首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Bacillus spp. have prominent ability to suppress plant pathogens and corresponding diseases. Previous analyses of Bacillus spp. revealed numerous gene clusters involved in nonribosomal synthesis of cyclic lipopeptides with distinct antimicrobial action. The 4′-phosphopantetheinyl transferase (PPTase) encoded by sfp gene is a key factor in lipopeptide synthesis in Bacillus spp. In previous study, B. amyloliquefaciens strain HAB-2 was found to inhibit a broad range of plant pathogens, which was attributed to its secondary metabolite lipopeptide.

Results

A sfp homologue lpaH2 which encoded phosphopantetheinyl transferase but shared 71% sequence similarity was detected in strain HAB-2. Disruption of lpaH2 gene resulted in losing the ability of strain HAB-2 to produce lipopeptide, as well as antifungal and hemolytic activities. When lpaH2 replaced sfp gene of B. subtilis strain 168, a non-lipopeptide producer, the genetically engineered strain 168 could produced lipopeptides and recovered antifungal activity. Quantitative PCR assays indicated that, the expression level of lpaH2 in B. subtilis 168 strain decrease to 0.27-fold compared that of the wild type B. amyloliquefaciens strain HAB-2.

Conclusion

Few studies have reported about lpa gene which can replace sfp gene in the different species. Taken together, our study showed for the first time that lpaH2 from B. amyloliquefaciens could replace sfp gene.
  相似文献   

2.
Gram-negative bacilli such as Pseudomonas spp., Pseudoalteromonas sp., Angiococcus sp., Archangium sp., Burkholderia spp., Chromobacterium sp., Chondromyces sp., Cystobacter sp., Jahnella sp., Janthinobacterium sp., Lysobacter spp., Paraliomyxa sp., Photobacterium spp., Photorhabdus sp., Pontibacter sp., Ruegeria sp., Serratia sp., Sorangium sp., Sphingomonas sp., and Xenorhabdus spp. produce an enormous array of short peptides of 30 residues or fewer that are potential pharmaceutical drugs and/or biocontrol agents. The need for novel lead antibiotic compounds is urgent due to increasing drug resistance, and this review summarises 150 Gram-negative bacilli-derived compounds reported since 2000, including 40 cyclic lipopeptides from Pseudomonas spp.; nine aromatic peptides; eight glycopeptides; 45 different cyclic lipopeptides; 24 linear lipopeptides; eight thiopeptides; one lasso peptide; ten typical cyclic peptides; and five standard linear peptides. The current and potential therapeutic applications of these peptides, including structures and antituberculotic, anti-cyanobacterial, antifungal, antibacterial, antiviral, insecticidal, and antiprotozoal activities are discussed.  相似文献   

3.
Bacillus strains have been widely used for the production of fibrinolytic enzymes having role in the treatment of cardiovascular disorders. Purification and overproduction of such enzymes has increased their usage in medical fields including metalloproteinases with the ability to degrade extracellular matrix (ECM). Camelysin, a neutral metalloproteinase has been isolated from different species of bacteria like Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis with fibrinolytic, collagenolytic and actin degradation activity. This project successfully demonstrated the presence of 734-bp coding DNA sequence (CDS) encoding a 20.72331 kDa camelysin gene in local strain of Bacillus thuringiensis containing a signal peptide with cleavage site between residues 19 and 20. The sequence was submitted to GenBank (KT023597) and the sequence showed high homology with the camelysin protein of closely related Bacillus species. The alignment of related proteins through ClustalW displayed difference of four amino acids (“Q” replaced by “P” at position 169 and at position 182–184, “NQE” replaced by “HLK”) in the isolated protein. Comparison including structural and functional analysis of camelysin sequences isolated from different Bacillus species was carried out using different bioinformatics tools and software. The information would help in better understanding the properties of camelysin protein and its role in pathogenicity and clinical treatments.  相似文献   

4.
Bacillus sp. strain MA04 a plant growth-promoting rhizobacteria (PGPR) showed hemolytic activity on blood agar plates, and the supernatant from liquid culture in nutrient broth at 24 h exhibited emulsification activity, suggesting the production of biosurfactants. In antagonist assays, the supernatant showed antifungal activity against phytopathogenic fungi such as Penicillium expansum, Fusarium stilboides, Sclerotium rolfsii y Rhizoctonia solani, finding a reduction of mycelial growth of all fungi tested, ranging from 35 to 69%, this activity was increased with time of culture, accomplishing percentages of inhibition up to 85% with supernatants obtained at 72 h. Then, the crude biorsurfactant (CB) was isolated from the supernatant in order to assay its antagonistic effect on the phytopathogens previously tested, finding an increase in the inhibition up to 97% at 500 mg/L of CB. The composition of CB was determined by infrared spectroscopy, identifying various functional groups related to lipopeptides, which were purified by high-performance liquid chromatography and analyzed by MALDI-TOF/TOF–MS, revealing a mixture of fengycins A and B whose high antifungal activity is been widely recognized. These results show that PGPR Bacillus sp. MA04 could also contribute to plant health status through the production of metabolites with antimicrobial activity.  相似文献   

5.
Bacterial species of Bacillus, Lactobacillus, and Bifidobacterium in the intestinal tract have been used as probiotics. Selections for probiotic candidates by the culture-based approaches are time-consuming and labor-consuming. The aim of this study was to develop a new method based on sequencing strategies to select the probiotic Bacillus, Lactobacillus, and Bifidobacterium. The Illumina-based sequencing strategies with different specific primers for Bacillus, Clostridium, and Bifidobacterium were applied to analyze diversity of the genera in goat feces. The average number of different Bacillus, Clostridium, and Bifidobacterium OTUs (operational taxonomic units) at the 97% similarity level ranged from 1922 to 63172. The coverage index values of Bacillus, Clostridium, and Bifidobacterium calculated from the bacterial OTUs were 0.89, 0.99, and 1.00, respectively. The most genera of Bacillus (37.9%), Clostridium (53%), and Bifidobacterium (99%) were detected in goat feces by the Illumina-based sequencing with the specific primers of the genera, respectively. Higher phylogenetic resolutions of the genera in goat feces were successfully established. The results suggest that the selection for probiotic Bacillus, Clostridium, and Bifidobacterium based on the Illumina sequencing with their specific primers is reliable and feasible, and the core Bacillus, Clostridium, and Bifidobacterium species of healthy goats possess the potentials as probiotic microbial consortia.  相似文献   

6.
Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.  相似文献   

7.
One of the major challenges of agriculture currently is to obtain higher crop yield. Environmental conditions, cultivar quality, and plant diseases greatly affect plant productivity. On the other hand, several endophytic Bacillus species have emerged as a complementary, efficient, and safe alternative to current crop management practices. The ability of Bacillus species to form spores, which resist adverse conditions, is an advantage of the genus for use in formulations. Endophytic Bacillus species provide plants with a wide range of benefits, including protection against phytopathogenic microorganisms, insects, and nematodes, eliciting resistance, and promoting plant growth, without causing damage to the environment. Bacillus thuringiensis, B. subtilis, B. amyloliquefaciens, B. velezensis, B. cereus, B. pumilus, and B. licheniformis are the most studied Bacillus species for application in agriculture, although other species within the genus have also shown great potential. Due to the increasing number of whole-genome sequenced endophytic Bacillus spp. strains, various bioactive compounds have been predicted. These data reveal endophytic Bacillus species as an underexploited source of novel molecules of biotechnological interest. In this review, we discuss how endophytic Bacillus species are a valuable multifunctional toolbox to be integrated with crop management practices for achieving higher crop yield.  相似文献   

8.
In this study, we investigated chitin hydrolysis by the bacteria inhabiting the ground of the Barents Sea. Four microbial cultures isolated from the ground were described as the genera of Rhodococcus sp., Bacillus sp., Pseudomonas sp., and Acinetobacter sp. Protein complexes with endochitinase and exochitinase activities were purified from the culture liquid. These microorganisms can participate in chitin degradation in sea water. The average molecular weight of the protein fraction with the chitinolytic activity constituted 92–135 kDa. The ratio of the endo-/exochitinase activities of the enzymatic systems was increased in the order Pseudomonas sp. < Bacillus sp. < Acinetobacter sp. < Rhodococcus sp.  相似文献   

9.
We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coliGeobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10?7 and 3.8 × 10?2/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.  相似文献   

10.
A Gram-reaction-positive, strictly aerobic, motile, endospore- forming, and rod-shaped bacterial strain designated 135PIL107-10T was isolated from a sponge on Jeju Island, and its taxonomic position was investigated using a polyphasic approach. Strain 135PIL107-10T grew at 20–37°C (optimum temperature, 25°C) and pH 6.0–10.0 (optimum pH, 6.0) on marine and R2A agars. Based on 16S rRNA gene phylogeny analysis, the novel strain formed a new branch within the genus Bacillus of the family Bacillaceae, and formed clusters with Bacillus thaohiensis NHI-38T (96.8%), Bacillus fengqiuensis NPK15T (96.7%), and Bacillus songklensis CAU 1033T (96.7%). Lower sequence similarities (97.0%) were found with the type strains of all other recognized members of the genus Bacillus (95.6–96.8% similarity). The G + C content of the genomic DNA was 43.6 mol%. The predominant respiratory quinone was menaquinone-7 and the major fatty acids were iso-C15:0 and iso-C17:1ω10c. The overall polar lipid patterns were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The isolate therefore represents a novel species, for which the name Bacillus spongiae sp. nov. is proposed, with the type strain 135PIL107-10T (= KACC 19275T = LMG 30080T).  相似文献   

11.
The ability of Bacillus subtilis Cohn and Bacillus thuringiensis Berliner to induce systemic resistance in wheat plants to the casual agent of Septoria nodorum Berk., blotch has been studied. It has been shown that strains of Bacillus ssp. that possess the capacity for endophytic survival have antagonistic activity against this pathogen in vitro. A reduction of the degree of Septoria nodorum blotch development on wheat leaves under the influence of Bacillus spp. was accompanied by the suppression of catalase activity, an increase in peroxidase activity and H2O2 content, and expression of defence related genes such us PR-1, PR-6, and PR-9. It has been shown that B. subtilis 26 D induces expression levels of wheat pathogenesis-related (PR) genes which marks a SA-dependent pathway of sustainable development and that B. thuringiensis V-5689 and V-6066 induces a JA/ET-dependent pathway. These results suggest that these strain Bacillus spp. promotes the formation of wheat plant resistance to S. nodorum through systemic activation of the plant defense system. The designed bacterial consortium formed a complex biological response in wheat plants infected phytopathogen.  相似文献   

12.
The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.  相似文献   

13.
Genotypic and phenotypic characterization of Bacillus spp. from polluted freshwater has been poorly addressed. The objective of this research was to determine the diversity and enzymatic potentialities of Bacillus spp. strains isolated from the Almendares River. Bacilli strains from a polluted river were characterized by considering the production of extracellular enzymes using API ZYM. 14 strains were selected and identified using 16S rRNA, gyrB and aroE genes. Genotypic diversity of the Bacillus spp. strains was evaluated using pulsed field gel electrophoresis. Furthermore, the presence of genetic determinants of potential virulence toxins of the Bacillus cereus group and proteinaceous crystal inclusions of Bacillus thuringiensis was determined. 10 strains were identified as B. thuringiensis, two as Bacillus megaterium, one as Bacillus pumilus and one as Bacillus subtilis. Most strains produced proteases, amylases, phosphatases, esterases, aminopeptidases and glucanases, which reflect the abundance of biopolymeric matter in Almendares River. Comparison of the typing results revealed a spatio-temporal distribution among B. thuringiensis strains along the river. The results of the present study highlight the genotypic and phenotypic diversity of Bacillus spp. strains from a polluted river, which contributes to the knowledge of genetic diversity of Bacilli from tropical polluted freshwater ecosystems.  相似文献   

14.
Maize is an economically important crop in northern Mexico. Different fungi cause ear and root rot in maize, including Fusarium verticillioides (Sacc.) Nirenberg. Crop management of this pathogen with chemical fungicides has been difficult. By contrast, the recent use of novel biocontrol strategies, such as seed bacterization with Bacillus cereus sensu lato strain B25, has been effective in field trials. These approaches are not without their problems, since insufficient formulation technology, between other factors, can limit success of biocontrol agents. In response to these drawbacks, we have developed a powder formulation based on Bacillus B25 spores and evaluated some of its characteristics, including shelf life and efficacy against F. verticillioides, in vitro and in maize plants. A talc-based powder formulation containing 1 × 109 c.f.u. g?1 was obtained and evaluated for seed adherence ability, seed germination effect, shelf life and antagonism against F. verticillioides in in vitro and in planta assays. Seed adherence of viable bacterial spores ranged from 1.0 to 1.41 × 107 c.f.u. g?1. Bacteria did not display negative effects on seed germination. Spore viability for the powder formulation slowly decreased over time, and was 53 % after 360 days of storage at room temperature. This formulation was capable of controlling F. verticillioides in greenhouse assays, as well as eight other maize phytopathogenic fungi in vitro. The results suggest that a talc-based powder formulation of Bacillus B25 spores may be sufficient to produce inoculum for biocontrol of maize ear and root rots caused by F. verticillioides.  相似文献   

15.
Dodonaea viscosa, a wild and perennial shrub that can tolerate harsh environmental conditions, was used for the isolation of its endophytic bacteria and their potential was explored for the promotion of Canola growth. The bacteria identified through 16S rRNA gene sequencing, belonged to ten different genera namely Inquilinus, Xanthomonas, Pseudomonas, Rhizobium, Brevundimonas, Microbacterium, Bacillus, Streptomyces, Agrococcus and Stenotrophomonas. All the strains produced small amount of IAA (indole acetic acid) in the absence of tryptophan and comparatively more in the presence of tryptophan. All the bacterial strains were positive for ammonia production, cellulase and pectinase activity, but few of them showed phosphate solubilization, siderophore and hydrogen cyanide production. Only three strains showed ACC (1-aminocyclopropane-1-carboxylate) deaminase activity when tested using in-vitro enzyme assay. Members of genera Bacillus, Pseudomonas and Streptomyces showed positive chitinase, protease and antifungal activity against two phytopathogenic fungi Aspergillus niger and Fusarium oxysoprum, while members of Xanthomonas, Pseudomonas and Bacillus showed significant root elongation of Canola which could be related with their positive plant-growth-promoting (PGP) traits. Among the three plant growth promoting Bacillus strains, B. idriensis is never reported before for its PGP activities. These results showed the potential of Dodonaea viscosa endophytic bacteria as PGPBs, which in future can be further explored for their host range/molecular mechanisms.  相似文献   

16.
The stinkbug Plautia stali Scott is a notorious agricultural pest whose posterior midgut hosts specific bacteria essential for its growth and survival, highlighted as an experimental model for symbiosis studies. Some symbiotic bacteria of P. stali are cultivable, found free-living in and acquired from the environment, and, furthermore, some free-living environmental bacteria are potentially capable of establishing symbiotic association with P. stali. In this context, it is expected that such environmental bacteria may occasionally contaminate and infect the experimental insects maintained in the laboratory, which could potentially affect the functional analyses of the symbiosis. Here we report that such contamination events do occur under a laboratory rearing conditions for P. stali. When symbiont-deprived newborn nymphs from surface-sterilized eggs were reared in sterilized plastic containers with autoclaved water, most of them died as nymphs presumably as a result of aposymbiosis, but only a small fraction could attain adulthood and the adult insects were all infected with γ-proteobacteria allied to Pantoea and Enterobacter. A variety of bacteria, mainly Bacillus and also Pantoea and Enterobacter, were detected from peanuts and soybeans provided as food for P. stali. Autoclaving of peanuts and soybeans eradicated these bacteria but negatively affected the host survival, whereas ethanol sterilization of peanuts and soybeans removed Pantoea and Enterobacter, but not Bacillus, without negative effects on the host survival. On the basis of these results, we established a practical procedure for aseptic rearing of P. stali, which will enable reliable and strict analyses of host–symbiont interactions in the model symbiotic system.  相似文献   

17.
Bacterial community and diversity in a long-term petroleum-contaminated soil of an oilfield were characterized using 16S rRNA gene-based Illumina MiSeq high-throughput sequencing. Results indicated that Proteobacteria (49.11%) and Actinobacteria (24.24%) were the most dominant phyla, and the most abundant genera were Pseudoxanthomonas (8.47%), Luteimonas (3.64%), Alkanindiges (9.76%), Acinetobacter (5.26%) and Agromyces (8.56%) in the soil. Meanwhile a series of cultivations were carried out for isolation of alkane degraders from petroleum-contaminated soil with gellan gum and agar as gelling agents. And the isolates were classified by their 16S rRNA genes. Nine of the isolates including Enterobacter, Pseudomonas,Acinetobacter, Rhizobium, Bacillus, Sphingomonas, Paenibacillus, Variovorax and Rhodococcus showed strong biodegradability of alkane mixture (C9–C30) in a wide range of chain-length, which could be potentially applied in enhancement of bioremediation.  相似文献   

18.
Bacterial antifungal cyclic lipopeptides (ACLs) have become a promising alternative to synthetic fungicide to control pathogenic fungi. Bacillus sp. is known to produce three families of ACL, namely iturin, surfactin, and fengycin. In this paper, we characterized the ACLs produced by B. methylotrophicus HC51 (referred as HC51) mainly regarding its composition and effectivity against fungal plant pathogen. HC51 culture was tested against various pathogenic fungi and the ACLs were extracted and analyzed using liquid chromatography–electrospray ionization mass spectrometry. HC51 showed strong antifungal activity against the plant pathogens Ganoderma sp. and Fusarium sp. Cell-free methanol extract of HC51 contains iturin A and various variants of fengycin. C16 fengycin A was present in four fractions which indicates it as a major component of ACL from HC51. Five variants of fengycin were detected, four of which had been previously reported. We found a novel C17 fengycin F that is characterized by a substitution of l-ornithine into lysine. Considering that l-ornithine is an important building block of fengycin, this substitution suggests the possibility of an alternative pathway for fengycin biosynthesis.  相似文献   

19.
Diseases caused by phytopathogenic microorganisms account for enormous losses for agribusiness. Although Bacillus species are recognized as being antimicrobial producers and some may provide benefits to plants, the association between Bacillus toyonensis and plants has not been studied. In this study, the whole-genome sequenced endophytic B. toyonensis BAC3151, which has demonstrated antimicrobial activity and quorum sensing inhibition of phytopathogenic bacteria, was investigated for its potential for the production of compounds for biocontrol of plant pathogens. Four whole-genome sequenced B. toyonensis strains shared 3811 protein-coding DNA sequences (CDSs), while strain-specific CDSs, such as biosynthetic gene clusters of antimicrobials, were associated with specific chromosomal regions and mobile genetic elements of the strains. B. toyonensis strains had a higher frequency of putative bacteriocins gene clusters than that of Bacillus species traditionally used for the production of antimicrobials. In addition, gene clusters potentially involved in the production of novel bacteriocins were found in BAC3151, as well as biosynthetic genes of several other compounds, including non-ribosomal peptides, N-acyl homoserine lactonase and chitinases, revealing a genetic repertoire for antimicrobial synthesis greater than that of other Bacillus strains that have demonstrated effective activity against phytopathogens. This study showed for the first time that B. toyonensis has potential to produce various antimicrobials, and the analyses performed indicated that the endophytic strain BAC3151 can be useful for the development of new strategies to control microbial diseases in plants that are responsible for large damages in agricultural crops.  相似文献   

20.
Striga hermonthica is a hemiparasitic weed that causes huge grain yield losses to small-scale farmers in Africa. Effective biocontrol agents against S. hermonthica can sustainably mitigate these losses. This study characterized the biocontrol potential of culturable fungal and bacterial isolates from S. hermonthica suppressive soils of western Kenya. These isolates were screened for their ability to produce antibiotic compounds and extra cellular enzymes and also their ability to cause S. hermonthica seed decay. Genomic DNA of the selected bacterial and fungal isolates was extracted and partial characterization of 16S rRNA and 18S rRNA genes performed respectively. Analysis show that antibiosis and enzymatic properties of potential biocontrol isolates correlated positively. Isolate KY041696 recorded high antibiosis, enzymatic and seed decay values. This study also revealed that bioactive bacterial isolates belonged to Bacillus, Streptomyces and Rhizobium genera. In this study, no fungal isolate caused S. hermonthica seed decay. This study therefore provides baseline information on the potential biocontrol microbes against S. hermonthica in Western Kenya that could be exploited further in the management of the weed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号