首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The topological organization of the major rat liver gap junction protein has been examined in intact gap junctions and gap junction-derived single membrane structures. Two methods, low pH and urea at alkaline pH, were used to "transform" or "split" double membrane gap junctions into single membrane structures. Low pH treatment "transforms" rat liver gap junctions into small single membrane vesicles which have an altered sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile after digestion with L-1-to-sylamido-2-phenylethylchloromethyl ketone-trypsin. Alkaline pH treatment in the presence of 8 M urea can split isolated rat liver gap junctions into single membrane sheets which have no detectable structural alteration or altered sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile after proteolytic digestion, suggesting that these single membrane sheets may be useful for topological studies of the gap junction protein. Proteolytic digestion studies have been used to localize the carboxyl terminus of the molecule on the cytoplasmic surface of the intact gap junction. However, the amino terminus does not appear to be accessible to proteases or to interaction with an antibody that is specific for the amino-terminal region of the molecule in intact or split gap junctions. Binding of antibodies, that block junctional channel conductance, can be eliminated by proteolytic digestion of intact gap junctions, suggesting that all antigenic sites for these antibodies are located on the cytoplasmic surface of the intact gap junction. In addition, calmodulin gel overlays indicate that at least two calmodulin binding sites exist on the cytoplasmic surface of the junctional protein. The information generated from these studies has been used to develop a low resolution two-dimensional model for the organization of the major rat liver gap junctional protein in the junctional membrane.  相似文献   

2.
Thin sections of rabbit granulosa, human SW-13 adrenal cortical adenocarcinoma, and mouse B-16 melanoma cells revealed an apparent single-layered basket of 4- to 7-nm filaments surrounding cytoplasmic gap junction vesicles. This interpretation was based upon apparent longitudinal, cross, and en face sections of structures surrounding the vesicle profiles in tissue treated with tannic acid-glutaraldehyde. In granulosa cells incubated with the S-1 fragment of heavy meromyosin, arrowhead-decorated filaments were observed at the periphery of the gap junction vesicles, suggesting that these filaments contained actin. In addition, we found that small gap junctional blebs and vesicles at the cell surface were coated with short electron-dense bristles similar in appearance to the cloathrin-containing coat of coated vesicles of nonjunctional membrane. The role of these and other cytoskeletal elements in the possible endocytosis of gap junction membrane is discussed.  相似文献   

3.
Coated vesicles are involved in the intracellular transport of membrane proteins between a variety of membrane compartments. The coats of bovine brain coated vesicles contain at least six polypeptides in addition to an 180,000-dalton polypeptide called clathrin. In this report we show that the 54,000- and 56,000-dalton coated vesicle polypeptides are alpha- and beta-tubulin, determined by immunoblotting and two-dimensional gel electrophoresis. An affinity-purified tubulin antiserum can precipitate coated vesicles. The tubulin polypeptides are tightly associated with a 50,000-dalton coated vesicle polypeptide, which is phosphorylated. The phosphorylated 50,000-dalton polypeptide appears to be related to brain microtubule-associated tau proteins since it can be specifically immunoprecipitated by an affinity-purified antiserum directed against these proteins. In addition, gel filtration experiments indicate that at least a fraction of the 50,000-dalton polypeptide may associate with the 100,000-dalton coated vesicle polypeptide. Since brain is a tissue rich in tubulins, liver coated vesicles were analyzed for the presence of alpha- and beta-tubulin. Like brain coated vesicles, liver coated vesicles also contain an endogenous kinase activity, which phosphorylates polypeptides of the same molecular weights and isoelectric points as the brain coated vesicle 50,000-dalton, tau-like polypeptide, and alpha- and beta-tubulin. The phosphorylated 50,000-dalton polypeptide may link the membrane and contents of coated vesicles with components of the cytoskeleton.  相似文献   

4.
Two different monoclonal antibodies, characterized initially as binding synaptic terminal regions of rat brain, bind a 65,000-dalton protein, which is exposed on the outer surface of brain synaptic vesicles. Immunocytochemical experiments at the electron microscope level demonstrate that these antibodies bind the vesicles in many different types of nerve terminals. The antibodies have been used successfully to purify synaptic vesicles from crude brain homogenates by immunoprecipitation onto the surface of polyacrylamide beads. The profiles of the structures precipitated by these beads are almost exclusively vesicular, confirming the vesicle-specificity of the antibodies. In SDS gels, the antibodies bind a single protein of 65,000 daltons. The two antibodies are not identical, but compete for binding sites on this protein. Immune competition experiments also demonstrate that the antigenic components on the 65,000-dalton protein are widely distributed in neuronal and neural secretory tissues. Detectable antigen is not found in uninnervated tissue--blood cells and extrajunctional muscle. Low levels are found in nonneural secretory tissues; it is not certain whether this reflects the presence of low amounts of the antigen on all the exocytotic vesicles in these tissues or whether the antigen is found only in neuronal fibers within these tissues. The molecular weight and at least two antigenic determinants of the 65,000-dalton protein are highly conserved throughout vertebrate phylogeny. The two antibodies recognize a 65,000-dalton protein present in shark, amphibia, birds, and mammals. The highly conserved nature of the determinants on this protein and their specific localization on secretory vesicles of many different types suggest that this protein may be essential for the normal function of neuronal secretory vesicles.  相似文献   

5.
《The Journal of cell biology》1983,97(5):1491-1499
The in situ distribution of the 26-kdalton Main Intrinsic Polypeptide (MIP or MP 26), a putative gap junction protein in ocular lens fibers, was defined at the electron microscope level using indirect immunoferritin labeling of ultrathin frozen sections of rat lens. MIP was found distributed throughout the plasma membrane of the lens fiber cell, with no apparent distinction between junctional and nonjunctional membrane. MIP was not detectable in the basal or lateral plasma membrane of the lens epithelial cell, including the interepithelial cell gap junctions; nor was MIP detectable in the plasma membrane or gap junctions of the hepatocyte. Previous reports have indicated that the protein composition of the lens fiber cell junction differs from that of the hepatocyte gap junction. The evidence presented here suggests that the composition of the fiber cell junction and plasma membrane is also immunocytochemically distinct from that of its progenitor, the lens epithelial cell.  相似文献   

6.
Treatment of both transverse tubules and terminal cisternae with a combination of Triton X-100 and hypertonic K cacodylate causes dissolution of nonjunctional proteins and selective retention of membrane fragments which are capable of junction formation. Treatment of vesicles with Triton X-100 and either KCl or K gluconate causes complete dissolution of all components. Therefore K cacodylate exerts a specific preservative action on the junctional material. The membrane fragment from treatment of transverse tubules with Triton X-100 + cacodylate contains a protein of Mr = 80,000 in SDS gel electrophoresis as the predominant protein while lipid composition is enriched in cholesterol. The membrane fragment retains in electron microscopy the trilaminar appearance of the intact vesicles. Freeze fracture of transverse tubule fragments reveals a high density of low-profile, intercalated particles, which frequently form strings or occasional small arrays. The fragments from Triton X-100 plus cacodylate treatment of terminal cisternae include the protein of Mr = 80,000 as well as the spanning protein of the triad, calsequestrin, and some minor proteins. The fragments are almost devoid of lipid and display an amorphous morphology suggesting membrane disruption. The ability of the transverse tubular fragment, which contains predominantly the Mr = 80,000 protein, to form junctions with terminal cisternae fragments suggests that it plays a role in anchoring the membrane to the junctional processes of the triad. The junctional proteins may be solubilized in a combination of nonionic detergent and hypertonic NaCl. Subsequent molecular sieve chromatography gives an enriched preparation of the spanning protein. This protein has subunits of Mr = 300,000, 270,000 and 140,000 and migrates in the gel as a protein of Mr = 1.2 X 10(6) indicating a polymeric structure.  相似文献   

7.
Dahl G  Locovei S 《IUBMB life》2006,58(7):409-419
Vertebrates express two families of gap junction proteins: the well characterized connexins and the recently discovered pannexins. The latter are related to invertebrate innexins. Here we present the hypothesis that pannexins, rather than providing a redundant system to gap junctions formed by connexins, exert a physiological role as nonjunctional membrane channels. Specifically, we propose that pannexins can serve as ATP release channels. This function presumptively is also performed by innexins in invertebrates, in addition to their traditional gap junction role.  相似文献   

8.
The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.  相似文献   

9.
Gap junctions are plasma membrane specializations involved in direct cell-cell communication. Intercellular communication is dependent upon the assembly of gap junction structures and would be influenced by agents which alter the assembly process. We investigated the effects of low density lipoprotein (LDL) on gap junction assembly between cultured Novikoff cells using quantitative dye transfer and freeze-fracture electron microscopic methods. We observed a concentration-dependent increase in dye transfer (maximum effect at 2.5 micrograms/ml) and a sixfold increase in the number of aggregated gap junction particles per cell. Immunoblots of Novikoff cells probed with anti-connexin43 antibody revealed no detectable increase in gap junction protein (connexin) levels. The influence of the different components of LDL on junction formation was also examined. First, we treated cells with cholesterol (0-150 microM) in serum-free BSA media and observed a decrease in junction assembly. Second, we added apolipoprotein-B (apo-B) in phosphatidyl choline vesicles to the cells and observed a concentration-dependent increase in dye transfer (maximum effect at 2.5 micrograms protein/ml) and a fivefold increase in the number of aggregated gap junction particles per cell. The addition of phosphatidyl choline vesicles without apo-B had no effect on gap junction formation. Thus, we demonstrated that gap junction assembly can be modulated by LDL and apo-B treatments.  相似文献   

10.
Halothane induces the release of Ca2+ from a subpopulation of sarcoplasmic reticulum vesicles that are derived from the terminal cisternae of rat skeletal muscle. Halothane-induced Ca2+ release appears to be an enhancement of Ca2+-induced Ca2+ release. The low-density sarcoplasmic reticulum vesicles which are believed to be derived from nonjunctional sarcoplasmic reticulum lack the capability of both Ca2+-induced and halothane-induced Ca2+ release. Ca2+ release from terminal cisternae vesicles induced by halothane is inhibited by Ruthenium red and Mg2+, and require ATP (or an ATP analogue), KCl (or similar salt) and extravesicular Ca2+. Ca2+-induced Ca2+ release has similar characteristics.  相似文献   

11.
Specific binding sites for anti-26 K antibodies directed against the liver gap junction protein (26 K) were localized by immunoelectron microscopy in gap junction plaques purified from hepatic plasma membranes. Using immunofluorescence microscopy we found discrete fluorescent spots on plasma membranes in cross sections of liver tissues after incubation with anti-26 K antibodies. This is consistent with the notion of specific binding to gap junction plaques. Quantitative binding of anti-26 K antibodies was indirectly measured by the protein A-gold technique. We found that urea/detergent-treated, purified gap junction plaques bind 30-fold more anti-26 K antibodies than preimmune serum. Anti-26 K antibodies also bind specifically to native gap junction plaques within hepatic plasma membranes although only about one fifth as efficiently as to purified plaques. Possibly the anti-26 K antibodies raised after injection of SDS-denatured 26 K protein into rabbits recognize the cytoplasmic face of urea/detergent-treated plaques better than that of native plaques. Some, if not most, of the vesicular structures in preparations of purified plaques appear to be derived from split gap junction plaques and are probably sheets of gap junction hemichannels. In some vesicles the former cytoplasmic face of the hemichannels is turned outside, other vesicles have the former cell surface turned outside. The anti-26 K antibodies do not recognize any 26 K protein on the sheets of partially split gap junction plaques, on the heterogeneous vesicular structures, or on non-junctional areas of hepatic plasma membranes. These results suggest that the conformation of the 26 K protein in plaques must be different from that of the 26 K protein in earlier biosynthetic steps of plaque assembly.  相似文献   

12.
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.  相似文献   

13.

Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.

  相似文献   

14.
Double-membrane–spanning gap junction (GJ) channels cluster into two-dimensional arrays, termed plaques, to provide direct cell-to-cell communication. GJ plaques often contain circular, channel-free domains (∼0.05–0.5 μm in diameter) identified >30 y ago and termed nonjunctional membrane (NM) domains. We show, by expressing the GJ protein connexin43 (Cx43) tagged with green fluorescent protein, or the novel photoconvertible fluorescent protein Dendra2, that NM domains appear to be remnants generated by the internalization of small GJ channel clusters that bud over time from central plaque areas. Channel clusters internalized within seconds forming endocytic double-membrane GJ vesicles (∼0.18–0.27 μm in diameter) that were degraded by lysosomal pathways. Surprisingly, NM domains were not repopulated by surrounding channels and instead remained mobile, fused with each other, and were expelled at plaque edges. Quantification of internalized, photoconverted Cx43-Dendra2 vesicles indicated a GJ half-life of 2.6 h that falls within the estimated half-life of 1–5 h reported for GJs. Together with previous publications that revealed continuous accrual of newly synthesized channels along plaque edges and simultaneous removal of channels from plaque centers, our data suggest how the known dynamic channel replenishment of functional GJ plaques can be achieved. Our observations may have implications for the process of endocytic vesicle budding in general.  相似文献   

15.
Coupling between beta cells through gap junctions has been postulated as a principal mechanism of electrical synchronization of glucose-induced activity throughout the islet of Langerhans. We characterized junctional conductance between isolated pairs of mouse pancreatic beta cells by whole-cell recording with two independent patch-clamp circuits. Most pairs were coupled (67%, n = 155), although the mean junctional conductance (gj) (215 +/- 110 pS) was lower than reported in other tissues. Coupling could be recorded for long periods, up to 40 min. Voltage imposed across the junctional or nonjunctional membranes had no effect on gj. Up to several hours of treatment to increase intracellular cAMP levels did not affect gj. Electrically coupled pairs did not show transfer of the dye Lucifer yellow. Octanol (2 mM) reversibly decreased gj. Lower concentrations of octanol (0.5 mM) and heptanol (0.5 mM) than required to uncouple beta cells decreased voltage-dependent K+ and Ca2+ currents in nonjunctional membranes. Although gj recorded in these experiments would be expected to be provided by current flowing through only a few channels of the unitary conductance previously reported for other gap junctions, no unitary junctional currents were observed even during reversible suppression of gj by octanol. This result suggests either that the single channel conductance of gap junction channels between beta cells is smaller than in other tissues (less than 20 pS) or that the small mean conductance is due to transitions between open and closed states that are too rapid or too slow to be resolved.  相似文献   

16.
Intercellular communication in many organs is maintained via intercellular gap junction channels composed of connexins, a large protein family with a number of isoforms. This gap junction intercellular communication (GJIC) allows the propagation of action potentials (e.g., in brain, heart), and the transfer of small molecules which may regulate cell growth, differentiation and function. The latter has been shown to be involved in cancer growth: reduced GJIC often is associated with increased tumor growth or with de-differentiation processes. Disturbances of GJIC in the heart can cause arrhythmia, while in brain electrical activity during seizures seems to be propagated via gap junction channels. Many diseases or pathophysiological conditions seem to be associated with alterations of gap junction protein expression. Thus, depending on the target disease opening or closure of gap junctions may be of interest, or alteration of connexin expression. GJIC can be affected acutely by changing gap junction conductance or--more chronic--by altering connexin expression and membrane localisation. This review gives an overview on drugs affecting GJIC.  相似文献   

17.
Previous data showed that dipyridamole enhanced gap junction coupling in vascular endothelial and smooth muscle cell lines by a cAMP-dependent mechanism. The present study investigates the level at which dipyridamole affects gap junction coupling. In the GM-7373 endothelial cell line, scrape loading/dye transfer experiments revealed a rapid increase in gap junction coupling induced during the first 6 h of dipyridamole treatment, followed by a slow increase induced by further incubation. Immunostaining analyses showed that the rapid enhancement of gap junction coupling correlated with an increased amount of Cx43 gap junction plaques and a reduced amount of Cx43 containing vesicles, while the amount of Cx43 mRNA or protein was not changed during this period, as found by semiquantitative RT-PCR and Western blot. Additionally, brefeldin A did not block this short-term-induced enhancement of gap junction coupling. Along with the dipyridamole-induced long-term enhancement of gap junction coupling, the amount of Cx43 mRNA and protein additionally to the amount of Cx43 gap junction plaques were increased. Furthermore, the anti-Cx43 antibody detected only two bands at 42 kDa and 44 kDa in control cells and cells treated with dipyridamole for 6 h, while long-term dipyridamole-treated cells showed a third band at 46 kDa. We propose that a dipyridamole-induced cAMP synthesis increased gap junction coupling in the GM-7373 endothelial cell line at different levels: the short-term effect is related to already oligomerised connexins beyond the Golgi apparatus and the long-term effect involves new expression and synthesis as well as posttranslational modification of Cx43.  相似文献   

18.
19.
In earlier transmission electron microscopic studies, we have described pentilaminar gap junctional membrane invaginations and annular gap junction vesicles coated with short, electron-dense bristles. The similarity between these electron-dense bristles and the material surrounding clathrin-coated pits led us to suggest that the dense bristles associated with gap junction structures might be clathrin. To confirm that clathrin is indeed associated with annular gap junction vesicles and gap junction plaques, quantum dot immuno-electron microscopic techniques were used. We report here that clathrin associates with both connexin 43 (Cx43) gap junction plaques and pentilaminar gap junction vesicles. An important finding was the preferential localization of clathrin to the cytoplasmic surface of the annular or of the gap junction plaque membrane of one of the two contacting cells. This is consistent with the possibility that the direction of gap junction plaque internalization into one of two contacting cells is regulated by clathrin.  相似文献   

20.
The junctional complex in the gill epithelium of the freshwater mussel (Elliptio complanatus) consists of an intermediary junction followed by a 2–3 µ long septate junction. Homologous and heterologous cell pairs are connected by this junction. After fixation with 1% OsO4 containing 1% potassium pyroantimonate, electron microscopy of the gill reveals deposits of electron-opaque precipitate, specifically and consistently localized along cellular membranes. In both junctional and nonjunctional membrane regions, the precipitate usefully outlines the convolutions without obliterating the 150 A intercellular space, which suggests the rarity or absence of either vertebrate-type gap or tight junctions along the entire cell border. The precipitate appears on the cytoplasmic side of the limiting unit membranes of frontal (F), laterofrontal (LF), intermediate (I), lateral (L), and postlateral (PL) cells. The membrane surfaces of certain vesicles of the smooth endoplasmic reticulum, of multivesicular bodies, and of mitochondrial cristae contain precipitate, as does the nucleolus. In other portions of the cell, precipitate is largely absent. The amount of over-all deposition is variable and depends on the treatment of the tissue prior to fixation. Deposition is usually enhanced by pretreatment with 40 mM NaCl as opposed to 40 mM KCl, which suggests that the precipitate is in part sodium pyroantimonate. Treatment with 0.2 mM ouabain does not enhance deposition. Regional differentiation of cell membranes with respect to their ability to precipitate pyroantimonate is found in at least three instances: (a) between the ciliary membranes and other portions of the cell membrane: the precipitate terminates abruptly at the ciliary base, (b) between the LF and I cell borders: the precipitate is asymmetric, favoring the LF side of the junction, and (c) between the septate junctional membrane and adjacent membrane: the precipitate occurs periodically throughout the septate junction region with the periodicity corresponding to the spacing of the septa. This suggests that different regions of the cell membrane may have differing ion permeability properties and, in particular, that the septa may be the regions of high ion permeability in the septate junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号