首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The actions of tamoxifen, a selective estrogen receptor modulator used in chemotherapy and chemo-prevention of breast cancer, on glycolysis and gluconeogenesis were investigated in the isolated perfused rat liver. Tamoxifen inhibited gluconeogenesis from both lactate and fructose at very low concentrations (e.g., 5 μM). The opposite, i.e., stimulation, was found for glycolysis from both endogenous glycogen and fructose. Oxygen uptake was unaffected, inhibited or stimulated, depending on the conditions. Stimulation occurred in both microsomes and mitochondria. Tamoxifen did not affect the most important key-enzymes of gluconeogenesis, namely, phosphoenolpyruvate carboxykinase, pyruvate carboxylase, fructose 1,6-bisphosphatase and glucose 6-phosphatase. Confirming previous observations, however, tamoxifen inhibited very strongly NADH- and succinate-oxidase of freeze–thawing disrupted mitochondria. Tamoxifen promoted the release of both lactate dehydrogenase (mainly cytosolic) and fumarase (mainly mitochondrial) into the perfusate. Tamoxifen (200 μM) clearly diminished the ATP content and increased the ADP content of livers in the presence of lactate with a diminution of the ATP/ADP ratio from 1.67 to 0.79. The main causes for gluconeogenesis inhibition are probably: (a) inhibition of energy metabolism; (b) deviation of intermediates (malate and glucose 6-phosphate) for the production of NADPH required in hydroxylation and demethylation reactions; (c) deviation of glucosyl units toward glucuronidation reactions; (d) secondary inhibitory action of nitric oxide, whose production is stimulated by tamoxifen; (e) impairment of the cellular structure, especially the membrane structure. Stimulation of glycolysis is probably a compensatory phenomenon for the diminished mitochondrial ATP production. The multiple actions of tamoxifen at relatively low concentrations can represent a continuous burden to the overall hepatic functions during long treatment periods.  相似文献   

2.
3.
4.
1. The equations derived by Heath (1968) were applied to data from experiments on rats in four metabolic states: fed, post-absorptive, starved and 2hr. after an eventually lethal injury. The data used were: (a) The fractions of label injected as C1-, C2- and C3-pyruvate (where the prefix indicates the position of labelling) that are incorporated into carbon dioxide and glucose in post-absorptive and injured rats (yields). Yields could be corrected to yields on label taken up by the liver. (b) The (C5-label in glutamate)/(total label in glutamate) ratio in the liver after C2-pyruvate in rats in all four states. (c) The distribution of label within glutamate after C2-pyruvate or C2-alanine in the livers of fed, post-absorptive and starved rats. (d) The distribution of label within glucose after C2-lactate or C2-pyruvate in starved rats. (e) The relative specific radioactivities of pyruvate, aspartate, glutamate and (in two states only) of glucose 6-phosphate after injection of [U-(14)C]glucose into rats in all four states. These data were previously published, except those after (e) and some after (b) above, which are given in this paper. 2. In addition the concentrations of pyruvate, citrate, glutamate and aspartate in the livers of post-absorptive and injured rats were found. Injury decreased glutamate and citrate concentrations and to a smaller extent aspartate and pyruvate concentrations. 3. Non-steady-state theory showed that most of the data could be used without serious error in steady-state theory. Steady-state theory correlated all but one observation (the relative yields of (14)CO(2) from C2- and C3-pyruvate) listed after (a)-(e) above within the experimental errors, and gave rough estimates of the rates of pyruvate carboxylation, conversion of pyruvate and fat into acetyl-CoA and utilization of glutamate. The main conclusions were: (a) symmetrization of label in oxaloacetate both in the mitochondrion and in the cytoplasm was far from complete, because oxaloacetate did not equilibrate with fumarate in either. From this and other findings it was deduced: (b) that malate or fumarate or both left the mitochondrion, and not oxaloacetate; (c) that there was a loss from the mitochondrion of a fraction of the malate or fumarate or both formed from succinate, and (d) the resulting deficiency of oxaloacetate for the perpetuation of the tricarboxylic acid cycle was made up from pyruvate in fed and post-absorptive rats, but (e) in the starved rat could only be made up by utilization of glutamate. (f) In the fed rat the tricarboxylic acid cycle ran mostly on pyruvate, but in the post-absorptive and starved rat mostly on fat. (g) In the injured rat the tricarboxylic acid cycle was slowed, label in oxaloacetate was completely symmetrized (cf. conclusion a), and the tricarboxylic acid cycle utilized glutamate. (h) The conclusions were not invalidated by isotopic exchange, i.e. flux of label without net flux of compound, nor by interaction with lipogenic processes. (i) In the kidneys interaction between the tricarboxylic acid cycle and gluconeogenesis was different from in the liver, and was much less. The effects on the theory were roughly assessed, and were small. 4. The experiments and optimum experimental conditions required to check the theory are listed, and several predictions, open to experimental confirmation, are made.  相似文献   

5.
Control of glycolysis and gluconeogenesis in rat kidney cortex slices   总被引:3,自引:12,他引:3       下载免费PDF全文
1. Glucose uptake or glucose formation has been studied in kidney cortex slices to investigate metabolic control of phosphofructokinase and fructose-diphosphatase activities. 2. Glucose uptake is increased and glucose formation is decreased by anoxia, cyanide or an uncoupling agent. Under these conditions the intracellular concentrations of glucose 6-phosphate and ATP decreased whereas that of fructose diphosphate either increased or remained constant, and the concentrations of AMP and ADP increased. 3. Glucose uptake was decreased, and glucose formation from glycerol or dihydroxyacetone was increased, by the presence of ketone bodies or fatty acids, or after starvation of the donor animal. Under these conditions, the concentrations of glucose 6-phosphate and citrate were increased, whereas those of fructose diphosphate and the adenine nucleotides were unchanged (see also Newsholme & Underwood, 1966). 4. It is concluded that anoxia and cell poisons increase glucose uptake and decrease gluconeogenesis by stimulating phosphofructokinase and inhibiting fructose diphosphatase, whereas ketone bodies, fatty acids or starvation increase gluconeogenesis and decrease glucose uptake through the citrate inhibition of phosphofructokinase.  相似文献   

6.
1. Phosphofructokinase from rat liver has been partially purified by ammonium sulphate precipitation so as to remove enzymes that interfere in one assay for phosphofructokinase. The properties of this enzyme were found to be similar to those of the same enzyme from other tissues (e.g. cardiac muscle, skeletal muscle and brain) that were previously investigated by other workers. 2. Low concentrations of ATP inhibited phosphofructokinase activity by decreasing the affinity of the enzyme for the other substrate, fructose 6-phosphate. Citrate, and other intermediates of the tricarboxylic acid cycle, also inhibited the activity of phosphofructokinase. 3. This inhibition was relieved by either AMP or fructose 1,6-diphosphate; however, higher concentrations of ATP decreased and finally removed the effect of these activators. 4. Ammonium sulphate protected the enzyme from inactivation, and increased the activity by relieving the inhibition due to ATP. The latter effect was similar to that of AMP. 5. Phosphofructokinase was found in the same cellular compartment as fructose 1,6-diphosphatase, namely the soluble cytoplasm. 6. The properties of phosphofructokinase and fructose 1,6-diphosphatase are compared and a theory is proposed that affords dual control of both enzymes in the liver. The relation of this to the control of glycolysis and gluconeogenesis is discussed.  相似文献   

7.
Rat liver slices were incubated with specifically 3H-labeled glucoses and [2-3H]sorbitol, and the incorporations of 3H into fatty acids and cholesterol were determined. Incorporation of 3H from [1-3H]glucose relative to that from [3-3H]glucose via NADPH formed in the pentose cycle was similar into fatty acids and cholesterol. This indicates (1) the presence of a common pool of NADPH formed via the pentose cycle, from which is derived the reductive hydrogens for fatty acid and cholesterol synthesis; (2) the absence of a major separate pool of NADPH formed from glucose by microsomal glucose dehydrogenase (EC 1.1.1.47) catalysis for use in cholesterol synthesis. 3H from [4-3H]glucose and from [2-3H]sorbitol was incorporated into cholesterol more than into fatty acids relative to the incorporations of 3H from [3-3H]glucose. Assuming that the 3H from [4-3H]glucose and from [2-3H]sorbitol were incorporated via the conversion, catalyzed by malic enzyme, of NADH to NADPH, this indicates the Compartmentation of the NADPH formed via malic enzyme catalysis from that formed via the pentose cycle. Alternatively, NADH provides reductive hydrogens for cholesterol synthesis in greater measure than in fatty acid formation or the stereochemistry of the synthetic processes are such that [A-3H]NADPH has greater excess than [B-3H]NADPH to cholesterol synthesis relative to fatty acid synthesis.  相似文献   

8.
9.
10.
Glucagon and dibutyryl cyclic AMP inhibited glucose utilization and lowered fructose 2,6-bisphosphate levels of hepatocytes prepared from fed chickens. Partially purified preparations of chicken liver 6-phosphofructo-1-kinase and fructose 1,6-bisphosphatase were activated and inhibited by fructose 2,6-bisphosphate, respectively. The sensitivities of these enzymes and the changes observed in fructose 2,6-bisphosphate levels are consistent with an important role for this allosteric effector in hormonal regulation of carbohydrate metabolism in chicken liver. In contrast, oleate inhibition of glucose utilization by chicken hepatocytes occurred without change in fructose, 2,6-bisphosphate levels. Likewise, pyruvate inhibition of lactate gluconeogenesis in chicken hepatocytes cannot be explained by changes in fructose 2,6-bisphosphate levels. Exogenous glucose caused a marked increase in fructose 2,6-bisphosphate content of hepatocytes from fasted but not fed birds. Both glucagon and lactate prevented this glucose effect. Fasted chicken hepatocytes responded to lower glucose concentrations than fasted rat hepatocytes, perhaps reflecting the species difference in hexokinase isozymes.  相似文献   

11.
12.
  • 1.1. Experiments performed on isolated hepatocytes and perfused liver of starved chickens showed that gluconeogenesis from lactate, glycerol and fructose was inhibited by 22–100% on addition of urate precursors.
  • 2.2. The inhibition was associated with an increased rate of urate formation.
  • 3.3. 2,4-Dinitrophenol (40 μM), 2-bromooctanoate (2 mM) and 3-mercaptopicolinate (3MPA) (0.5 mM) were inhibitory with respect to gluconeogenesis but did not significantly affect the rate of urate formation.
  • 4.4. The possible interrelationships between gluconeogenesis and uricogenesis are considered in terms of a competition for ATP and for other metabolites between the two pathways.
  • 5.5. An interplay of both pathways at the level of anion transfer across the inner mitochondrial membrane is also discussed.
  相似文献   

13.
Trained and untrained rats were fed either a control, high-fat, or high-carbohydrate diet and then sacrificed in either a rested or exhausted state. The in vitro activity of several muscle glycolytic and liver gluconeogenic enzymes was measured. Muscle hexokinase, phosphorylase, and phosphofructokinase activities were increased after training. Hexokinase was decreased in exhausted rats. Phosphorylase and phosphofructokinase were increased in untrained-exhausted rats but were unchanged in trained-exhausted rats. Liver pyruvate carboxylase and phosphoenolpyruvate carboxykinase activities were increased in trained-rested rats fed a high-fat diet. In trained-exhausted rats phosphoenolpyruvate carboxykinase activity was increased regardless of diet fed. Blood glucose was decreased in trained-exhausted rats, but it was increased in untrained-exhausted rats. Plasma glucocorticoid level was increased in exhausted rats. This study showed that training was associated with an increased muscle glycolytic capacity. Training was also related to the ability of liver to increase phosphoenolpyruvate carboxykinase activity during exercise, thereby increasing gluconeogenic capacity.  相似文献   

14.
A scheme is presented that shows how the reactions involved in gluconeogenesis, glycolysis and the tricarboxylic acid cycle are linked in rat liver. Equations are developed that show how label is redistributed in aspartate, glutamate and phosphopyruvate when it is introduced as specifically labelled pyruvate or glucose either at a constant rate (steady-state theory) or at a variable rate (non-steady-state theory). For steady-state theory the fractions of label introduced as specifically labelled pyruvate that are incorporated into glucose and carbon dioxide are also given, and for both theories the specific radioactivities of aspartate and glutamate relative to the specific radioactivity of the substrate. The theories allow for entry of label into the tricarboxylic acid cycle via both oxaloacetate and acetyl-CoA, for (14)CO(2) fixation and for loss of label from the tricarboxylic acid cycle in glutamate, but not for losses in citrate. They also allow for incomplete symmetrization of label in oxaloacetate due to incomplete equilibration with fumarate both in the extramitochondrial part of the cell and in the mitochondrion on entry of oxaloacetate into the tricarboxylic acid cycle. In the latter case failure both of oxaloacetate to equilibrate with malate and of malate to equilibrate with fumarate are considered.  相似文献   

15.
A reassessment of glycolysis and gluconeogenesis in higher plants   总被引:3,自引:0,他引:3  
Sung, S.-J. S., Xu, D.-P., Galloway, C. M. and Black, C. C., Jr. 1988. A reassessment of glycolysis and gluconeogenesis in higher plants. - Physiol. Plant. 72: 650–654.
Sucrose is the starting point of glycolysis and end point of gluconeogenesis in higher plants. During both glycolysis and gluconeogenesis alternative enzymes are present at various steps to carry out parallel pathways; alternatives are available for utilizing nucleotide triphosphates and pyrophosphate; fructose 2,6-bisphosphate serves as a strong internal regulator; and plants use these cytoplasmic alternatives as they develop and as their environments change.  相似文献   

16.
Effeects of various ketogenic substrates on gluconeogenesis from lactate were examined. D,L-3-Hydroxybutyrate (5 mM) stimulated gluconeogenesis by 41%, the effect being the same as that of 5 mM acetate (49%). No stimulating effect of acetoacetate was observed; conversely, acetoacetate (up to 40 mM) partially or completely abolished the observed stimulating effects of acetate, oleate, and 3-hydroxybutyrate. The results suggest that, in intact liver cells, pyruvate is transported into mitochondria in exchange for acetoacetate and that an interrelationship between gluconeogenesis and ketogenesis at the level of mitochondrial pyruvate carrier may exist in the liver.  相似文献   

17.
1. Measurements were made of the activities of the four key enzymes involved in gluconeogenesis, pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxylase (EC 4.1.1.32), fructose 1,6-diphosphatase (EC 3.1.3.11) and glucose 6-phosphatase (EC 3.1.3.9), of serine dehydratase (EC 4.2.1.13) and of the four enzymes unique to glycolysis, glucokinase (EC 2.7.1.2), hexokinase (EC 2.7.1.1), phosphofructokinase (EC 2.7.1.11) and pyruvate kinase (EC 2.7.1.40), in livers from starved rats perfused with glucose, fructose or lactate. Changes in perfusate concentrations of glucose, fructose, lactate, pyruvate, urea and amino acid were monitored for each perfusion. 2. Addition of 15mm-glucose at the start of perfusion decreased the activity of pyruvate carboxylase. Constant infusion of glucose to maintain the concentration also decreased the activities of phosphoenolpyruvate carboxylase, fructose 1,6-diphosphatase and serine dehydratase. Addition of 2.2mm-glucose initially to give a perfusate sugar concentration similar to the blood sugar concentration of starved animals had no effect on the activities of the enzymes compared with zero-time controls. 3. Addition of 15mm-fructose initially decreased glucokinase activity. Constant infusion of fructose decreased activities of glucokinase, phosphofructokinase, pyruvate carboxylase, phosphoenolpyruvate carboxylase, glucose 6-phosphatase and serine dehydratase. 4. Addition of 7mm-lactate initially elevated the activity of pyruvate carboxylase, as also did constant infusion; maintenance of a perfusate lactate concentration of 18mm induced both pyruvate carboxylase and phosphoenolpyruvate carboxylase activities. 5. Addition of cycloheximide had no effect on the activities of the enzymes after 4h of perfusion at either low or high concentrations of glucose or at high lactate concentration. Cycloheximide also prevented the loss or induction of pyruvate carboxylase and phosphoenolpyruvate carboxylase activities with high substrate concentrations. 6. Significant amounts of glycogen were deposited in all perfusions, except for those containing cycloheximide at the lowest glucose concentration. Lipid was found to increase only in the experiments with high fructose concentrations. 7. Perfusion with either fructose or glucose decreased the rates of ureogenesis; addition of cycloheximide increased urea efflux from the liver.  相似文献   

18.
19.
20.
Certain similarity in the isoenzymic composition of hexokinase (HK) and the rate of glycolysis in embryonic and denervated liver of rats has been revealed. These tissues exhibit high activity of HK-II and especially HK-III, which has the highest affinity to glucose. Depending on the isoenzymic composition of HK, the rate of glycolysis in embryonic and denervated liver is rather intensive even at low external concentrations of glucose and is not significantly affected by the increase in the level of the latter. It is suggested that the observed similarity results from a reduced activity of the sympathetic nervous system. This conclusion is confirmed by low catecholamine content in the tissues studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号