首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,3-Dinitrobenzene (1,3-DNB) but not 1,2-dinitrobenzene (1,2-DNB) or 1,4-dinitrobenzene (1,4-DNB) is a potent testicular toxicant in rats. In vitro metabolism studies have established that 1,3-DNB is reduced to 3-nitroso-nitrobenzene (3-NNB), 3-nitrophenylhydroxylamine (3-NP) and 3-nitroaniline (3-NA) in testicular cytosol and Sertoli cell cultures. To establish a potential role for endogenous glutathione (GSH) in the detoxification of the electrophilic metabolite 3-NNB, we examined the chemical reaction of this compound with biological thiols, including GSH. The effect of pH and thiol concentration upon the reaction were studied. The reaction of GSH with 3-NNB was complex and gave three distinct products. These were identified as 3-NP, 3-NA and a glutathionyl derivative containing a covalently linked S-N bond. The hydroxyl amine and the amine were isolated and fully characterised. The glutathion-S-yl derivative was characterised in solution by proton NMR (400 MHz), infra-red and mass spectroscopy to establish its structure as the semimercaptal, N-(glutathion-S-yl)-N-hydroxy-3-nitroaniline (GSNOH-3NA). Similar reactions were performed with 4-nitrosonitrobenzene (4-NNB) to ascertain the reactivity of this chemical towards thiols. The addition of GSH to 4-NNB resulted in the rapid formation of 4-nitrophenylhydroxylamine (4-NP) and an adduct that was identified as the semimercaptal N-(glutathion-S-yl)-N-hydroxy-4-nitroaniline (GSNOH-4NA).  相似文献   

2.
Bio-monitoring the covalent binding of nitrosoarenes to the SH groups of human hemoglobin has been proposed as a reliable approach to get an integral parameter for exposure control and possibly risk assessment of persons exposed to aromatic amines and nitro compounds. Availability of nitrosoarenes to bind to the cysteine residues is greatly influenced by the competition of hemoglobin iron with nitrosoarenes. In contrast to earlier reports, we found that nitrosobenzene has a 14 fold higher affinity for "stripped" human hemoglobin than oxygen. The binding mode is similar to gaseous ligands and exhibits the same free energy of cooperation and sensitivity to heterotropic effectors like inositol hexaphosphate. To elucidate the electronic influence of para substituents, 4-chloronitrosobenzene, 4-nitrosotoluene and 4-nitrosophenetole were tested. A linear free energy relationship was found for all equilibrium parameters with a reaction constant rho = 3, when using Hammett sigma p constants. Similarly, the apparent second order rate constants for binding of para-substituted nitrosobenzenes to the cysteine residues (Cys beta 93) in hemoglobin followed the Hammett relationship with lg k-lg k0 = 1.7 X sigma p (r2 = 0.99). In case of 4-chloronitrosobenzene covalent binding proceeded biphasically and a "semimercaptal"-like intermediate was observed. The affinities for hemoglobin iron and for the SH groups were highest with 4-chloronitrosobenzene and lowest with 4-nitrosophenetole. All nitrosobenzenes were capable to produce ferrihemoglobin. In the absence of oxygen, 4-chloronitrosobenzene hemoglobin decayed with formation of ferrihemoglobin. Presumably the nitroxide radical anion is formed as an intermediate which comproportionates into the azoxy derivative. It is assumed that the efficiency of the microscopic compartmentation of nitrosoarenes by binding to hemoglobin iron has important impacts on the toxicokinetics of these compounds.  相似文献   

3.
Phenacetin, a constituent of several analgesic and antipyretic formulations has been made responsible for a variety of toxic and carcinogenic actions. 4-Nitrosophenetol, the N-oxydation product of intermediate 4-phenetidine, forms methemoglobin and binds covalently to sulfhydryl groups of proteins and glutathione. In the reaction of 4-nitrosophenetol with glutathione and other thiols an intermediate so-called "semimercaptal" is formed from which N-(thiol-S-yl)-4-phenetidine S-oxide, N-(thiol-S-yl)-4-phenetidine and 4-phenetidine derive. Besides thiol adducts, a yellow compound is formed which was isolated as a pure crystalline product (elemental analysis) and identified by FAB-MS, EI-MS, 13C-, 1H-NMR, and UV-VIS spectroscopy as 4-ethoxy-4'-nitrosodiphenylamine. This nitrosoarene is formed by an unknown mechanism from 4-nitrosophenetol and 4-phenetidine under liberation of ethanol. In human erythrocytes this compound is easily reduced to 4-amino-4'-ethoxydiphenylamine (FAB-MS, EI-MS, 13C-NMR). During the reaction of 4-nitrosophenetol with red cells only traces of 4-ethoxy-4'-nitrosodiphenylamine were formed, whereas up to 10% appeared as the reduction product 4-amino-4'-ethoxydiphenylamine. This latter compound is unstable in red cells and is metabolized further to unidentified products.  相似文献   

4.
The reaction of arsenic acid with N,N′,N″-Tris(2,3-dihydroxybenzoyl)-1,5,10-Triazadecane(3,4-LICAM) provides the first example of an encapsulated arsenic anion. The structural features of this compound, thought to have an octahedral configuration around the arsenic, was established by 13C NMR, IR, UV and FAB mass spectroscopy as well as elemental analysis.  相似文献   

5.
Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS, is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes.  相似文献   

6.
The oxidation of biothiols participates not only in the defense against oxidative damage but also in enzymatic catalytic mechanisms and signal transduction processes. Thiols are versatile reductants that react with oxidizing species by one- and two-electron mechanisms, leading to thiyl radicals and sulfenic acids, respectively. These intermediates, depending on the conditions, participate in further reactions that converge on different stable products. Through this review, we will describe the biologically relevant species that are able to perform these oxidations and we will analyze the mechanisms and kinetics of the one- and two-electron reactions. The processes undergone by typical low-molecular-weight thiols as well as the particularities of specific thiol proteins will be described, including the molecular determinants proposed to account for the extraordinary reactivities of peroxidatic thiols. Finally, the main fates of the thiyl radical and sulfenic acid intermediates will be summarized.  相似文献   

7.
Electron impact (EI) and fast atom bombardment (FAB) mass spectrometry together with collisional activation (CA) experiments were applied to the study of the oxidation pathway of dopamine by tyrosinase. In order to prevent attachment of the protein to the highly reactive intermediates, ultrafiltration was employed to remove the enzyme at different reaction times. FAB, privileging molecular species formation, was successfully used for identification of transient intermediates and their relative concentrations with respect to time, directly in the reaction mixture. The presence of isobaric molecular species made chromatographic separation necessary. Further EI mass spectrometry and collision spectroscopy led to structural identification of pure components. Of these, dopamine-o-quinone, leucoaminochrome, and aminochrome semiquinone were characterized for the first time as real intermediates in dopamine melanogenesis, in agreement with previous hypotheses. This approach elucidated the pathway of dopamine melanogenesis.  相似文献   

8.
Electron impact (EI) and fast atom bombardment (FAB) mass spectrometry together with collisional activation (CA) experiments were applied to the study of the oxidation pathway of dopamine by tyrosinase. In order to prevent attachment of the protein to the highly reactive intermediates, ultrafiltration was employed to remove the enzyme at different reaction times. FAB, privileging molecular species formation, was successfully used for identification of transient intermediates and their relative concentrations with respect to time, directly in the reaction mixture. The presence of isobaric molecular species made chromatographic separation necessary. Further EI mass spectrometry and collision spectroscopy led to structural identification of pure components. Of these, dopamine-o-quinone, leucoaminochrome, and aminochrome semiquinone were characterized for the first time as real intermediates in dopamine melanogenesis, in agreement with previous hypotheses. This approach elucidated the pathway of dopamine melanogenesis.  相似文献   

9.
Cysteine sulfenic acids in proteins can be identified by their ability to form adducts with dimedone, but this reagent imparts no spectral or affinity tag for subsequent analyses of such tagged proteins. Given its similar reactivity toward cysteine sulfenic acids, 1,3-cyclohexadione was synthetically modified to an alcohol derivative and linked to fluorophores based on isatoic acid and 7-methoxycoumarin. The resulting compounds retain full reactivity and specificity toward cysteine sulfenic acids in proteins, allowing for incorporation of the fluorescent label into the protein and "tagging" it based on its sulfenic acid redox state. Control experiments using dimedone further show the specificity of the reaction of 1,3-diones with protein sulfenic acids in aqueous media. These new compounds provide the basis for an improved method for the detection of protein sulfenic acids.  相似文献   

10.
S-nitrosothiols transport nitric oxide in vivo, and so-called transnitrosation reactions (i.e. the transfer of the nitroso function from nitrosothiol to thiolate) are believed to be involved in this process. In the present study we examined the N-nitrosotryptophan derivative-dependent nitrosation of thiols, a hitherto ignored possibility for the formation of S-nitrosothiols. The corresponding products were identified by (15)N-NMR spectrometry. The fact that the reaction proceeded under hypoxic conditions as well as in non-aqueous solution strongly indicated the occurrence of a transnitrosation reaction. Interestingly, S-nitrosothiols could only very slowly transnitrosate N-terminal-blocked tryptophan derivatives like melatonin in non-aqueous solution but did not induce such a reaction in water. The indole moiety of the N-nitrosotryptophan derivatives was fully restituted during the reaction with thiols, as demonstrated by both capillary zone electrophoresis and fluorescence spectroscopy. A determination of the Arrhenius parameters demonstrated that the corresponding rate constants were comparable with the ones known for the transfer of the nitroso function from nitrosothiol to thiolate. Thus, N-nitrosotryptophan-dependent nitrosation of thiols may occur in vivo and might offer the possibility of developing a new class of vasodilative drugs.  相似文献   

11.
Hypothesis: the role of reactive sulfur species in oxidative stress.   总被引:4,自引:0,他引:4  
Oxidative stress arises from an imbalance in the metabolism of redox-active species promoting the formation of oxidizing agents. At present, these species are thought to include reactive oxygen, reactive nitrogen, and reactive nitrogen oxygen species (ROS, RNS, and RNOS, respectively). Reactive species have their origin in enzymatic synthesis, environmental induction, or by the further chemical reaction of an active species with other endogenous molecules to generate a second-generation reactive species. These second-generation species possess a different spectrum of activity to the parent species, with different redox reactions and biological targets. We now propose that an additional group of redox active molecules termed "reactive sulfur species" (RSS) are formed in vivo under conditions of oxidative stress. RSS are likely to include disulfide-S-oxides, sulfenic acids, and thiyl radicals, and are predicted to modulate the redox status of biological thiols and disulfides.  相似文献   

12.
Transition metals as catalysts of "autoxidation" reactions   总被引:9,自引:0,他引:9  
Superoxide (O2-), hydrogen peroxide (H2O2), and hydroxyl radical (.OH) produced from the "autoxidation" of biomolecules, such as ascorbate, catecholamines, or thiols, have been implicated in numerous toxicities. However, the direct reaction of dioxygen with the vast majority of biomolecules, including those listed above, is spin forbidden, a condition which imposes a severe kinetic limitation on this reaction pathway. Therefore, an alternate mechanism must be invoked to explain the "autoxidations" reactions frequently reported. Transition metals are efficient catalysts of redox reactions and their reactions with dioxygen are not spin restricted. Therefore it is likely that the "autoxidation" observed for many biomolecules is, in fact, metal catalyzed. In this paper we discuss: 1) the quantum mechanic, thermodynamic, and kinetic aspects of the reactions of dioxygen with biomolecules; 2) the involvement of transition metals in biomolecule oxidation; and 3) the biological implications of metal catalyzed oxidations. We hypothesize that true autoxidation of biomolecules does not occur in biological systems, instead the "autoxidation" of biomolecules is the result of transition metals bound by the biomolecules.  相似文献   

13.
A cytochrome P-450 complex exhibiting a Soret peak at 454 nm is formed by direct interaction of nitrosobenzene with NADPH-reduced rat liver microsomes in anaerobic conditions, by reaction of phenylhydroxylamine with aerobic microsomes or during nitrobenzene reduction by NADPH-reduced or dithionite-reduced microsomes. In the latter conditions, the complex formation is only transient as it is unstable to dithionite. Analogous reactions with myoglobin lead to the previously described myoglobin-Fe(II)-nitrosobenzene complex which has similar properties to those of the 454-nm-absorbing cytochrome P-450 complex. This analogy, together with the various conditions of its formation, strongly indicates that it is a cytochrome-P-450-Fe(II)-nitrosobenzene complex. The corresponding complex with the 4-chloro-nitrosobenzene ligand is formed in similar conditions. Cytochrome P-450-Fe(II) complexes with nitrosoarenes seem less stable than the previously described complexes with nitrosoalkanes.  相似文献   

14.
In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.  相似文献   

15.
Human serum albumin (HSA), the most abundant protein in plasma, has been proposed to have an antioxidant role. The main feature responsible for this property is its only thiol, Cys34, which comprises approximately 80% of the total free thiols in plasma and reacts preferentially with reactive oxygen and nitrogen species. Herein, we show that the thiol in HSA reacted with hydrogen peroxide with a second-order rate constant of 2.26 M(-1) s(-1) at pH 7.4 and 37 degrees C and a 1:1 stoichiometry. The formation of intermolecular disulfide dimers was not observed, suggesting that the thiol was being oxidized beyond the disulfide. With the reagent 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol (NBD-Cl), we were able to detect the formation of sulfenic acid (HSA-SOH) from the UV-vis spectra of its adduct. The formation of sulfenic acid in Cys34 was confirmed by mass spectrometry using 5,5-dimethyl-1,3-cyclohexanedione (dimedone). Sulfenic acid was also formed from exposure of HSA to peroxynitrite, the product of the reaction between nitric oxide and superoxide radicals, in the absence or in the presence of carbon dioxide. The latter suggests that sulfenic acid can also be formed through free radical pathways since following reaction with carbon dioxide, peroxynitrite yields carbonate radical anion and nitrogen dioxide. Sulfenic acid in HSA was remarkably stable, with approximately 15% decaying after 2 h at 37 degrees C under aerobic conditions. The formation of glutathione disulfide and mixed HSA-glutathione disulfide was determined upon reaction of hydrogen peroxide-treated HSA with glutathione. Thus, HSA-SOH is proposed to serve as an intermediate in the formation of low molecular weight disulfides, which are the predominant plasma form of low molecular weight thiols, and in the formation of mixed HSA disulfides, which are present in approximately 25% of circulating HSA.  相似文献   

16.
Thiolation and nitrosation of cysteines in biological fluids and cells   总被引:2,自引:0,他引:2  
Summary. Thiols (RSH) are potent nucleophilic agents, the rates of which depend on the pKa of the sulfhydryl. Unlike compounds having other nucleophile moieties (–OH or –NH2), RSH are involved in reactions, such as conjugations, redox and exchange reactions. Although protein SH groups (PSH) react like non-protein thiols (NPSH), the biochemistry of proteins is much more complex for reasons such as steric hindrance, charge distribution and accessibility of PSH to the solvent (protein conformation). The reaction rates and types of end-products of PSH vary a lot from protein to protein. The biological problem is even more complex because in all compartments and tissues, there may be specific competition between thiols (namely between GSH and PSH), regulated by the properties of antioxidant enzymes. Moreover, PSH are divided biologically into essential and non-essential and their respective influence in the various biological systems is unknown. It follows that during phenomena eliciting a prompt thiol response (oxidative stress), the antioxidant PSH response and reaction mechanisms vary considerably from case to case. For example, in spite of a relatively low pKa that should guarantee good antioxidant capacity, PSH of albumin has much less propensity to form adducts with conjugating agents than NPSH; moreover, the structural characteristics of the protein prevent albumin from forming protein disulfides when exposed to oxidants (whereas protein-thiol mixed disulfides are formed in relative abundance). On the other hand, proteins with a relatively high reactivity, such rat hemoglobin, have much greater antioxidant capacity than GSH, but although human hemoglobin has a pKa similar to GSH, for structural reasons it has less antioxidant capacity than GSH.When essential PSH are involved in S-thiolation and S-nitrosation reactions, a similar change in biological activity is observed. S-thiolated proteins are a recurrent phenomenon in oxidative stress elicited by reactive oxygen species (ROS). This event may be mediated by disulfides, that exchange with PSH, or by the protein intermediate sulfenic acid that reacts with thiols to form protein-mixed disulfides. During nitrosative stress elicited by reactive nitrogen species (RNS), depending on the oxygen concentration of the system, nitrosation reactions of thiols may also be accompanied by protein S-thiolation. In this review we discuss a number of cell processes and biochemical modifications of enzymes that indicate that S-thiolation and S-nitrosation may occur simultaneously in the same protein in the presence of appropriate interactions between ROS and RNS.  相似文献   

17.
The plasma compartment has particular features regarding the nature and concentration of low and high molecular weight thiols and oxidized derivatives. Plasma is relatively poor in thiol-based antioxidants; thiols are in lower concentrations than in cells and mostly oxidized. The different thiol-disulfide pairs are not in equilibrium and the steady-state concentrations of total thiols as well as reduced versus oxidized ratios are maintained by kinetic barriers, including the rates of reactions and transport processes. The single thiol of human serum albumin (HSA-SH) is the most abundant plasma thiol. It is an important target for oxidants and electrophiles due to its reactivity with a wide variety of species and its relatively high concentration. A relatively stable sulfenic (HSA-SO3H) acid can be formed in albumin exposed to oxidants. Plasma increases in mixed disulfides (HSA-SSR) or in sulfinic (HSA-SO2H) and sulfonic (HSA-SO3H) acids are associated with different pathologies and may constitute biomarkers of the antioxidant role of the albumin thiol. In this work we provide a critical review of the plasma thiol pool with a focus on human serum albumin.  相似文献   

18.
Regulation of protein function by reversible cysteine-targeted oxidation can be achieved by multiple mechanisms, such as S-glutathiolation, S-nitrosylation, sulfenic acid, sulfinic acid, and sulfenyl amide formation, as well as intramolecular disulfide bonding of vicinal thiols. Another cysteine oxidation state with regulatory potential involves the formation of intermolecular protein disulfides. We utilized two-dimensional sequential non-reducing/reducing SDS-PAGE (diagonal electrophoresis) to investigate intermolecular protein disulfide formation in adult cardiac myocytes subjected to a series of interventions (hydrogen peroxide, S-nitroso-N-acetylpenicillamine, doxorubicin, simulated ischemia, or metabolic inhibition) that alter the redox status of the cell. More detailed experiments were undertaken with the thiol-specific oxidant diamide (5 mm), a concentration that induces a mild non-injurious oxidative stress. This increase in cellular oxidation potential caused global intermolecular protein disulfide formation in cytosolic, membrane, and myofilament/cytoskeletal compartments. A large number of proteins that undergo these associations were identified using liquid chromatography-mass spectrometry/mass spectrometry. These associations, which involve metabolic and antioxidant enzymes, structural proteins, signaling molecules, and molecular chaperones, were confirmed by assessing "shifts" on non-reducing immunoblots. The observation of widespread protein-protein disulfides indicates that these oxidative associations are likely to be fundamental in how cells respond to redox changes.  相似文献   

19.
Peroxiredoxin 4 (Prx4) is the only endoplasmic reticulum localized peroxiredoxin. It functions not only to eliminate peroxide but also to promote oxidative protein folding via oxidizing protein disulfide isomerase (PDI). In Prx4-mediated oxidative protein folding we discovered a new reaction that the sulfenic acid form of Prx4 can directly react with thiols in folding substrates, resulting in non-native disulfide cross-linking and aggregation. We also found that PDI can inhibit this reaction by exerting its reductase and chaperone activities. This discovery discloses an off-pathway reaction in the Prx4-mediated oxidative protein folding and the quality control role of PDI.  相似文献   

20.
A new pentafunctional cross-linking amino acid, termed allodesmosine, was isolated from bovine ligamentum nuchae elastin. This compound was a very hygroscopic, white amorphous solid with a faint yellow tinge, soluble in aqueous solvents but not dry methanol; it was characterized by UV, FAB mass and NMR spectroscopy. The compound was shown by UV and 1H-NMR to have a pyridinium ring structure similar to desmosine. Mass spectral analysis indicated a parent compound with a mass of 655. We postulated that it arose by condensation of a reduced aldol condensation product of allysine, allysine and lysine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号