首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A nitrate reductase from the thermophilic acidophilic alga, Cyanidium caldarium, was studied. The enzyme utilises the reduced forms of benzyl viologen and flavins as well as both NADPH2 and NADH2 as electron donors to reduce nitrate.Heat treatment has an activating effect on the benzyl viologen (FMNH2, FADH2) nitrate reductase. At 50°C the activation of the enzyme is complete in about 20 min of exposure, whereas at higher temperatures (until 75°C) it is virtually an instantaneous phenomenon. The observed increase in activity is very low in extracts from potassium nitrate grown cells, whereas it is 5 or more fold in extracts from ammonium sulphate supplied cells. The benzyl viologen nitrate reductase is stable at 60°C and is destroyed at 75°C after 3 min; the NADPH2 nitrate reductase is destroyed at 60°C. The pH optimum for both activities was found in the range 7.8–8.2.Ammonium nitrate grown cells possess a very low level of nitrate reductase: when they are transferred to a nitrate medium a rapid synthesis of enzyme occurs. By contrast, when cells with fully induced activity are supplied with ammonia, a rapid loss of NADPH2 and benzyl viologen nitrate reductase occurs; however, activity measured with heated extracts shows that the true level of benzyl viologen nitrate reductase is as high as before ammonium addition. It is suggested that the presence of ammonia causes a rapid inactivation but no degradation of the enzyme.Cycloheximide inhibits the formation of the enzyme; the drug is without effect on the loss of nitrate reductase activity induced by ammonium. The nitrate reductase is reactivated in vivo by the removal of the ammonium, in the absence as well as in the presence of cycloheximide.  相似文献   

2.
Ammonium sulfate (5 mM) had no effect on nitrate reductase activity during a 3 hr dark incubation, but the enzyme was increased 2.5-fold during a subsequent 24 hr incubation of the maize leaves in light. The enzyme activity induced by ammonium ion declined at a slower rate under non-inducing conditions than that induced by nitrate. The decline in ammonium stimulated enzyme activity in the dark was also slower than that with nitrate. Further. cycloheximide accelerated the dark inactivation of the ammonium-enzyme while it had no effect on the nitrate-enzyme. The experiments demonstrate that increase in nitrate reductase activity by ammonium ion is different from the action of nitrate action.  相似文献   

3.
Induction and Repression of Nitrate Reductase in Neurospora crassa   总被引:7,自引:4,他引:3       下载免费PDF全文
Synthesis of wild-type Neurospora crassa assimilatory nitrate reductase is induced in the presence of nitrate ions and repressed in the presence of ammonium ions. Effects of several Neurospora mutations on the regulation of this enzyme are shown: (i) the mutants, nit-1 and nit-3, involving separate lesions, lack reduced nicotinamide adenine dinucleotide (NADPH)-nitrate reductase activity and at least one of three other activities associated with the wild-type enzyme. The two mutants do not require the presence of nitrate for induction of their aberrant nitrate reductases and are constitutive for their component nitrate reductase activities in the absence of ammonium ions. (ii) An analog of the wild-type enzyme (similar to the nit-1 enzyme) is formed when wild type is grown in a medium in which molybdenum has been replaced by vanadium or tungsten; the resulting enzyme lacks NADPH-nitrate reductase activity. Unlike nit-1, wild type produced this analog only in the presence of nitrate. Contaminating nitrate does not appear to be responsible for the observed mutants' activities. Nitrate reductase is proposed to be autoregulated. (iii) Mutants (am) lacking NADPH-dependent glutamate dehydrogenase activity partially escape ammonium repression of nitrate reductase. The presence of nitrate is required for the enzyme's induction. (iv) A double mutant, nit-1 am-2, proved to be an ideal test system to study the repressive effects of nitrogen-containing metabolites on the induction of nitrate reductase activity. The double mutant does not require nitrate for induction of nitrate reductase, and synthesis of the enzyme is not repressed by the presence of high concentrations of ammonium ions. It is, however, repressed by the presence of any one of six amino acids. Nitrogen metabolites (other than ammonium) appear to be responsible for the mediation of "ammonium repression."  相似文献   

4.
Nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-nitrate reductase and its related enzyme activities, NADPH-cytochrome c reductase and reduced benzyl viologen-nitrate reductase, are all induced following the transfer of ammonia-grown wild-type Neurospora mycelia to nitrate medium. After nitrate reductase is induced to the maximal level, the addition of an ammonium salt to, or the removal of nitrate from, the cultures results in a rapid inactivation of nitrate reductase and its two partial component activities. This rapid inactivation is slowed down by the protein synthesis inhibitor, cycloheximide. Experiments on the mixing of extracts in vitro rule out the presence of an inhibitor of nitrate reductase in free form in extracts containing inactivated nitrate reductase. Ammonia does not inhibit the uptake of nitrate by the mycelia. Inactivation of nitrate reductase in vivo by ammonia depends on the concentration of the ammonium salt and is not reversed by increasing the nitrate concentration of the medium. The nitrate-inducible NADPH-cytochrome c reductase activity and reduced benzyl viologen-nitrate reductase activity respectively of the nitrate-nonutilizing mutants nit-1 and nit-3 are not inactivated in vivo by the addition of an ammonium salt or the withdrawal of nitrate. This finding suggests that the integrity of the nitrate reductase complex is required for the in vivo inactivation of nitrate reductase and its associated activities.  相似文献   

5.
T. R. Ricketts  P. A. Edge 《Planta》1977,134(2):169-176
A rapid uptake of nitrogen was observed in nitrogen-starved cells of Platymonas striata after refeeding with ammonium or nitrate ions. This was followed by a net loss of nitrogen per cell. Cells initially grown in and then starved in a regime of continuous light showed greater increases in average cell nitrogen on refeeding with ammonium or nitrate ions than did cells initially grown in and then starved in a regime of alternating light and darkness. A particulate subcellular location was observed for nitrate reductase (EC 1.6.6.1) in broken cell suspensions prepared by sonication. Nitrite reductase (EC 1.6.6.4) was located in the soluble fraction of these cell suspensions. Broken cell preparations displayed a lowered nitrate reductase activity as compared with the particulate component of these preparations. This was shown not to be due to heat-stable inhibitors present in the soluble phase of the cell. It appeared to be an artefact produced by the high nitrite reductase activity of the broken cell preparations, which removed much of the nitrite as it was formed. Nitrogen starvation of nitrate-grown cultures produced cellular increases in nitrate reductase and nitrite reductase activities which were further increased after the addition of nitrate. The results are discussed.Abbreviations ASP2 complete culture medium - ASP2 INF medium lacking in inorganic nitrogen - ASP2 NF medium lacking all nitrogen - NAR nitrate reductase - NIR nitrite reductase - EDTA Ethylenediaminetetracetic acid - PVP Polyvinylpyrollidone, M.W. 44,000  相似文献   

6.
Summary Chlorella vulgaris, grown with ammonium sulphate as nitrogen source, contains very little nitrate reductase activity in contrast to cells grown with potassium nitrate. When ammonium-grown cells are transferred to a nitrate medium, nitrate reductase activity increases rapidly and the increase is partially prevented by chloramphenicol and by p-fluorophenylalanine, suggesting that protein synthesis is involved. The increase in nitrate reductase activity is prevented by small quantities of ammonium; this inhibition is overcome, in part, by raising the concentration of nitrate. Although nitrate stimulates the development of nitrate reductase activity, its presence is not essential for the formation of the enzyme since this is formed when ammonium-grown cells are starved of nitrogen and when cells are grown with urea or glycine as nitrogen source. It is concluded that the formation of the enzyme is stimulated (induced) by nitrate and inhibited (repressed) by ammonium.  相似文献   

7.
The concentration of both nitrate and ammonium nitrogen was measured in soil taken from an upland acidic (pH 4.5) grassland habitat, containing four co-existing species, Deschampsia flexuosa (L.) Trin., Festuca ovina L., Juncus squarrosus L. and Nardus stricta L. Both nitrate and ammonium nitrogen were found to be present in the soil, in similarly small quantities. The effect of both sources of nitrogen on relative growth rate was studied, and an attempt was made to determine whether nitrate or ammonium nitrogen is the immediate source of nitrogen for these plants using assays of nitrate reductase (EC 1.6.6.2) and ammonium uptake. All four species showed larger growth rates on the same concentration of ammonium nitrogen compared to nitrate nitrogen. All species showed low activities of leaf nitrate reductase, even in plants grown on 18 mol nitrate m−3. Ammonium uptake activity appeared to be higher in species which showed the lowest nitrate reductase activity and least response to increasing nitrate concentration in the growth medium.  相似文献   

8.
Nitrate utilization has been characterized in nitrogen-deficient cells of the marine diatom Skeletonema costatum. In order to separate nitrate uptake from nitrate reduction, nitrate reductase activity was suppressed with tungstate. Neither nitrite nor the presence of amino acids in the external medium or darkness affects nitrate uptake kinetics. Ammonium strongly inhibits carrier-mediated nitrate uptake, without affecting diffusion transfer. A model is proposed for the uptake and assimilation of nitrate in S. costatum and their regulation by ammonium ions.  相似文献   

9.
Ammonium, the end-product of nitrate-reduction, causes a marked increase in nitrate-dependent formation of nitrate reductase activity in pea shoot apices. The ammonium effect is mediated via a decrease in the rate of nitrate reductase decay. The increased stability of the enzyme in the presence of ammonium is indirect and depends upon protein synthesis. A regulatory role for ammonium-induced protein(s) is suggested.  相似文献   

10.
Rhodopseudomonas capsulata E1F1 growing under chemo- or photoorganotrophic conditions shows nitrate reductase activity which:
  1. Is not repressed by ammonium ions;
  2. Is governed by the partial pressure of oxygen in the gas phase.
Upon induction of nitrate reductase activity under optimum conditions, and also in the presence of amonium ions, subsequent addition of nitrate does not result in nitrite production. The specific activity of the enzyme increases by a factor of 10, when the growth medium is supplemented by the addition of nitrate. The physiological role of this ammonium resistant activity is not known.  相似文献   

11.
Summary Cells of Cyanidium caldarium grown with ammonia or ammonium nitrate as nitrogen source do not contain appreciable nitrate reductase activity. The alga develops the capacity to synthesize the enzyme when it is transferred from the ammonium medium to a nitrogen-free medium. Nitrate is not needed as an inducer and no enhancement in the rate of enzyme synthesis is observed when it is present. By contrast, whereas the synthesis of the enzyme in nitrogen-free medium proceeds at an increasing rate, in the nitrate medium it attains a stationary level after a short time.Nitrate grown cells possess variable amount of inactive nitrate reductase (from 9 to 60%) whereas in nitrogen-free medium the enzyme occurs principally in a fully active form. Addition of ammonia inactivates reversibly the preexisting enzyme. The inactive enzyme is measurable in the crude extract after activation by heating.It is suggested that in Cyanidium the inactivating effect of ammonia, which is the end product of nitrate reduction, in association with the repression of enzyme controls the level of nitrate reductase activity.  相似文献   

12.
The influence of ammonium on nitrate reduction in wheat seedlings   总被引:5,自引:0,他引:5  
Summary Ammonium markedly inhibited nitrate absorption by nitrogenstarved wheat seedlings but did not decrease the proportion of absorbed nitrate that was reduced. Seedlings high in nitrate (absorbed prior to the experimental periods) reduced similar amounts of this nitrate regardless of whether or not ammonium was present and being absorbed during the period of measurement. Ammonium or products of ammonium assimilation did not interfere with the induction, stability, or activity of nitrate reductase. Consequently, the hypothesis that ammonium depresses nitrate uptake indirectly by inhibiting nitrate reduction is rejected, and it is suggested that the ammonium effect is directly on the nitrateuptake process.Paper No. 2800 of the Journal Series of the North Carolina State University Agricultural Experiment Station. These investigations were supported by the U.S. Atomic Energy Commission, Contract No. AT-(40-1)-2410.  相似文献   

13.
Ammonium at low concentrations caused a rapid and effective inhibition of nitrate utilization in the light by the cyanobacterium Anacystis nidulans without affecting the cellular level of nitrate reductase activity. The inhibition was reversible, and the ability of the cells to utilize nitrate was restored immediately after ammonium had been exhausted. The inhibitory effect was dependent on consumption by the cells of the added ammonium which was rapidly incorporated into amino acids. In the presence of L-methionine-d,l-sulfoximine (MSX) or azaserine, inhibitors of the glutamine synthetase-glutamate synthase pathway, ammonium did not exhibit any inhibitory effect on nitrate utilization. Ammonium assimilation, rather than ammonium itself, seems to regulate nitrate utilization in A. nidulans. Short-term inhibition by ammonium of nitrate utilization and its prevention by MSX were also demonstrated in the filamentous cyanobacteria Anabaena and Nostoc.Abbreviations MSX L-Methionine-d-l-sulfoximine  相似文献   

14.
Suspension cultures of Paul's Scarlet rose were grown in two defined media which differed only in their inorganic nitrogen content. Both possessed equal amounts of NO(3) (+) (24 mm), but differed in that NH(4) (+) (0.91 mm) was present in control medium; whereas, no NH(4) (+) was present in the test medium. A comparison of fresh weight increases over a 14-day growth period showed that NH(4) (+) caused a 2-fold stimulation in growth and governed the pattern of development.Ammonium also caused a 2-fold increase in nitrate reductase activity but had little influence on the activity of representative enzymes from the Embden-Meyerhof pathway or citric acid cycle. Thus NH(4) (+) enhanced the nitrate reductase activity which was correlated with increased growth.Ammonium had no influence on the in vitro activity of nitrate reductase which suggested that the stimulatory influence was due to an increased synthesis of the enzyme. The enhanced synthesis did not appear to be due to an increased availability of NO(3) (+) since the uptake of NO(3) (+) by intact cells was not influenced by the presence of NH(4) (+) during the period of most rapid increase in nitrate reductase activity.  相似文献   

15.
Nitrate reductase (NR) from the yeast, Rhodotorula glutinis var. salinaria was composed of two enzymatic components, diaphorase and terminal nitrate reducing moieties. The enzyme used NADPH as electron donor and FAD as cofactor. The synthesis of nitrate reductase was promoted specifically by nitrate and repressed by ammonium and amino acids. Nitrate reductase from this yeast had an inactive as well as an active form. Inactive enzyme was reactivated by oxidation with ferricyanide in vitro. Hydroxylamine promoted the formation of inactive enzyme in vivo. Ammonium could neither promote the inactivation nor reduce the total level of nitrate reductase activity. Nitrate could protect nitrate reductase from inactivation caused by nitrogen starvation or hydroxylamine.  相似文献   

16.
17.
Summary Seedlings of red maple, white pine, pitch pine and red pine were fertilized with nutrient solutions containing 4 levels of nitrate or ammonium additions. These levels corresponded to approximately 0.5, 1, 2 and 4 times normal availability of nitrogen in northeastern forests. Nitrate reductase (NR) activity was assayed in roots and leaves. Red maples treated with nitrate showed much higher leaf activities and higher ratios of leaf NR activity to root NR activity than any other species. Ammonium additions to red maple and white pine appeared to inhibit NR activity in leaves. With high nitrate additions, NR activity was induced in roots and leaves of pine species, but activity in roots remained much higher than in leaves.  相似文献   

18.
Phototrophic growth of the moderate halotolerant Rhodobacter capsulatus strain E1F1 in media containing up to 0.3 M NaCl was dependent on the nitrogen source used. In these media, increased growth rates and growth levels were observed in the presence of reduced nitrogen sources such as ammonium and amino acids. When the medium contained an oxidized nitrogen source (dinitrogen or nitrate), increases in salinity severely inhibited phototrophic growth. However, the addition of glycine betaine promoted halotolerance and allowed the cells to grow in 0.2 M NaCl. Inhibition of diazotrophic growth by salinity was due to a decrease in nitrogenase activity which was no longer synthesized and reversibly inactivated, both effects being alleviated by the addition of glycine betaine. In R. capsulatus E1F1, inhibition of cell growth in nitrate by salt was due to a rapid inhibition of nitrate uptake, which led to a long-term decrease in nitrate reductase activity, probably caused by repression of the enzyme. Addition of glycine betaine immediately restored nitrate uptake, but the recovery of nitrate reductase activity required several hours. Neither ammonium uptake nor ammonium assimilation through the glutamine synthetase-glutamate synthase pathway was affected by NaCl.  相似文献   

19.
Summary The effect of ammonium, nitrate, and organic nitrogen on growth and sporulation of 18 Aspergilli was examined in a chemically defined medium in surface culture under controlled conditions. All three forms of nitrogen were metabolized by all the Aspergilli tested. Ammonium nitrogen was not good both for growth and fruiting. This was due to the sharp fall in the pH level which resulted due to the rapid utilization of anions of the ammonium nitrogen than cations. The effect of adding succinic acid in the medium containing ammonium nitrogen has been discussed.Good growth of Aspergilli in media containing nitrate nitrogen with the accompanying rise in the pH of the medium showed that these species are capable of reducing nitrate nitrogen to the level of ammonia. The role of succinic acid in the utilization of nitrate nitrogen was investigated. All fungi accomplished good growth on a medium containing asparagine.  相似文献   

20.
In liquid culture on a defined growth medium, Penicillium sp. AK96151 efficiently degraded the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, hexogen), causing > 80 % disappearance after 10 d. RDX degradation was reduced to a basal level (< 15 % degraded after 10 d) by the presence of > 150 μM ammonium ions or when the molybdenum component of the medium was replaced by sodium tungstate. An equivalent effect of ammonium, molybdenum and tungsten was observed in protoplasts of this fungus assayed for nitrate reductase activity. This enzyme was not inhibited by RDX itself. The involvement of a nitrate reductase in RDX degradation by Penicillium has practical implications for bioremediation strategies which are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号