首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mixed-ligand complexes of manganese(II) of formula [Mn(pyim)2(C5O5)] (1) and [Mn(pyim)(H2O)(C5O5)]n · 2.5nH2O (2) [pyim = 2-(2-pyridyl)imidazole and  = croconate (dianion of 4,5-dihydroxy-4-cyclopentene-1,2,3-trione)] have been prepared and their structures determined by X-ray crystallographic methods. Compound 1 is a tris-chelated mononuclear complex where the manganese atom is six-coordinate: four nitrogen atoms from two pyim molecules and two oxygen atoms from a croconate group build a somewhat distorted octahedral surrounding around the metal atom. The resulting neutral mononuclear units are linked to each other through double bridges which are constituted by the imidazole N-H and the metal-coordinated croconate-oxygen atom, the metal-metal separation through this supramolecular pathway being 7.6856(11) Å. Compound 2 is a croconato-bridged manganese(II) uniform chain with an intrachain metal-metal distance of 7.5118(9) Å. A bidentate pyim group, a water molecule and four oxygen atoms from two bis-bidentate croconate ligands build an irregular seven-coordination polyhedron around each manganese atom in 2. The investigation of the magnetic properties of 2 in the temperature range 1.9-295 K has shown the occurrence of a weak antiferromagnetic interaction [J = −0.066 cm−1 with the Hamiltonian defined as H = −i Si · Si+1] through the bis-bidentate croconate. The ability of the bis-chelating croconate to mediante magnetic interactions between paramagnetic first-row transition metal ions is discussed and compared to that of the related oxalate ligand.  相似文献   

2.
In this paper, spectral and structural characterizations of a new dinuclear copper(II) complex (1), formulated as [Cu2(3-(thiophen-2-yl)-1,10-phenanthroline)2(μ-oxalate)(DMF)2](ClO4)2 (DMF = N,N′-dimethylformamide), have been described. Two five-coordinate copper(II) centers are bridged by a four-dentate oxalate dianion forming a planar molecular geometry with the Cu-Cu separation of 5.117(4) Å. The two ligands in 1 adopt a trans configuration to each other and two monodentate DMF molecules are positioned at each side of the molecular plane. In addition, typical π-π stacking interactions are found between adjacent phenanthroline and thiophene rings forming a layered packing structure. A compressed pyramidal configurational alteration is observed for each copper(II) center when the temperature is decreased from 291(2) to 100(2) K.  相似文献   

3.
Three new complexes [Cu(L)(2)(NO(3))](NO(3))(H(2)O)(1/2)(CH(3)OH)(1/2) (1), [Cd(L)(2)(NO(3))(2)](H(2)O)(3) (2) and [Cd(L)(2)(ClO(4))(CH(3)OH)](ClO(4))(H(2)O)(1/4)(CH(3)OH) (3) (L=1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene) were synthesized and characterized by elemental analyses, IR and X-ray diffraction analysis. Among them, the Cu(II) and Cd(II) ions were both coordinated by four N donors from two distinct L ligands via N,N-bidentate chelating coordination mode. Additional weak interactions, such as the face-to-face pi-pi stacking and C-Hcdots, three dots, centeredO H-bonding interactions, linked the mononuclear unit into 1D chain and further into 2D network. Complexes 1-3 were subjected to biological assays in vitro against six different cancer cell lines. All of them exhibited cytotoxic specificity and notable cancer cell inhibitory rate. The interactions of 1-3 with calf thymus DNA were investigated by thermal denaturation, viscosity measurements, spectrophotometric and electrophoresis methods. The results indicate that these complexes bound to DNA by intercalation mode via the ligand L and had different nuclease activities, which were in good agreement with their DNA-binding strength. Moreover, the central metal ions of 1-3 played a vital role in DNA-binding behaviors, DNA-cleavage activities and cytotoxicities, whereas the contribution of the different counter anions to their bioactivities also should not be ignored.  相似文献   

4.
Two new copper(II) complexes of the type [Cu(L)X2), where L = (E)-N-phenyl-2-[phenyl (pyridine-2-yl)methylene]hydrazinecarboxamide X = Cl/Br have been synthesized and characterized by elemental analyses, FAB (fast atomic bombardment) magnetic measurements, electronic absorption, conductivity measurements cyclic voltammetry (CV) and Electron paramagnetic resonance (epr) spectroscopy. The structures of these complexes determined by single crystal X-ray crystallography show a distorted square based pyramidal (DSBP) geometry around copper(II) metal center. The distorted CuN2OX (X = Cl/Br) basal plane in them is comprised of two nitrogen and one oxygen atoms of the meridionally coordinated ligand and a chloride or bromide ion and axial position is occupied by other halide ion. The epr spectra of these complexes in frozen solutions of DMSO showed a signal at g ca. 2. The trend in g-value (g|| > g > 2.00) suggest that the unpaired electron on copper(II) has dx2-y2 character. Biological activities in terms of superoxide dismutase (SOD) and antimicrobial properties of copper(II) complexes have also been measured. The superoxide dismutase activity reveals that these two complexes catalyze the fast disproportionation of superoxide in DMSO solution.  相似文献   

5.
Herein we present the synthesis, structural and spectroscopic characterization of coordination compounds of cobalt(II), copper(II) and zinc(II) with 2-methylbenzimidazole (2mbz), 2-phenylbenzimidazole (2phbz), 2-chlorobenzimidazole (2cbz), 2-benzimidazolecarbamate (2cmbz) and 2-guanidinobenzimidazole (2gbz). Their cytotoxic activity was evaluated using human cancer cell lines, PC3 (prostate), MCF-7 (breast), HCT-15 (colon), HeLa (cervic-uterine), SKLU-1 (lung) and U373 (glioblastoma), showing that the zinc(II) and copper(II) compounds [Zn(2mbz)2Cl2]·0.5H2O, [Zn(2cmbz)2Cl2]·EtOH, [Cu(2cmbz)Br2]·0.7H2O and [Cu(2gbz)Br2] had significant cytotoxic activity. The isostructural cobalt(II) complexes showed not significant activity. The cytotoxic activity is related to the presence of halides in the coordination sphere of the metal ion. Recuperation experiments with HeLa cells, showed that the cells recuperated after removing the copper(II) compounds and, on the contrary, the cells treated with the zinc(II) compounds did not. These results indicate that the mode of action of the coordination compounds is different.  相似文献   

6.
Copper(II) and nickel(II) complexes of potentially N2O4 Schiff base ligands 2-({[2-(2-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}ethoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L1) and 2-({[2-(4-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}butoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L2) prepared of 5-phenylazo salicylaldehyde (1) and two various diamines 2-[2-(2-aminophenoxy)ethoxy]aniline (2) and 2-[4-(2-aminophenoxy)butoxy]aniline (3) were synthesized and characterized by a variety of physico-chemical techniques. The single-crystal X-ray diffractions are reported for CuL1 and NiL2. The CuL1 complex contains copper(II) in a near square-planar environment of N2O2 donors. The NiL2 complex contains nickel(II) in a distorted octahedral geometry coordination of N2O4 donors. In all complexes, H2L1 behaves as a tetradentate and H2L2 acts as a hexadentate ligand. Cyclic voltammetry of copper(II) complexes indicate a quasi-reversible redox wave in the negative potential range.  相似文献   

7.
《Inorganica chimica acta》2005,358(4):1141-1150
The synthesis of new oxaaza macrocyclic ligands (2-4) derived from O1,O7-bis(2-formylphenyl)-1,4,7-trioxaheptane and functionalized tris(2-aminoethyl)amine are described. Mononuclear copper(II) complexes were isolated in the reaction of the corresponding macrocyclic ligand and copper(II) perchlorate. The structure of the [Cu(2)](ClO4)2 complex was determined by X-ray diffraction analysis. The copper(II) ion is five-coordinated by all N5 donor atoms, efficiently encapsulated by the amine terminal pendant-arm, with a trigonal-bipyramidal geometry. The complexes are further characterized by UV-Vis, IR and EPR studies. The electronic reflectance spectra evidence that the coordination geometry for the Cu(II) complexes is trigonal-bipyramidal with the ligands 1 and 2 or distorted square-pyramidal with the ligands 3 and 4. The electronic spectra in MeCN solutions are different from those in the solid state, which suggest that some structural modification may occur in solution. The EPR spectrum of powder samples of the copper complex with 2 presents axial symmetry with hyperfine split at g// with the copper nuclei (I = 3/2), which is characteristic of weakly exchange coupled extended systems. The EPR parameters (g// = 2.230, A// = 156 × 10−4 cm−1 and g = 2.085) indicate a dx2-y2 ground state. The EPR spectra of the complexes with ligands 3 and 4 show EPR spectra with a poorly resolved hyperfine structure at g//. In contrast, the complex with ligand 2 shows no hyperfine split and a line shape which was simulated assuming rhombic g-tensor (g1 = 2.030, g2 = 2.115 and g3 = 2.190).  相似文献   

8.
Bin Hu 《Inorganica chimica acta》2010,363(7):1348-6199
Four transition metal complexes of 3,8-di(thiophen-2′,2″-yl)-1,10-phenanthroline (dtphen), formulated as [Ni(dtphen)2(H2O)2]·(ClO4)2 (1), [Zn(dtphen)2(H2O)]·(ClO4)2 (2) [Cu(dtphen)2(H2O)]·(ClO4)2 (3), [Cu(dtphen)(phen)2]·(ClO4)2 (4) (phen = 1,10-phenanthroline) with different metal-to-ligand ratios, were synthesized and characterized herein. The X-ray single-crystal diffraction studies of 1-4 exhibit that different molecular configurations for the dtphen ligand can be observed where the side thiophene rings adopt the trans/trans, trans/cis, trans/disorder and cis/cis conformations relative to the central 1,10-phenanthroline unit in different compounds. Fluorescence emission spectra of 1-4 in methanol show that the fluorescence emission of 2 is much stronger than the other three metal complexes, which is mainly due to its full d10 electronic configuration of Zn(II) ion.  相似文献   

9.
In our efforts to investigate the factors that affect the formation of coordination architectures, such as secondary coordination donors and pendant skeletons of the carboxylic acid ligands, as well as H-bonding and other weak interactions, two kinds of ligands: (a) 3-(2-pyridyl)pyrazole (L1) with a non-coordinated N atom as a H-bonding donor, a 2,2′-bipyridyl-like chelating ligand, and (b) four carboxylic ligands with different secondary coordination donors and/or pendant skeletons, 1,4-benzenedicarboxylic acid (H2L2), 4-sulfobenzoic acid (H2L3), quinoline-4-carboxylic acid (HL4) and fumaric acid (H2L5), have been selected to react with Mn(II) salts, and five new complexes, [Mn(L1)2(SO4)]2 (1), [Mn(L1)2(L2)] (2), [Mn(L1)(HL3)2] (3), Mn(L1)2(L4)2 (4), and [Mn(L1)2(L5)] (5), have been obtained and structurally characterized. The structural differences of 1-5 can be attributed to the introduction of the different carboxylic acid ligands (H2L2, H2L3, HL4, and H2L5) with different secondary coordination donors and pendant skeletons, respectively. This result also reveals that the typical H-bonding (i.e. N-H?O and O-H?O) and some other intra- or inter-molecular weak interactions, such as C-H?O weak H-bonding and π?π interactions, often play important roles in the formation of supramolecular aggregates, especially in the aspect of linking the multi-nuclear discrete subunits or low-dimensional entities into high-dimensional supramolecular networks.  相似文献   

10.
The synthesis and structural characterization of NiII, CuII and ZnII complexes of two chelating 1,2,4-oxadiazole ligands, namely 3,5-bis(2′-pyridyl)-1,2,4-oxadiazole (bipyOXA) and 3-(2′-pyridyl)5-(phenyl)-1,2,4-oxadiazole (pyOXA), is here reported. The formed hexacoordinated metal complexes are [M(bipyOXA)2(H2O)2](ClO4)2 and [M(pyOXA)2(ClO4)2], respectively (M = Ni, Cu, Zn). X-ray crystallography, 1H and 13C NMR spectroscopy and C, N, H elemental analysis data concord in attributing them an octahedral coordination geometry. The two coordinated pyOXA ligands assume a trans coplanar disposition, while the two bipyOXA ligands are not. The latter result is a possible consequence of the formation of H-bonds between the coordinated water molecules and the nitrogen atom of the pyridine in position 5 of the oxadiazole ring. The expected splitting of the d metal orbitals in an octahedral ligand field explains the observed paramagnetism of the d8 and d9 electron configuration of the nickel(II) and copper(II) complexes, respectively, as determined by the broadening of their NMR spectra.  相似文献   

11.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

12.
Three coordination complexes of formula [Ni(L1)2(H2O)4].4H2O (1), [Mn(L2)2(H2O)4] (2) and [Mn(L2)2(H2O)2]n (3) [L1H = 6-methylpyridine-3-carboxylic acid, L2H = 3-(3-pyridyl)acrylic acid] have been synthesized and structurally characterized by X-ray single crystal analysis. A 3D network is achieved through H-bonding in 1 and 2, while crystal packing of complex 3 shows a 3D supramolecular coordination polymer. Thermal properties have been investigated by thermogravimetric analysis. Luminescence study features the presence of LMCT and metal purterbed ligand centered emission bands.  相似文献   

13.
A series of dinuclear copper(II) complexes involving 6-(benzylamino)purine derivatives, (HLn), as bridging ligands were synthesized, characterized and tested for both their in vitro and in vivo antioxidant activities. Based on results of elemental analyses, temperature dependence of magnetic susceptibility measurements, UV-vis, FTIR, EPR, NMR and MALDI-TOF mass spectroscopy, conductivity measurements and thermal analyses, the complexes with general compositions of [Cu2(μ-HLn)4Cl2]Cl2 · 2H2O (1-4) and [Cu2(μ-HLn)2(μ-Cl)2Cl2] (5-7) were prepared {where n = 1-4; HL1 = 6-[(2-methoxybenzyl)amino]purine, HL2 = 6-[(4-methoxybenzyl)amino]purine, HL3 = 6-[(2,3-dimethoxybenzyl)amino]purine and HL4 = 6-[(3,4-dimethoxybenzyl)amino]purine}. In the case of complexes 2, 3, 5 and 7, the antioxidant activities were studied by both in vitro {superoxide dismutase-mimic (SOD-mimic) activity} and in vivo {cytoprotective effect against the alloxan-induced diabetes (antidiabetic activity)} methods. The obtained IC50 value of the SOD-mimic activity for the complex 5 (IC50 = 0.253 μM) was shown to be even better than that of the native bovine Cu,Zn-SOD enzyme (IC50 = 0.480 μM), used as a standard. As for the antidiabetic activity, the pretreatment of mice with complexes 3 and 7 led to the complete elimination of cytotoxic attack of alloxan and its free radical metabolites, used as a diabetogenic agent. The cytoprotective effect of these compounds was proved by the preservation of the initial blood glucose levels of the pretreated animals, as against the untreated control group.  相似文献   

14.
《Inorganica chimica acta》2004,357(12):3574-3582
The copper(II) complexes [Cu(PyTT)2(H2O)](NO3)2 (A) and [CuCl2(μ-PyTT)2CuCl(H2O)]Cl · 3H2O (B) were synthesized and characterized by single crystal X-ray diffraction, IR spectroscopy, UV-Vis-NIR diffuse reflectance and magnetic susceptibility measurements. In the mononuclear compound A the copper ion is in a distorted square pyramidal geometry, with the equatorial plane formed by two thiazoline nitrogen atoms, one imino nitrogen atom and one water molecule, whereas the axial site is occupied by one imino nitrogen atom. The compound B is dinuclear and both Cu(II) centres present environments that can be described as slightly distorted square pyramidal geometries. The observed molar magnetic susceptibility for A (μ=2.13 BM) allows to exclude metal-metal interactions, supporting a monomeric structural formulation for this compound. In compound B, magnetic susceptibility measurements in the temperature range 6.2-288 K show an intradimer antiferromagnetic interaction (J=−11.8 cm−1).  相似文献   

15.
Four copper(II) complexes containing the reduced Schiff base ligands, namely, N-(2-hydroxybenzyl)-glycinamide (Hsglym) and N-(2-hydroxybenzyl)-l-alaninamide (Hsalam) have been synthesized and characterized. The crystal structures of [Cu2(sglym)2Cl2] (1), [Cu2(salam)2(NO3)2] · H2O (3), [Cu2(salam)2(NO3)(H2O)](NO3) · 1.5H2O (4), [Cu2(salam)2](ClO4)2 · 2H2O (5) show that the Cu(II) atoms are bridged by two phenolato oxygen atoms in the dimers. The sglym ligand bonded to Cu(II) in facial manner while salam ligand prefers to bind to Cu(II) in meridonal geometry. Variable temperature magnetic studies of 3 showed it is antiferromagnetic. These Cu(II) complexes and [Cu2(sglym)2(NO3)2] (2), exhibit very small catecholase activity as compared to the corresponding complexes containing acid functional groups.  相似文献   

16.
Syntheses, spectroscopic and structural characterizations of a series of Cu(I)-phenanthroline complexes are reported. A single crystal X-ray structure determination is recorded for CuNO3:dmp:MeCN (1:1:1), ‘dmp’ = 2,9-dimethyl-1,10-phenanthroline, showing it to be isomorphous with its previously studied tetrafluoroborate, perchlorate and hexafluorophosphate, and silver(I) perchlorate counterparts, the metal atom lying in a trigonal planar [(NN)Cu(NCMe)] coordination environment, the anion not being coordinated. Structure (re-) determinations are also reported for a number of salts of the [Cu(dmp)2]+ cation: the perchlorate, isomorphous with numerous other salts, not only of copper(I), but also lithium(I)), also the unsolvated nitrate, and a solvated form of the chloride.  相似文献   

17.
By the reactions of Cu(OAc)2 · H2O and Cu(HCOO)2 · 4H2O with 2-(aminomethyl)pyridine in different proportions, the compounds Cu(OAc)2(2-amp) (1), Cu(HCOO)2(2-amp) (2), Cu(HCOO)2(2-amp)1/2 (5), Cu(OAc)2(2-amp)2 · H2O (6) and Cu(HCOO)2(2-amp)2 · H2O (7) were obtained. In 1 the copper shows an elongated rhombic octahedral stereochemistry determined by a 2-amp molecule and two asymmetrical bidentate acetate groups. The hydrogen bonds between the NH2 groups and O atoms yield to the formation of a double chain. Compound 2 instead consists in monodimensional chains of Cu(2-amp)(HCOO) units, with monodentate formate groups, linked by syn-anti bridging formate groups. Sheets are formed by hydrogen bonds between the chains. By crystallization of a solution of 6 in chloroform, CuCl2(2-amp)2 (3) was obtained. It presents a highly distorted square pyramidal geometry around the copper atom. The sheets, formed by the hydrogen bonds between NH2 and Cl, are interpenetrated and shows π stacking. Magnetic properties and EPR spectra for these new compounds have been studied. Also the magnetic behaviour of Cu(OAc)2(2-amp)1/2 (4) is described.  相似文献   

18.
Reaction of 1,3-bis(2′-Ar-imino)isoindolines (HLn, n = 1-7, Ar = benzimidazolyl, N-methylbenzimidazolyl, thiazolyl, pyridyl, 3-methylpyridyl, 4-methylpyridyl, and benzthiazolyl, respectively) with Cu(OCH3)2 yields mononuclear hexacoordinate complexes with Cu(Ln)2 composition. With cupric perchlorate square-pyramidal [CuII(HLn)(NCCH3)(OClO3)]ClO4 complexes (n = 1, 3, 4) were isolated as perchlorate salts, whereas with chloride CuII(HLn)Cl2 (n = 1, 4), or square-planar CuIICl2(HLn) (n = 2, 3, 7) complexes are formed. The X-ray crystal structures of Cu(L3)2, Cu(L5)2, [CuII(HL4)(NCCH3)(OClO3)]ClO4, CuIICl(L2) and CuIICl(L7) are presented along with electrochemical and spectral (UV-Vis, FT-IR and X-band EPR) characterization for each compound. When combined with base, the isoindoline ligands in the [CuII(HLn)(NCCH3)(OClO3)]ClO4 complexes undergo deprotonation in solution that is reversible and induces UV-Vis spectral changes. Equilibrium constants for the dissociation are calculated. X-band EPR measurements in frozen solution show that the geometry of the complexes is similar to the corresponding X-ray crystallographic structures. The superoxide scavenging activity of the compounds determined from the McCord-Fridovich experiment show dependence on structural features and reduction potentials.  相似文献   

19.
Synthesis and characterization of six new complexes [Cu{2,6-(MeO)2nic}2(H2O)]2 (1), [Cu{2,6-(MeO)2nic}2(H2O)]2 · 3DMF (2), where 2,6-(MeO)2nic is 2,6-dimethoxynicotinate and DMF is N,N-dimethylformamide, [Cu(3-pyacr)2(H2O)2]n (3), where 3-pyacr is trans-3-(3-pyridyl)acrylate, [Cu(en)2(H2O)2]X2, where X is 2,6-(MeO)2nic (4) or 3-pyacr (5) and en is ethylenediamine, and [Cu(3-pyacr)2(dien)(μ-H2O)0.5]2 · 7H2O (6), where dien is diethylenetriamine are reported. The characterizations were based on elemental analysis, infrared, electronic and EPR spectra, and magnetic measurements over a temperature range of 1.8-300 K. Crystal structures of complexes 2, 4 and 6 have been determined by X-ray single crystal structure analysis. The available evidence supports dimeric structure of the acetate type for 1 and 2. Crystal structure of polymeric complex 3 has been determined from X-ray powder diffraction data. The 3-pyacr anions in pairs form bridges between two octahedrally surrounded copper(II) atoms in such a way that one 3-pyacr is coordinated to the first CuII by an oxygen atom of its carboxyl group and to the second CuII by the nitrogen atom of its pyridine ring, while the other is coordinated to the same two CuII atoms in a similar way, but the other way round. Environment about the copper(II) atom for 4 and 5 is a square bipyramid (4+2).In complex 6 both CuII central atoms are bridged only by an axial water molecule forming a dimeric structure with the considerably long separation of CuII atoms of 5.194 Å and the angle Cu1-O3-Cu1a of 150.79°. Moreover, results of the quantitative determination of antimicrobial activity of the complexes as well as above organic ligands alone are discussed.  相似文献   

20.
(E)-2-(2-(2-hydroxyphenyl)hydrazono)-1-phenylbutane-1,3-dione (H2L) was synthesized by azocoupling of diazonium salt of 2-hydroxyaniline with 1-phenylbutane-1,3-dione and characterized by IR, 1H and 13C NMR spectroscopies and X-ray diffraction analysis. In solution, H2L exists as a mixture of the enol-azo and hydrazone tautomeric forms and a decrease of temperature and of solvent polarity shifts the tautomeric balance to the hydrazone form. In the solid state, H2L crystallizes from ethanol-water in the monohydrate hydrazone form, as shown by X-ray analysis. The dissociation constants of H2L (pK1 = 5.98 ± 0.04, pK2 = 9.72 ± 0.03) and the stability constants of its copper(II) complex (log β1 = 11.01 ± 0.07, log β2 = 20.19 ± 0.08) were determined by the potentiometric method in aqueous-ethanol solution. The copper(II) complex [Cu2(μ-L)2]n was isolated in the solid state and found by X-rays to be a coordination polymer of a binuclear core with a distorted square pyramidal metal coordination geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号