus colchicus) testes. Claudin-1 and -11 cDNA were highly similar to those of human, mice, and chicken. Claudin-1 mRNA and protein (21 kDa) levels in immature testes were higher than those of adult testis. In immature testes until 6 weeks of age, Claudin-1 was found at contacts between adjacent Sertoli cells and between Sertoli cells and germ cells. In adult testis, Claudin-1 was found in early spermatocytes migrating the blood testis barrier (BTB). Blood vessels were positive for claudin-1. Claudin-11 mRNA and protein (21 kDa) increased during adulthood development of testis. In immature testis, Claudin-11 was found in apicolateral contacts between adjacent Sertoli cells, indicating its involvement in cell adhesion in immature testis. In adult testis, strong wavy Claudin-11 immunoreactivity was parallel to basal lamina at the basal part of seminiferous epithelium, indicating that Claudin-11 at the inter-Sertoli TJs may act as a structural element of the BTB. Weak Claudin-1 and -11 immunoreactivity at contacts between Sertoli cells to elongating/elongated spermatids, meiotic germ cells, and basal lamina suggests that they also participate in the cell-cell and cell-extracellular matrix adhesion in pheasant testis. Testosterone increased claudin-11 mRNA in testis organ culture and Sertoli cell primary culture, suggesting positive regulation of claudin-11 gene by androgen in Sertoli cells of pheasant testis. This is the first report on the claudins expression at BTB in avian testis.  相似文献   

13.
Throughout spermatogenesis, inter-Sertoli tight junctions (TJs) that constitute the blood-testis barrier must be disassembled and reassembled to permit the timely movement of preleptotene and leptotene spermatocytes from the basal to the adluminal compartment of the seminiferous epithelium. However, the mechanism and the participating molecules that regulate the bioavailability of TJ proteins are entirely unknown. Using Sertoli cell culture, it was shown that there was an increase in occludin level, concomitant with a reduction of an E3 ubiquitin ligase, Itch, at the time when inter-Sertoli TJs were assembled. By co-immunoprecipitation, occludin was shown to associate with Itch at the TJs. A novel interaction between Itch and UBC4 (an ubiquitin-conjugating enzyme) was identified. When TJs were disrupted by dibutyryl-cAMP (db-cAMP), an increase in protein levels of Itch and UBC4 along with a significant reduction in endogenous occludin was detected. These results seemingly suggest that the interaction of Itch and UBC4 on occludin is potentially involved in regulating Sertoli TJ dynamics. Addition of a proteasome inhibitor, MG-132, into Sertoli cells cultured with db-cAMP blocked the db-cAMP-induced occludin loss in vitro. Accumulations of ubiquitin-conjugated and Itch-conjugated occludin were detected in Sertoli cells cultured in the presence of both MG-132 and db-cAMP. These results suggest that MG-132 prevented db-cAMP-induced TJ disruption by altering the rate of occludin degradation. Taken collectively, the results reported herein support the notion that db-cAMP-induced TJ disruption was mediated by an induction of Itch protein expression, which in turn triggered the ubiquitination of occludin resulting in TJ disruption.  相似文献   

14.
In mouse testis, claudin-11 is responsible for the formation of specific parallel TJ strands of the blood–testis barrier (BTB). Concerning the human BTB, there is no information about the transmembrane TJ proteins. We recently demonstrated the loss of functional integrity of the BTB in testicular intraepithelial neoplasia (TIN), associated with a dislocation of the peripheral TJ proteins ZO-1 and ZO-2. Here, we determined the expression and distribution of claudin-11 at the human BTB in seminiferous tubules with normal spermatogenesis (NSP) and TIN. Immunostaining of claudin-11 revealed intense signals at the basal BTB region in seminiferous epithelium with NSP. Within TIN tubules, claudin-11 immunostaining became diffuse and cytoplasmic. Double immunogold labeling demonstrated a co-localization of claudin-11 and ZO-1 at the inter-Sertoli cell junctions. Real-time RT-PCR of laser microdissected tubules showed an up-regulation of claudin-11 mRNA in TIN. Additionally, increased claudin-11 protein was observed by Western blot. We conclude that claudin-11 constitutes a TJ protein at the human BTB. In TIN tubules, claudin-11 is up-regulated and dislocated from the BTB. Therefore, the disruption of the BTB is related to a dysfunction of claudin-11 and not to a failure of its expression.  相似文献   

15.
Summary The present study examines events of the Sertoli cell iron delivery pathway following the secretion of diferric testicular transferrin (tTf) into the adluminal compartment of the rat seminiferous epithelium. The unidirectional secretion of tTf by Sertoli cells was verified, in vivo, and it was shown that this protein is internalized by adluminal germ cells. It was further determined by Scatchard analysis that this internalization was mediated by high affinity transferrin binding sites on the surface of round spermatids, numbering 1453/cell and displaying a Kd=0.6×10-9 M. Northern blot analysis of RNA isolated from adluminal germ cells, namely spermatocytes, round spermatids and elongating spermatids, indicated that these cells expressed Tf receptor mRNA and ferritin mRNA in levels inversely related to their stage of maturation. Finally it was determined that following binding and internalization in round spermatids, Tf became associated with the endosomal compartment and was recycled back to the cell surface. This study illustrates the immediate fate of tTf once it is secreted by the Sertoli cell. Thus, diferric tTf binds of Tf receptor on the surface of adluminal germ cells, is internalized by receptor-mediated endocytosis and the apo Tf-Tf receptor complex is recycled back to the cell surface where apotTf is released into the adluminal fluid.  相似文献   

16.
In this study the cellular mechanisms of male sterility in F1 hybrids (BNF1) between BALB/c and wild-derived M.MUS-NJL (NJL) was investigated. Cell proliferation and differentiation in the sterile testis were examined by bromodeoxyuridine-labeling and use of germ cell stage-specific antibodies. In BNF1 testes, spermatogonia actively proliferated with a seminiferous epithelial cycle, and were retained in the basal layer of the tubules. However, preleptotene, leptotene and zygotene spermatocytes moved to the adluminal region. Immunohistological data with germ cell stage-specific antibodies indicated the presence of few, if any, pachytene spermatocytes in BNF1 testes. Thus, spermatogenesis seemed to be blocked at the zygotene stage. For examination of germ cell-Sertoli cell interactions, testes of aggregation chimeras between BNF1 and C3H/HeN were analyzed immunohistologically with C3H-specific antibody. Results showed that spermatogenesis of C3H-germ cells was normal, even when these cells in contact with BNF1-Sertoli cells. Differentiation of BNF1-germ cells progressed from zygotene to pachytene stage spermatocytes when these cells were surrounded by C3H-Sertoli cells, but never proceeded beyond the pachytene stage. These observations suggest that at least two different cellular factors may be involved in spermatogenesis, one acting in the germ cells and the other mediated by Sertoli cells. Furthermore, mating experiments revealed that the degree of spermatogenesis varied in different F1 hybrids, and that the major sterility factor was closely linked to the T -locus on chromosome 17.  相似文献   

17.
In order to further characterize the Sertoli cell state of differentiation, we investigated the expression of connexin 43 (cx43) protein in the testis of adult men both with normal spermatogenesis and associated with spermatogenic impairment, since cx43 is first expressed during puberty. Cx43 protein was found as a single 43-kDa band on western blots of extracts of normal human testicular material. Cx43 immunoreactivity was generally present between Leydig cells. Within the normal seminiferous epithelium cx43 immunoreactivity was localized between adjacent Sertoli cells, except at stages II and III of the seminiferous epithelial cycle when primary spermatocytes cross from the basal to the adluminal compartment suggesting a stage-dependent Sertoli cell function. While testes with hypospermatogenesis and spermatogenic arrest at the level of round spermatids or spermatocytes revealed a staining pattern similar to that of normal adult testis, the seminiferous tubules showing spermatogenic arrest at the level of spermatogonia and Sertoli-cell-only syndrome were completely immunonegative. We therefore assume that severe spermatogenic impairment is associated with a population of Sertoli cells exhibiting a stage of differentiation deficiency. Accepted: 10 June 1999  相似文献   

18.
The relationship between the intactness of sustentacular (Sertoli) cell tight junctions and the status of spermatogenesis was examined in rats fed a vitamin-A-deficient diet after weaning (VAD rats). Both serum and testicular retinol concentrations of the VAD rats declined to a nadir by 80 days of age. At this time, it was observed that Sertoli cell tight junctions of the VAD animals were intact and complete spermatogenesis was maintained. Leakage in Sertoli cell tight junctions, as demonstrated by the presence of lanthanum in the adluminal compartment of the seminiferous epithelium, was first observed in 90-day-old VAD rats. Severe regression of spermatogenic cells was noted in 100-day or older VAD animals. These results suggest that severe germ cell loss observed during chronic vitamin A deficiency may result from abnormal intratubular environment due to the disruption of the blood-testis barrier.  相似文献   

19.
Sertoli cell tight junctions (TJs) form at puberty as a major component of the blood-testis barrier (BTB), which is essential for spermatogenesis. This study characterized the hormonal induction of functional Sertoli cell TJ formation in vivo using the gonadotropin-deficient hypogonadal (hpg) mouse that displays prepubertal spermatogenic arrest. Androgen actions were determined in hpg mice treated for 2 or 10 days with dihydrotestosterone (DHT). Follicle-stimulating hormone (FSH) actions were studied in hpg mice expressing transgenic human FSH (hpg+tgFSH) with or without DHT treatment. TJ formation was examined by mRNA expression and immunolocalization of TJ proteins claudin-3 and claudin-11, and barrier functionality was examined by biotin tracer permeability. Immunolocalization of claudin-3 and claudin-11 was extensive at wild-type (wt) Sertoli cell TJs, which functionally excluded permeability tracer. In contrast, seminiferous tubules of hpg testes lacked claudin-3, but claudin-11 protein was present in adluminal regions of Sertoli cells. Biotin tracer permeated throughout these tubules, demonstrating dysfunctional TJs. In hpg+tgFSH testes, claudin-3 was generally absent, but claudin-11 had redistributed basally toward the TJs, where function was variable. In hpg testes, DHT treatment stimulated the redistribution of claudin-11 protein toward the basal region of Sertoli cells by Day 2, increased Cldn3 and Cldn11 mRNA expression, then induced the formation of functional TJs containing both proteins by Day 10. In hpg+tgFSH testes, TJ protein redistribution was accelerated and functional TJs formed by Day 2 of DHT treatment. We conclude that androgen stimulates initial Sertoli cell TJ formation and function in mice, whereas FSH activity is insufficient alone, but augments androgen-induced TJ function.  相似文献   

20.
Spermiogenesis in the mammalian testis is the most critical post-meiotic developmental event occurring during spermatogenesis in which haploid spermatids undergo extensive cellular, molecular and morphological changes to form spermatozoa. Spermatozoa are then released from the seminiferous epithelium at spermiation. At the same time, the BTB (blood-testis barrier) undergoes restructuring to facilitate the transit of preleptotene spermatocytes from the basal to the apical compartment. Thus meiotic divisions take place behind the BTB in the apical compartment to form spermatids. These germ cells enter spermiogenesis to transform into elongating spermatids and then into spermatozoa to replace those that were released in the previous cycle. However, the mole-cular regulators that control spermiogenesis, in particular the dynamic changes that occur at the Sertoli cell-spermatid interface and at the BTB, are not entirely known. This is largely due to the lack of suitable animal models which can be used to study these events. During the course of our investigation to develop adjudin [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] as a potential male contraceptive, this drug was shown to 'accelerate' spermiation by inducing the release of premature spermatids from the epithelium. Using this model, we have identified several molecules that are crucial in regulating the actin filament network and the unique adhesion protein complex at the Sertoli cell-spermatid interface known as the apical ES (ectoplasmic specialization). In the present review, we critically evaluate these and other findings in the literature as they relate to the restricted temporal and spatial expression of two actin regulatory proteins, namely Eps8 (epidermal growth factor receptor pathway substrate 8) and Arp3 (actin-related protein 3), which regulate these events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号