首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogeneous rate of degradation of nuclear DNA during apoptosis.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

2.
We have previously demonstrated that the active form of matrix metalloproteinase-3 (actMMP-3) is released from dopamine(DA)rgic neurons undergoing apoptosis. Herein, whether actMMP-3 might be generated intracellularly, and if so, whether it is involved in apoptosis of DArgic neurons itself was investigated in primary cultured DArgic neurons of wild-type, MMP-3 knockout animals, and CATH.a cells. During apoptosis, gene expression of MMP-3 is induced, specifically among the various classes of MMPs, generating the proform (55 kDa) which is subsequently cleaved to the catalytically active actMMP-3 (48 kDa) involving a serine protease. Intracellular actMMP-3 activity is directly linked to apoptotic signaling in DArgic cells: (i) Pharmacologic inhibition of enzymatic activity, repression of gene expression by siRNA, and gene deficiency all lead to protection; (ii) pharmacologic inhibition causes attenuation of DNA fragmentation and caspase 3 activation, the indices of apoptosis; and (iii) inhibition of the pro-apoptotic enzyme c- Jun N-terminal protein kinase leads to repression of MMP-3 induction. Under the cell stress condition, MMP-3 is released as actMMP-3 rather than the proform (proMMP-3), and catalytically active MMP-3 added to the medium does not cause cell death. Thus, actMMP-3 seems to have a novel intracellular role in apoptotic DArgic cells and this finding provides an insight into the pathogenesis of Parkinson's disease.  相似文献   

3.
The potential risks associated with the intentional or unintentional release of genetically engineered microorganisms led to the construction of biological containment systems by which bacteria are killed in a controlled suicide process. In previously published suicide systems, cell killing was caused by proteins destroying the cell membrane or cell wall. Here a conditional cell killing system based on the intracellular degradation of cellular DNA is presented. The nuclease gene used was that of the extracellular nuclease of Serratia marcescens. The nuclease gene was deleted for the leader-coding sequence, and the truncated gene was put under the control of the lambda pL promoter. Following thermoinduction of the nuclease gene cassette in Escherichia coli, cell survival dropped to 2 x 10(-5), and more than 80% of the radioactively labeled DNA was converted to acid-soluble material within 2.5 h in the absence of cell lysis. The majority (84%) of clones which survived thermoinduced killing turned out to be as sensitive to a second thermoinduction as the original strain. The other clones showed somewhat slower killing kinetics or slightly higher final levels of survivors. The suicide system described combines the regulated killing of cells with the destruction of intracellular DNA otherwise potentially available for horizontal gene transfer processes.  相似文献   

4.
A role for ferrous ion and oxygen in the degradation of DNA by bleomycin.   总被引:2,自引:0,他引:2  
An interaction between bleomycin and low concentrations of Fe(II) in the degradation of DNA is reported. Complete conversion of simian virus 40 DNA to acid-soluble products occurs at approximately equimolar levels of Fe(II), bleomycin, and DNA; Fe(III) does not substitute for Fe(II) in this reaction. Anaerobiosis inhibits the observed DNA degradation by bleomycin and Fe(II). Optical spectral studies reveal that an oxygen-labile complex is formed between bleomycin and Fe(II).  相似文献   

5.
Endoplasmic reticulum-associated degradation of misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein is known to involve the ubiquitin-proteasome system. In addition, an ATP-independent proteolytic system has been suggested to operate in parallel with this pathway and become up-regulated when proteasomes are inhibited (Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Cell 83, 129-135). In this study, we use two independent techniques, pulse-chase labeling and a noninvasive fluorescence cell-based assay, to investigate the proteolytic pathways underlying the degradation of misfolded CFTR. Here we report that only inhibitors of the proteasome have a significant effect on preventing the degradation of CFTR, whereas cell-permeable inhibitors of lysosomal degradation, autophagy, and several classes of protease had no measurable effect on CFTR degradation, when used either alone or in combination with the specific proteasome inhibitor carbobenzoxy-l-leucyl-leucyl-l-leucinal (MG132). Our results suggest that ubiquitin-proteasome-mediated degradation is the dominant pathway for disposal of misfolded CFTR in mammalian cells and provide new mechanistic insight into endoplasmic reticulum-associated degradation.  相似文献   

6.
DNA synthesis catalyzed in vitro by E. coli DNA polymeraseI in the presence of single stranded fd DNA or poly (dT) as template is stimulated by RNA primers. When poly(dT) fully or partially saturated with polyriboadenylic acid strands is used as template - primer, DNA synthesis proceeds with concomitant degradation of the ribostrands to 5′-adenosine monophosphate. The fragment of DNA polymerase lacking the 5′→3′ exonuclease shows comparable RNA primer dependency but reduced efficiency for the degradation of the RNA primer from the 5′-end.  相似文献   

7.
Human BFK (BCL-2 family kin) is a novel pro-apoptotic BCL-2 family member specifically expressed in the gastrointestinal tract. BFK has the characteristic BH3 domain, which was shown to be essential for the apoptosis-inducing activity of pro-apoptotic BCL-2 family members. When overexpressed, BFK interacts with BCL-XL and BCL-W but not BCL-2 or BAD in co-immunoprecipitations studies. We find that BFK exhibits striking similarity to BID in the way it is activated through cleavage during apoptosis. The endogenous and cleaved versions of BFK are readily recognized by the rabbit and mouse sera raised against human BFK. An ideal caspase 3 or 7 target sequence, DEVD (amino acids 38–41), is evident N-terminal to the BH3 domain. A recombinant version of the protein containing all residues downstream of the putative caspase cleavage site induces apoptosis in human colon cancer cells, HCT116, and in wild-type mouse embryonic fibroblasts (MEFs), which can be reversed by co-expression of BCL-XL or BCL-W. BFK becomes activated through caspase-dependent cleavage during DNA damage-induced apoptosis. The cleaved form of the protein is dependent on the presence of BAX or BAK for its ability to induce apoptosis, since BAX–/–-BAK–/– double-knockout MEFs are completely resistant to BFK-induced apoptosis.  相似文献   

8.
The DNA of some bacteria is broken up by Tris-dependent endonuclease activity during the process of sample preparation for pulsed field gel electrophoresis (PFGE). Adding thiourea to the electophoresis buffer for isolates that exhibit DNA degradation has been the method used for many bacterial genera. For a particular group of isolates of Serratia marcescens this method was unsuccessful. A combination of techniques was used to overcome the problem.  相似文献   

9.
Caspases: their intracellular localization and translocation during apoptosis.   总被引:15,自引:0,他引:15  
The activation of the caspase family of proteases has been detected in numerous cell systems and appears to function as a common pathway through which apoptotic mechanisms may operate. Caspases are synthesized as precursors (pro-caspases) and are converted into mature enzymes by apoptotic signals. The effects of caspases in apoptosis are accomplished by the cleavage of numerous proteins located in different intracellular compartments. In the present study we have addressed the question of the subcellular localization of different pro- and active caspases as well as several other proteins, such as Apaf-1, calpain and DFF, which also play important roles in the apoptotic process. We found that at least three pro-caspases (pro-caspases-2, -3 and -9) were present in both the mitochondrial and cytosolic fractions of untreated Jurkat T lymphocytes. Only pro-caspase-2 was found in the nuclear fraction. Pro-caspases-7 and -8 were found only in the cytosolic fraction. In apoptotic cells, caspases-3, -8 and -9 were present in the cytosolic fraction, whereas caspases-3 and -9 were also found in the mitochondrial fraction and caspase-7 in the microsomal fraction. Caspases-2 and -3 were present in the nuclear fraction. The selective localization of pro-caspases in different subcellular compartments may play an important, but yet unknown, role in their activation. The translocation of active caspases to other subcellular compartments appears to be critical for the development of the apoptotic process.  相似文献   

10.
Prenatal exposure to low-dose radiation increases the risk of microcephaly and/or mental retardation. Microcephaly is also associated with genetic mutations that affect the non-homologous end-joining pathway of DNA double-strand break repair. To examine the link between these two causal factors, we characterized the neural developmental effects of acute radiation exposure in mouse littermate embryos harboring mutations in the Ku70 and p53 genes. Both low-dose radiation exposure and Ku70 deficiency induced morphologically indistinguishable cortical neuronal apoptosis. Irradiated Ku70-deficient embryos displayed anatomical damage indicative of increased radiosensitivity in the developing cerebral cortex. Deleting the p53 gene not only rescued cortical neuronal apoptosis at all levels but also restored the in vitro growth of Ku70-deficient embryonic fibroblasts despite the presence of unrepaired DNA/chromosomal breaks. The results confirm the role of DNA double-strand breaks as a common causative agent of apoptosis in the developing cerebral cortex. Furthermore, the findings suggest a disease mechanism by which the presence of endogenous DNA double-strand breaks in the newly generated cortical neurons becomes radiomimetic when DNA end joining is defective. This in turn activates p53-dependent neuronal apoptosis and leads to microcephaly and mental retardation.  相似文献   

11.
Cardiac hypertrophy occurs in response to a variety of stresses as a compensatory mechanism to maintain cardiac output and normalize wall stress. Prevention or regression of cardiac hypertrophy can be a major therapeutic target. Although regression of cardiac hypertrophy occurs after control of etiological factors, the molecular mechanisms remain to be clarified. In the present study, we investigated the role of autophagy in regression of cardiac hypertrophy. Wild-type mice showed cardiac hypertrophy after continuous infusion of angiotensin II for 14 days using osmotic minipumps, and regression of cardiac hypertrophy was observed 7 days after removal of the minipumps. Autophagy was induced during regression of cardiac hypertrophy, as evidenced by an increase in microtubule-associated protein 1 light chain 3 (LC3)-II protein level. Then, we subjected cardiac-specific Atg5-deficient (CKO) and control mice (CTL) to angiotensin II infusion for 14 days. CKO and CTL developed cardiac hypertrophy to a similar degree without contractile dysfunction. Seven days after removal of the minipumps, CKO showed significantly less regression of cardiac hypertrophy compared with CTL. Regression of pressure overload-induced cardiac hypertrophy after unloading was also attenuated in CKO. These results suggest that autophagy is necessary for regression of cardiac hypertrophy during unloading of neurohumoral and hemodynamic stress.  相似文献   

12.
Cell shrinkage is a hallmark of apoptosis. Potassium efflux, which is involved in cell shrinkage, has been previously described as an essential event of apoptosis. This study was designed to address the importance of potassium efflux in hypertonicity (450 mOsm and 600 mOsm) induced apoptosis. We initiated apoptosis in HL-60 cells in hypertonic medium consisting of either high concentrations of NaCl, mannitol or KCl. Apoptotic activity was evaluated based on the DNA content of the cells, annexin-V staining and calcium content. Apoptosis was initiated in hypertonic conditions consisting of high intracellular K+. We demonstrate that apoptosis can occur in the presence of high intracellular potassium contrary to previous predictions.  相似文献   

13.
We have investigated the fate of the RNA components of small ribonucleoprotein particles in apoptotic cells. We show that the cytoplasmic Ro ribonucleoprotein-associated Y RNAs are specifically and rapidly degraded during apoptosis via a caspase-dependent mechanism. This is the first study describing the selective degradation of a specific class of small structural RNA molecules in apoptotic cells. Cleavage and subsequent truncation of Y RNAs was observed upon exposure of cells to a variety of apoptotic stimuli and were found to be inhibited by Bcl-2, zinc, and several caspase inhibitors. These results indicate that apoptotic degradation of Y RNAs is dependent on caspase activation, which suggests that the nucleolytic activity responsible for hY RNA degradation is activated downstream of the caspase cascade. The Y RNA degradation products remain bound by the Ro60 protein and in part also by the La protein, the only two proteins known to be stably associated with intact Ro ribonucleoprotein particles. The size of the Y RNA degradation products is consistent with the protection from degradation of the most highly conserved region of the Y RNAs by the bound Ro60 and La proteins. Our results indicate that the rapid abrogation of the yet unknown function of Y RNAs might be an early step in the systemic deactivation of the dying cell.  相似文献   

14.
15.
Disintegration of nuclear DNA into high molecular weight (HMW) and oligonucleosomal DNA fragments represents two major periodicities of DNA fragmentation during apoptosis. These are thought to originate from the excision of DNA loop domains and from the cleavage of nuclear DNA at the internucleosomal positions, respectively. In this report, we demonstrate that different apoptotic insults induced apoptosis in NB-2a neuroblastoma cells that was invariably accompanied by the formation of HMW DNA fragments of about 50-100 kb but proceeded either with or without oligonucleosomal DNA cleavage, depending on the type of apoptotic inducer. We demonstrate that differences in the pattern of DNA fragmentation were reproducible in a cell-free apoptotic system and develop conditions that allow in vitro separation of the HMW and oligonucleosomal DNA fragmentation activities. In contrast to apoptosis associated with oligonucleosomal DNA fragmentation, the HMW DNA cleavage in apoptotic cells was accompanied by down-regulation of caspase-activated DNase (CAD) and was not affected by z-VAD-fmk, suggesting that the caspase/CAD pathway is not involved in the excision of DNA loop domains. We further demonstrate that nonapoptotic NB-2a cells contain a constitutively present nuclease activity located in the nuclear matrix fraction that possessed the properties of topoisomerase (topo) II and was capable of reproducing the pattern of HMW DNA cleavage that occurred in apoptotic cells. We demonstrate that the early stages of apoptosis induced by different stimuli were accompanied by activation of topo II-mediated HMW DNA cleavage that was reversible after removal of apoptotic inducers, and we present evidence of the involvement of topo II in the formation of HMW DNA fragments at the advanced stages of apoptosis. The results suggest that topo II is involved in caspase-independent excision of DNA loop domains during apoptosis, and this represents an alternative pathway of apoptotic DNA disintegration from CAD-driven caspase-dependent oligonucleosomal DNA cleavage.  相似文献   

16.
Apoptotic cell death is characterized by several morphological nuclear changes, such as chromatin condensation and extensive fragmentation of chromosomal DNA. These alterations are primarily triggered through the activation of caspases, which subsequently cleave nuclear substrates. Caspase-3 induces processing of Acinus, which leads to chromatin condensation. DNA fragmentation is dependent on the DNase CAD, which is released from its inhibitor, ICAD, upon cleavage by caspase-3. DNA degradation is also induced by AIF and endonuclease G, which are both released from mitochondria upon death stimuli but do not require prior processing by caspases for their DNase activity. Here we report the identification of a widely expressed helicase designated Helicard, which contains two N-terminal CARD domains and a C-terminal helicase domain. Upon apoptotic stimuli, Helicard is cleaved by caspases, thereby separating the CARD domains from the helicase domain. While Helicard localizes in the cytoplasm, the helicase-containing fragment is found in the nucleus. Helicard accelerates Fas ligand-mediated DNA degradation, whereas a noncleavable or a helicase-dead Helicard mutant does not, implicating Helicard in the nuclear remodeling occurring during apoptosis.  相似文献   

17.
Thymic negative selection is the process in which maturing thymocytes that express T-cell receptors recognizing self are eliminated by apoptotic cell death. The molecular mechanism by which this occurs is poorly understood. Notably, genes involved in cell death, even thymocyte death, such as Fas, Fas-ligand, p53, caspase-1, caspase-3, and caspase-9, and Bcl-2 have been found to not be required for normal thymic negative selection. We have demonstrated previously that E2F1-deficient mice have a defect in thymocyte apoptosis. Here we show that E2F1 is required for normal thymic negative selection. Furthermore, we observed an E2F1-dependent increase of p53 protein levels during the process of thymic clonal deletion, which suggests that E2F1 regulates activation-induced apoptosis of self-reactive thymocytes by a p53-dependent mechanism. In contrast, other apoptotic pathways operating on developing thymocytes, such as glucocorticoid-induced cell death, are not mediated by E2F1. The T lymphocytes that escape thymic negative selection migrate to the peripheral immune system but do not appear to be autoreactive, indicating that there may exist E2F1-independent mechanisms of peripheral tolerance, which protect mice from developing an autoimmune response. We expect that E2F1-deficient mice will provide a useful tool for understanding the molecular mechanism of and the immunological importance of thymic negative selection.  相似文献   

18.
The proteins associated with parental, adenoviral DNA in productively-infected HeLa cells have been examined both directly and indirectly. HeLa cells infected with 32P-labelled Ad2 were irradiated with u.v. light at various points in the infectious cycle. Following degradation of the DNA, nuclear proteins carrying cross-linked nucleotides, or oligonucleotides, were distinguished from virion phosphoproteins by the resistance of their 32P radioactivity to 1 M NaOH. The major core protein of the virion, protein VII, was found to be associated with viral DNA throughout infection, even when cells were infected at a multiplicity of 0.14. Micrococcal nuclease digestion of intranuclear viral DNA 4 h after infection liberated two nucleoprotein particles containing viral DNA, neither of which co-migrated with HeLa cell mononucleosomes. These results indicate that core protein VII remains associated with parental adenoviral DNA during productive infections. The observation that protein VII can be cross-linked to DNA in cells infected at very low multiplicity, together with the results of a comparison of proteins cross-linkable to viral DNA in cells infected by wild-type virus and a non-infectious mutant containing the precursor to protein VII, suggest that nucleoproteins comprising viral DNA and protein VII must be the templates for expression of pre-early and early viral genes.  相似文献   

19.
Flux of K+ and changes in intracellular Ca2+ in the sperm of salmonid fishes were measured with spectrophotometry, ion electrode, microscopic fluorometry, and radioisotope accumulation. Release of K+ occurred at the initiation of sperm motility which is induced by decrease in external K+ and the K+ efflux and sperm motility were inhibited by K+ channel blockers. Intracellular Ca2+ increased within a short period in K+- free condition, and the accumulation of 45Ca in sperm cells was higher in motile sperm than that in immotile sperm. The efflux of K+ and the increase in intracellular Ca2+ were suppressed when external K+ concentration increased, i.e., sperm remained immotile. These results suggest that efflux of K+ through K+ channel and subseqent increase in intracellular Ca2+ are prerequisite for the initiation of sperm motility. © 1994 Wiley-Liss, Inc.  相似文献   

20.
We have exposed mouse thymocytes and P-815 mastocytoma cells to four different conditions reported to cause apoptosis: 1) incubation in the absence of mitogenic factors; 2) incubation in the presence of dexamethasone; 3) stimulation with external ATP; 4) treatment with high concentrations of the K+ ionophore valinomycin. These treatments caused DNA fragmentation to a varying extent in the two cell types. High stringency hybridization with a cDNA probe specific to a mitochondrial DNA sequence revealed that during apoptosis induced by lack of mitogenic factors, dexamethasone, or extracellular ATP, mitochondrial DNA was not fragmented. On the contrary, valinomycin caused extensive degradation of mitochondrial DNA. These results support the notion that DNA fragmentation during apoptosis is a specific nuclear event and suggest that other agents, such as valinomycin, may act less selectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号