首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
gp32 I is a protein with a molecular weight of 27 000. It is obtained by limited hydrolysis of T4 gene 32 coded protein, which is one of the DNA melting proteins. gp32 I itself appears to be also a melting protein. It denatures poly[d(A-T)].poly[d(A-T)] and T4 DNA at temperatures far (50-60 degrees C) below their regular melting temperatures. Under similar conditions gp32 I will denature poly[d(A-T).poly[d(A-T)] at temperatures approximately 12 degrees C lower than those measured for the intact gp32 denaturation. For T4 DNA gp32 shows no melting behavior while gp32 I shows considerable denaturation (i.e., hyperchromicity) even at 1 degree C. In this paper the denaturation of poly[d(A-T)].poly[d(A-T)] and T4 DNA by gp32 I is studied by means of circular dichroism. It appears that gp32 I forms a complex with poly[d(A-T)]. The conformation of the polynucleotide in the complex is equal to that of one strand of the double-stranded polymer in 6 M LiCl. In the gp32 I DNA complex formed upon denaturation of T4 DNA, the single-stranded DNA molecule has the same conformation as one strand of the double-strand T4 DNA molecule in the C-DNA conformation.  相似文献   

2.
We report the temperature and salt dependence of the volume change (DeltaVb) associated with the binding of ethidium bromide and netropsin with poly(dA).poly(dT) and poly[d(A-T)].poly[d(A-T)]. The DeltaV(b) of binding of ethidium with poly(dA).poly(dT) was much more negative at temperatures approximately 70 degrees C than at 25 degrees C, whereas the difference is much smaller in the case of binding with poly[d(A-T)].poly[d(A-T)]. We also determined the volume change of DNA-drug interaction by comparing the volume change of melting of DNA duplex and DNA-drug complex. The DNA-drug complexes display helix-coil transition temperatures (Tm several degrees above those of the unbound polymers, e.g., the Tm of the netropsin complex with poly(dA)poly(dT) is 106 degrees C. The results for the binding of ethidium with poly[d(A-T)].poly[d(A-T)] were accurately described by scaled particle theory. However, this analysis did not yield results consistent with our data for ethidium binding with poly(dA).poly(dT). We hypothesize that heat-induced changes in conformation and hydration of this polymer are responsible for this behavior. The volumetric properties of poly(dA).poly(dT) become similar to those of poly[d(A-T)].poly[d(A-T)] at higher temperatures.  相似文献   

3.
B C Sang  D M Gray 《Biochemistry》1987,26(23):7210-7214
Circular dichroism (CD) data indicated that fd gene 5 protein (G5P) formed complexes with double-stranded poly(dA.dT) and poly[d(A-T).d(A-T)]. CD spectra of both polymers at wavelengths above 255 nm were altered upon protein binding. These spectral changes differed from those caused by strand separation. In addition, the tyrosyl 228-nm CD band of G5P decreased more than 65% upon binding of the protein to these double-stranded polymers. This reduction was significantly greater than that observed for binding to single-stranded poly(dA), poly(dT), and poly[d(A-T)] but was similar to that observed for binding of the protein to double-stranded RNA [Gray, C.W., Page, G.A., & Gray, D.M. (1984) J. Mol. Biol. 175, 553-559]. The decrease in melting temperature caused by the protein was twice as great for poly[d(A-T).d(A-T)] as for poly(dA.dT) in 5 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7. Upon heat denaturation of the poly(dA.dT)-G5P complex, CD spectra showed that single-stranded poly(dA) and poly(dT) formed complexes with the protein. The binding of gene 5 protein lowered the melting temperature of poly(dA.dT) by 10 degrees C in 5 mM Tris-HCl, pH 7, but after reducing the binding to the double-stranded form of the polymer by the addition of 0.1 M Na+, the melting temperature was lowered by approximately 30 degrees C. Since increasing the salt concentration decreases the affinity of G5P for the poly(dA) and poly(dT) single strands and increases the stability of the double-stranded polymer, the ability of the gene 5 protein to destabilize poly(dA.dT) appeared to be significantly affected by its binding to the double-stranded form of the polymer.  相似文献   

4.
We have investigated some properties related to interaction with DNA and recognition of AT-rich sequences of netropsin-oxazolopyridocarbazole (Net-OPC) (Mrani et al., 1990), which is a hybrid groove-binder-intercalator. The hybrid molecule Net-OPC binds to poly[d(A-T)] at two different sites with Kapp values close to 7 x 10(6) and 6 x 10(8) M-1 (100 mM NaCl, pH 7.0). Data obtained from melting experiments are in agreement with these values and indicate that Net-OPC displays a higher binding constant to poly[d(A-T)] than does netropsin. On the basis of viscometric and energy transfer data, the binding of Net-OPC to poly[d(A-T)] is suggested to involve both intercalation and external binding of the OPC chromophore. In contrast, on poly[d(G-C)], Net-OPC binds to a single type of site composed of two base pairs in which the OPC chromophore appears to be mainly intercalated. The binding constant of Net-OPC to poly[d(G-C)] was found to be about 350-fold lower than that of the high-affinity binding site in poly[d(A-T)]. As evidenced by footprinting data, Net-OPC selectively recognizes TTAA and CTT sequences and strongly protects the 10-bp AT-rich DNA region 3'-TTAAGAACTT-5' containing the EcoRI site. The binding of Net-OPC to this sequence results in a strong and selective inhibition of the activity of the restriction endonuclease EcoRI on the plasmid pBR322 as substrate. The extent of inhibition of the rate constant of the first strand break catalyzed by the enzyme is about 100-fold higher than the one observed in the presence of netropsin under similar experimental conditions.  相似文献   

5.
J Sgi  S Brahms  J Brahms    L Otvs 《Nucleic acids research》1979,6(8):2839-2848
The thermal transition of poly[d(A-r5U)] polydeoxynucleotides (where r was a hydrogen atom, or a methyl, ethyl, n-propyl, n-butyl or n-pentyl group) was studied by measuring the derivative melting profiles of the polymers in the range of 0.01--0.36 M K+, at pH 6.8. According to the Tm values, polydeoxynucleotide analogues show lower thermal stability than poly[d(A-T)] at any counterion concentration applied. At a given salt concentration, Tm of the alkyl analogues decreased as the number of carbon atoms (n) in the r substituent of poly[d(A-r5U)] increased. 1/Tm plotted against against 1/n yielded a linear relationship. Cooperativity of the melting of all poly[d(A--U)] analogues decreased with the increase of salt concentration in the solution. This change depended again on 5-substitution of the uracil moiety of poly[d(A-U)]. Smallest decrease was observed in the case of poly[d(A--U)] whereas largest decrease was shown by poly[d(A-pe5U)] (pe=pentyl group).  相似文献   

6.
Under conditions of low ionic strength, ribonuclease A, which binds more tightly to single- than to double-stranded DNA, lowers the melting temperature of DNA helices (Jensen and von Hippel (1976) J. Biol. Chem. 251, 7198-7214). The effects of chemical modification of lysine and arginine residues on the helix-destabilizing properties of this protein have been examined. Removal of the positive charge on the lysine epsilon-amino group, either by maleylation or acetylation, destroys the ability of RNAase A to lower the Tm of poly[d(A-T)]. However, reductive alkylation of these residues, which has not effect on charge, yields derivatives which lower the Tm by only about one-half that seen with unmodified controls. Phenylglyoxalation of arginines can largely remove the Tm-depressing activity of RNAase A. RNAase S, which is produced by cleavage of RNAase A between amino acids 20 and 21, possesses DNA helix-destabilizing activity comparable to that of the parent protein, whereas S-protein (residues 21-124) increases poly[d(A-T)] Tm and S-peptide (1-20) has no effect on Tm. These results suggest that specific location of several basic amino acids situated on the surface of RNAase A is largely responsible for this protein's DNA melting activity.  相似文献   

7.
Gene 32 protein (g32P), the single-stranded (ss) DNA binding protein from bacteriophage T4, is a zinc metalloprotein. The intrinsic zinc is one of the factors required for the protein to bind cooperatively to a ssDNA lattice. We have used differential scanning calorimetry to determine how the thermodynamic parameters characterizing the denaturation of g32P are affected by removal or substitution of the intrinsic zinc. Over a wide concentration range (1-10 mg/mL), the native Zn(II) protein unfolds at a tm of 55 degrees C with an associated mean enthalpy change of 139 kcal mol-1. Under the same conditions, the metal-free apoprotein denatures over a relatively broader temperature range centered at 49 degrees C, with a mean enthalpy change of 84 kcal mol-1. Substitution of Zn(II) in g32P by either Cd(II) or Co(II) does not significantly change the enthalpy of denaturation but does affect the thermal stability of the protein. All metallo forms of g32P when bound to poly(dT) undergo highly cooperative denaturational transitions characterized by asymmetric differential scanning calorimetry peaks with increases in tm of 4-5 degrees C compared to the unliganded metalloprotein. Removal of the metal ion from g32P significantly reduces the cooperativity of binding to poly(dT) [Giedroc, D. P., Keating, K. M., Williams, K. R., & Coleman, J. E. (1987) Biochemistry 26, 5251-5259], and presumably as a consequence of this, apo-g32P shows no change in either the shape or the midpoint of the thermal transition on binding to poly(dT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.  相似文献   

9.
The rate constants of 1H----3H exchange between water and C8H-groups of purine residues of alternating polynucleotides: poly[d(A-C)].poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)], as well as Escherichia coli DNA, dAMP and dGMP, in solutions with high concentration (4.3 or 6 M) CsF, in water ethanol (60%) solution and (in comparison) in 0.15 M NaCl were determined at 25 degrees C. The 1H----3H exchange rate exchange rate constants for adenylic (kA) and guanylic (kG) residues of polynucleotides were compared with the corresponding constant for DNA and mononucleotides. It was shown that at conditions when poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)] exhibit the "X-form" CD spectrum, alteration of exchange rates in polynucleotides (approximately 2-fold increase in kA in CSF and approximately 1.5-fold decrease in kA and kG in 60% ethanol with 0.15 M NaCl) is due to the effect of solvents on the chemical reactivity of purine residues, but does not reflect a conformational transition. The analysis of these results allows us to conclude, that alternating polynucleotides under the above mentioned conditions retain roughly the conformations inherent in them in 0.15 M NaCl: poly[d(A-C)].poly[d(G-T)] conformation in 4.3 m CsF or 60% ethanol differs only insignificantly from the "canonic" B-DNA, whereas the poly[d(A-T)].poly[d(A-T)] conformation in 6 M CSF corresponds to B-alternating DNA.  相似文献   

10.
Mn(III) and Fe(III) complexes of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (M-TMePyP) and related hybrid molecules ("metalloporphyrin-ellipticine") were activated by potassium monopersulfate in the presence of variable calf thymus (CT) DNA and NaCl concentrations. Monitored by visible spectroscopy (Soret band), fast degradation of the free metalloprophyrin was observed while the DNA-bound form appeared protected. This direct quantitation of free versus bound metalloporphyrin ratios allowed determination of binding constants: Mn- and Fe-TMePyP respectively bind to CT DNA (5 mM phosphate buffer, 0.1 M NaCl, pH 7) with K = 3 X 10(4) and 1.2 X 10(4) M-1. Mn-TMePyP showed a greater affinity for poly[d(A-T)] (K = 1.2 X 10(5) M-1) than for poly[d(G-C)] (K = 0.2 X 10(4) M-1). This method allowed us access to the intrinsic DNA affinity of the metalloporphyrin moiety of the hybrid molecules "metalloporphyrin-ellipticine".  相似文献   

11.
The pressure dependence of the helix–coil transition of poly(dA)∙poly(dT) and poly[d(A-T)]·poly[d(A-T)] in aqueous solutions of NaCl and CsCl at concentrations between 10 and 200 mM is reported and used to calculate the accompanying volume change. We also investigated the binding parameters and volume change of ethidium bromide binding with poly(dA)∙poly(dT) and poly[d(A-T)]·poly[d(A-T)] in aqueous solutions of these two salts. The volume change of helix–coil transition of poly(dA)∙poly(dT) in Cs+-containing solutions differs by less than 1 cm3 mol− 1 from the value measured when Na+ is the counter-ion. We propose that this insensitivity towards salt type arises if the counter-ions are essentially fully hydrated around DNA and the DNA conformation is not significantly altered by salt types. Circular dichroism spectroscopy showed that the previously observed large volumetric disparity for the helix–coil transition of poly[d(A-T)]·poly[d(A-T)] in solutions containing Na+ and Cs+ is likely result of a Cs+-induced conformation change that is specific for poly[d(A-T)]·poly[d(A-T)]. This cation-specific conformation difference is mostly absent for poly(dA)∙poly(dT) and EB bound poly[d(A-T)]·poly[d(A-T)].  相似文献   

12.
A nucleic acid helix-destabilizing protein has been purified from Saccharomyces cerevisiae using affinity chromatographic techniques. Crude protein extracts at low ionic strength (approx. 0.05 M) were applied sequentially to tandem columns of native DNA-cellulose, aminophenyl-phosphoryl-UMP-agarose, poly(I . C)-agarose, poly(U)-cellulose and denatured DNA-cellulose. The 2 M NaCl eluant of the poly(U)-cellulose column was dialyzed to low ionic strength and recycled through native DNA-cellulose, poly(I . C)-agarose and poly(U)-cellulose. Purified helix-destabilizing protein eluted from the poly(U)-cellulose between 0.1 and 0.5 M NaCl. On the basis of enzymatic activity, immunological cross-reactivity, mobility on SDS gels, amino acid analysis and preliminary peptide mapping experiments, this material was identified as an isozymic fraction of glyceraldehyde-3-phosphate dehydrogenase. The major crystallizable isozyme of this enzyme from yeast is, however, considerably more acidic than the helix-destabilizing protein, and displays significantly lower helix-destabilizing activity. Stoichiometric levels of the isolated protein at low (approx. 0.01) ionic strength depress the Tm of poly(A-U) and poly [d(A-T)] by as much as 28 and 22 degrees C, respectively. Longer double helices, poly(A . U) and Clostridium perfringens DNA are also denatured by the helix-destabilizing protein, but at relatively slow rates. The binding of this protein to [3H]-poly(U) on nitrocellulose filters in [Na+]-dependent, with a 50% reduction at 0.09 M NaCl. Based on its effect on the circular dichroism spectrum of poly(A), the protein was shown to distort the conformation of the polynucleotide chain. An analogous protein from mammalian cells, P8, was also shown to depress poly(A-U) Tm.  相似文献   

13.
RNA polymerase II from human placenta was affinity labelled in crude preparation using two-step technique, which includes treatment of the enzyme with an aldehyde-containing reactive analogue of ATP, ADP or AMP in the presence of poly[d(A-T)] followed (after borohydride reduction) by the elongation of the attached label with [alpha-32P]UTP. A polypeptide of the molecular mass ca. 140 kDa proved to be the labelling target. No labelling was observed in the absence of poly[d(A-T)] or the reagent or in the presence of alpha-amanitin. All the results suggest the attachment of the affinity reagents to the second-largest subunit of the human RNA polymerase II, which therefore takes part in the initiation substrate's binding.  相似文献   

14.
The effect of Hg2+ and Ag+ on the buoyant density (rho) of four synthetic DNA polymers, poly[d(A-T)]; poly(dA) - poly(dT); oikt[d(G-C)]; and poly(dG) - poly(dC), was investigated. The buoyant density of poly[d(A-T)] in Cs2SO4 increased dramatically after complexing with Hg2+, but little change in the buoyant density of other polymers resulted except at very high molar ratios of Hg2+/DNA-P (rf). Hg2+ raised the thermal transition temperature (Tm) of alternating polymers and lowered the Tm of homopolymers. Measurements in the preparative ultracentrifuge indicated that lowered Tm correlated with Hg2+-induced strand separation of one homopolymer [poly(dA) - poly(dT)], but strand separation was not observed with another homopolymer [poly(dG) - poly(dC)] complexed with Hg2+. When Ag+ was mixed with the polymers, the buoyant density of poly(dG) - poly(dC) increased most markedly. A substantial increase in the buoyant density of poly[d(A-T)] and a small increase in the buoyant density of poly[d(G-C)] were also observed. The Tm changes induced by Ag+ were not related in any obvious way to buoyant density changes. These findings indicate that nucleotide sequence as well as overall base composition is of importance in understanding the buoyant density changes induced by metal ions. Although these data do not allow construction of a detailed molecular model of polymer-metal ion interactions, they may be used to explain much of the behavior of naturally occurring DNA sequences, such as heterochromatic satellite sequences and 5 S and rRNA sequences, in Hg2+/Cs2SO4 and Ag+/Cs2SO4 gradients.  相似文献   

15.
Synthetic RNA poly[r(A-T)] has been synthesized and its CD spectral properties compared to those of poly[r(A-U)], poly[d(A-T)], and poly[d(A-U)] in various salt and ethanolic solutions. The CD spectra of poly[r(A-T)] in an aqueous buffer and of poly[d(A-T)] in 70.8% v/v ethanol are very similar, suggesting that they both adopt the same A conformation. On the other hand, the CD spectra of poly[r(A-T)] and of poly[r(A-U)] differ in aqueous, and even more so in ethanolic, solutions. We have recently observed a two-state salt-induced isomerization of poly[r(A-U)] into chiral condensates, perhaps of Z-RNA [M. Vorlícková, J. Kypr, and T. M. Jovin, (1988) Biopolymers 27, 351-354]. It is shown here that poly[r(A-T)] does not undergo this isomerization. Both the changes in secondary structure and tendency to aggregation are different for poly[r(A-T)] and poly[r(A-U)] in aqueous salt solutions. In most cases, the CD spectrum of poly[r(A-U)] shows little modification of its CD spectrum unless the polymer denatures or aggregates, whereas poly[r(A-T)] displays noncooperative alterations in its CD spectrum and a reduced tendency to aggregation. At high NaCl concentrations, poly[r(A-T)] and poly[r(A-U)] condense into psi(-) and psi(+) structures, respectively, indicating that the type of aggregation is dictated by the polynucleotide chemical structure and the corresponding differences in conformational properties.  相似文献   

16.
The rate constants of 1H----3H exchange between water and C8H-groups of purinic residues of alternating polynucleotides: poly[d(A-T)].poly[d(A-T)] (I), poly[d(G-C)].poly[d(G-C)] (II), poly[d(A-C)].poly[d(G-T)] (III) and homopolynucleotides: poly(dA).poly(dt) (IV), poly(dG).poly(dC) (V), as well as DNA E. coli, was determined in 0.15 M NaCl at 25 degrees C. The retardation of exchange observed at these conditions (compared to that of the B-form DNA) is in agreement with the model of B-alternating structure for the (I) and is attributed to the co-existence of B- and A-conformers for the (V) in solution. Absence of distinguishable differences in exchange rate constants for purinic residues of the (II), (III) and (IV) (compared to that of the B-form DNA) evidences that conformations of these polynucleotides in solution are similar to "canonical" B-form DNA and don't correlate with the model of "heteronomous" DNA which was proposed for (IV).  相似文献   

17.
Pressure-jump study of the kinetics of ethidium bromide binding to DNA   总被引:4,自引:0,他引:4  
Pressure-jump chemical relaxation has been used to investigate the kinetics of ethidium bromide binding to the synthetic double-stranded polymers poly[d(G-C)] and poly[d(A-T)] in 0.1 M NaCl, 10 mM tris(hydroxymethyl)aminomethane hydrochloride, and 1 mM ethylenediaminetetraacetic acid, pH 7.2, at 24 degrees C. The progress of the reaction was followed by monitoring the fluorescence of the intercalated ethidium at wavelengths greater than 610 nm upon excitation at 545 nm. The concentration of DNA was varied from 1 to 45 microM and the ethidium bromide concentration from 0.5 to 25 microM. The data for both polymers were consistent with a single-step bimolecular association of ethidium bromide with a DNA binding site. The necessity of a proper definition of the ethidium bromide binding site is discussed: it is shown that an account of the statistically excluded binding phenomenon must be included in any adequate representation of the kinetic data. For poly[d(A-T)], the bimolecular association rate constant is k1 = 17 X 10(6) M-1 s-1, and the dissociation rate constant is k-1 = 10 s-1; in the case of poly[d(G-C)], k1 = 13 X 10(6) M-1 s-1, and k-1 = 30 s-1. From the analysis of the kinetic amplitudes, the molar volume change, delta V0, of the intercalation was calculated. In the case of poly[d(A-T)], delta V0 = -15 mL/mol, and for poly[d(G-C)], delta V0 = -9 mL/mol; that is, for both polymers, intercalation is favored as the pressure is increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Raman spectroscopy of Z-form poly[d(A-T)].poly[d(A-T)   总被引:3,自引:0,他引:3  
Helical structures of double-stranded poly[d(A-T)] in solution have been studied by Raman spectroscopy. While the classical right-handed conformation B-type spectra are obtained in the case of sodium chloride solutions, a Z-form Raman spectrum is observed by addition of nickel ions at high sodium concentration, conditions in which the inversion of the circular dichroic spectrum of poly[d(A-T)] is detected, similar to that observed for high-salt poly[d(G-C)] solutions [Bourtayre, P., Liquier, J., Pizzorni, L., & Taillandier, E. (1987) J. Biomol. Struct. Dyn. 5, 97-104]. The characterization of the Z-form spectrum of poly[d(A-T)] is proposed by comparison with previously obtained characteristic Raman lines of Z-form poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)] solutions and of d(CG)3 and d(CGCATGCG) crystals [Thamann, T. J., Lord, R. C., Wang, A. H.-J., & Rich, A. (1981) Nucleic Acids Res. 9, 5443-5457; Benevides, J. M., Wang, A. H.-J., van der Marel, G. A., van Boom, J. H., Rich, A., & Thomas, G. J., Jr. (1984) Nucleic Acids Res. 14, 5913-5925]. Detailed spectroscopic data are presented reflecting the reorientation of the purine-deoxyribose entities (C2'-endo/anti----C3'-endo/syn), the modification of the phosphodiester chain, and the adenosine lines in the 1300-cm-1 region. The role played by the hydrated nickel ions in the B----Z transition is discussed.  相似文献   

19.
Factors influencing the binding of tetracationic porphyrin derivatives to DNA have been comprehensively evaluated by equilibrium dialysis, stopped-flow kinetics, etc., for mesotetrakis (4-N-methylpyridiniumyl)porphyrin [TMpyP (4)]. Technical difficulties have previously precluded a comprehensive study of metalloporphyrins. Since electrostatic interactions with the DNA and metal derivatization of the porphyrins have important consequences, we have investigated in greater detail two isomers of TMpyP (4) (meso-tetrakis(3-N-methylpyridiniumyl)porphyrin, [TMpyP (3)] and meso-tetrakis(2-N-methylpyridiniumyl)porphyrin [TMpyP (2)]) in which the position of the charged centers has been varied. A comprehensive study of the Cu(II) derivatives, e.g., CuTMpyP (4), was possible since the difficulties encountered previously with Ni(II) compounds were not a problem with Cu(II) porphyrins [J. A. Strickland, L. G. Marzilli, M. K. Gay, and W. D. Wilson (1988) Biochemistry 27, 8870-8878]. At 25 degrees C, the apparent equilibrium constants [Kobs] decreased with increasing [Na+] for all porphyrins. The Kobs values were comparable for TMpyP (4) and TMpyP (3) binding to either polyd(G-C).polyd(G-C) [poly[d(G-C)2]] or poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]]. For the copper(II) porphyrins, the Kobs values were about fivefold greater. The Kobs value for CuTMpyP (2) binding to poly[d(G-C)2] was too small to measure under typical salt conditions; however, Kobs for binding to poly[d(A-T)2] was about two orders of magnitude smaller than those found for CuTMpyP (4) or CuTMpyP (3). Application of the condensation theory for polyelectrolytes suggests about three charge interactions when CuTMpyP (4), CuTMpyP (3), and TMpyP (3) bind to poly[d(G-C)2] or poly[d(A-T)2], a result comparable to that reported for TMpyP (4). At 20 degrees C and 0.115 M [Na+], incorporation of copper decreased the rates of dissociation from poly[d(A-T)2] by a 100-fold compared to those reported for TMpyP (4) but had little effect on the rates of dissociation from poly[d(G-C)2]. Also, movement of the H3CN+ group from the fourth to the third position of the pyridinium ring enhanced the rates of dissociation from poly[d(A-T)2] but decreased the rates of dissociation from poly[d(G-C)2]. From polyelectrolyte theory, the [Na+] dependence of the dissociation rates from poly[d(G-C)2] is consistent with intercalative binding, while that for poly[d(A-T)2] is consistent with an outside binding model. For calf thymus [CT] DNA at 20 degrees C, a greater decrease in the AT than in the GC imino 1H-nmr signal was observed upon addition of CuTMpyP (2), suggesting selective outside binding to the AT regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
T Pan  D P Giedroc  J E Coleman 《Biochemistry》1989,28(22):8828-8832
Gene 32 protein (g32P), the single-stranded DNA binding protein from bacteriophage T4, contains 1 mol of Zn(II)/mol bound in a tetrahedral ligand field. 113Cd NMR studies of Cd-substituted wild-type and mutant (Cys166----Ser166) g32Ps show Cys77, Cys87, and Cys90 to provide three sulfur donor atoms as ligands to the metal ion [Giedroc, D. P., Johnson, B. A., Armitage, I. M., & Coleman, J. E. (1989) Biochemistry 28, 2410]. Proton NMR signals from the His and Trp side chains of the protein have been followed as a function of pH and metal ion removal by biosynthesizing the protein with amino acids carrying protons at specific positions in a background of perdeuteriated aromatic amino acids. Only one of the two pairs of His resonances (from His64 and His81) titrates over the pH range 8.0-5.9. The nontitrating His side chain is most likely ligated to the metal ion. Upon Zn(II) removal, 1H NMR spectra of the fully protonated g32P-(A + B) exhibit substantial signal broadening in several regions of the spectrum, while the His 2,4-1H resonances are broadened beyond detection. The 1H NMR spectral characteristics of the original protein are restored by reconstitution with stoichiometric Zn(II). The broadening of the 1H NMR signals is not due to oligomerization of the protein, since small-angle X-ray scattering experiments show that the average radius of gyration of the apo-g32P-(A + B) is 25.0 A and that of the reconstituted Zn(II)-g32P-(A + B) is 31.2 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号