首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Spike (S) glycoprotein of coronaviruses (CoV) mediates viral entry into host cells. It contains two hydrophobic heptad repeat (HR) regions, denoted HRN and HRC, which oligomerize the S glycoprotein into a trimer in the native state and when activated collapse into a six-helix bundle structure driving fusion of the host and viral membranes. Previous studies have shown that peptides of the HR regions can inhibit viral infectivity. These studies imply that the HR regions are accessible and that agents which can interact with them may prevent viral entry. In the present study, we have investigated an approach to generate antibodies that specifically recognize the HRN and HRC regions of the SARS-CoV spike (S) glycoprotein in order to evaluate whether these antibodies can inhibit viral infectivity and thus neutralize the SARS-CoV. In this regard, we incorporated HRN and HRC coiled-coil surface residues into a de novo designed two-stranded alpha-helical coiled-coil template for generating conformation-specific antibodies that recognize alpha-helices in proteins (Lu, S.M., Hodges, R.S., 2002. J. Biol. Chem. 277, 23515-23524). Eighteen surface residues from two regions of HRN and HRC were incorporated into the template and used to generate four anti-sera, HRN1, HRN2, HRC1, and HRC2. Our results show that all of the elicited anti-sera can specifically recognize HRN or HRC peptides and the native SARS-CoV S protein in an ELISA format. Flow cytometry (FACS) analysis, however, showed only HRC1 and HRC2 anti-sera could bind to native S protein expressed on the cell surface of Chinese hamster ovary cells, i.e., the cell surface structure of the S glycoprotein precluded the ability of the HRN1 or HRN2 anti-sera to see their respective epitope sites. In in vitro viral infectivity assays, no inhibition was observed for either HRN1 or HRN2 anti-serum, whereas both HRC1 and HRC2 anti-sera could inhibit SARS-CoV infection in a dose-dependent manner. Interestingly, the HRC1 anti-serum, which was a more effective inhibitor of viral infectivity compared to HRC2 anti-serum, could only bind the pre-fusogenic state of HRC, i.e., the HRC1 anti-serum did not recognize the six-helix bundle conformation (fusion state) whereas HRC2 anti-serum did. These results suggest that antibodies that are more specific for the pre-fusogenic state of HRC may be better neutralizing antibodies. Overall, these results clearly demonstrate that the two-stranded coiled-coil template acts as an excellent presentation system for eliciting helix-specific antibodies against highly conserved viral antigens and HRC1 and HRC2 peptides may represent potential candidates for use in a peptide vaccine against the SARS-CoV.  相似文献   

2.
The native state of common-type acylphosphatase (AcP) elicits two alpha-helices spanning residues 22-32 and 55-67 in the protein sequence. A peptide corresponding to the second alpha-helix (helix-2) of the protein was used to select phage antibodies consisting of a single chain fragment variable. The selection was performed in the presence of trifluoroethanol, a cosolvent known to induce the formation of helical structure in peptides and proteins. Phage scFv antibodies capable of binding the peptide specifically in a trifluoroethanol-induced alpha-helical conformation were isolated by affinity selection (biopanning). Some of these scFvs were also able to bind the native protein but not the peptide in a non-helical unstructured state. This indicates that the structural determinant recognized by the selected antibodies is the alpha-helical conformation of this specific region, rather than simply its amino acid sequence. This study shows that phage display libraries can be used to raise antibodies one can use as reagents able to target regions of a protein with a specific native-like secondary structure.  相似文献   

3.
To examine how a short secondary structural element derived from a native protein folds when in a different protein environment, we inserted an 11-residue beta-sheet segment (cassette) from human immunoglobulin fold, Fab new, into an alpha-helical coiled-coil host protein (cassette holder). This de novo design protein model, the structural cassette mutagenesis (SCM) model, allows us to study protein folding principles involving both short- and long-range interactions that affect secondary structure stability and conformation. In this study, we address whether the insertion of this beta-sheet cassette into the alpha-helical coiled-coil protein would result in conformational change nucleated by the long-range tertiary stabilization of the coiled-coil, therefore overriding the local propensity of the cassette to form beta-sheet, observed in its native immunoglobulin fold. The results showed that not only did the nucleating helices of the coiled-coil on either end of the cassette fail to nucleate the beta-sheet cassette to fold with an alpha-helical conformation, but also the entire chimeric protein became a random coil. We identified two determinants in this cassette that prevented coiled-coil formation: (1) a tandem dipeptide NN motif at the N-terminal of the beta-sheet cassette, and (2) the hydrophilic Ser residue, which would be buried in the hydrophobic core if the coiled-coil structure were to fold. By amino acid substitution of these helix disruptive residues, that is, either the replacement of the NN motif with high helical propensity Ala residues or the substitution of Ser with Leu to enhance hydrophobicity, we were able to convert the random coil chimeric protein into a fully folded alpha-helical coiled-coil. We hypothesized that this NN motif is a "secondary structural specificity determinant" which is very selective for one type of secondary structure and may prevent neighboring residues from adopting an alternate protein fold. These sequences with secondary structural specificity determinants have very strong local propensity to fold into a specific secondary structure and may affect overall protein folding by acting as a folding initiation site.  相似文献   

4.
The specificities of four monoclonal antibodies rho 1D4, 1C5, 3A6, and 3D6 prepared by immunization of rod outer segments containing rhodopsin have been defined using synthetic peptides. All of these antibodies interact within the 18 residues at the COOH terminus of rhodopsin and recognize linear antigenic determinants of 4-11 residues. Twenty-seven synthetic peptide analogs of varying lengths of native sequence or containing single amino acid substitutions at each position of the COOH-terminal 18 residues have provided some insight into the mechanism of antigen-antibody binding. Our results clearly demonstrate that antibodies can be highly specific at key positions as shown by the loss of binding on single amino acid substitutions in the binding site. In contrast single amino acid substitutions at other positions in the binding site only affect affinity for some antibodies. Ionic interactions can dominate immunogenic determinants. Immunogenic determinants are not restricted to highly charged hydrophilic regions on the surface of a protein and may be dominated by hydrophobic interactions. Although certain side chains can dominate the interaction of the antigen with antibody, our results are in agreement with the interpretation that the free energies of all the contact points are additive and a certain free energy must be present to achieve binding. Antibodies with different specificities directed to the same region of the protein antigen can be produced in an immune response. Peptide antigens representing regions of a protein antigen bind best to the anti-protein antibody when the sequence is shortened to contain only those residues binding to the specificity site in the antibody. Cross-reactivity between protein antigens can be explained by conservation of the critical residues in the combining site.  相似文献   

5.
The de novo design and biophysical characterization of two 60-residue peptides that dimerize to fold as parallel coiled-coils with different hydrophobic core clustering is described. Our goal was to investigate whether designing coiled-coils with identical hydrophobicity but with different hydrophobic clustering of non-polar core residues (each contained 6 Leu, 3 Ile, and 7 Ala residues in the hydrophobic core) would affect helical content and protein stability. The disulfide-bridged P3 and P2 differed dramatically in alpha-helical structure in benign conditions. P3 with three hydrophobic clusters was 98% alpha-helical, whereas P2 was only 65% alpha-helical. The stability profiles of these two analogs were compared, and the enthalpy and heat capacity changes upon denaturation were determined by measuring the temperature dependence by circular dichroism spectroscopy and confirmed by differential scanning calorimetry. The results showed that P3 assembled into a stable alpha-helical two-stranded coiled-coil and exhibited a native protein-like cooperative two-state transition in thermal melting, chemical denaturation, and calorimetry experiments. Although both peptides have identical inherent hydrophobicity (the hydrophobic burial of identical non-polar residues in equivalent heptad coiled-coil positions), we found that the context dependence of an additional hydrophobic cluster dramatically increased stability of P3 (Delta Tm approximately equal to 18 degrees C and Delta[urea](1/2) approximately equal to 1.5 M) as compared with P2. These results suggested that hydrophobic clustering significantly stabilized the coiled-coil structure and may explain how long fibrous proteins like tropomyosin maintain chain integrity while accommodating polar or charged residues in regions of the protein hydrophobic core.  相似文献   

6.
Subunit IV of yeast cytochrome oxidase is made in the cytoplasm with a transient pre-sequence of 25 amino acids which is removed upon import of the protein into mitochondria. To study the function of this cleavable pre-sequence in mitochondrial protein import, three peptides representing 15, 25 or 33 amino-terminal residues of the subunit IV precursor were chemically synthesized. All three peptides were freely soluble in aqueous buffers, yet inserted spontaneously from an aqueous subphase into phospholipid monolayers up to an extrapolated limiting monolayer pressure of 40-50 mN/m. The two longer peptides also caused disruption of unilamellar liposomes. This effect was increased by a diffusion potential, negative inside the liposomes, and decreased by a diffusion potential of opposite polarity. The peptides, particularly the two longer ones, also uncoupled respiratory control of isolated yeast mitochondria. The 25-residue peptide had little secondary structure in aqueous buffer but became partly alpha-helical in the presence of detergent micelles. Based on the amino acid sequence of the peptides, a helical structure would have a highly asymmetric distribution of charged and apolar residues and would be surface active. Amphiphilic helicity appears to be a general feature of mitochondrial pre-sequences. We suggest that this feature plays a crucial role in transporting proteins into mitochondria.  相似文献   

7.
To identify malaria antigens for vaccine development, we selected alpha-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally "native" epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high alpha-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.  相似文献   

8.
Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.  相似文献   

9.
DNA-induced increase in the alpha-helical content of C/EBP and GCN4   总被引:16,自引:0,他引:16  
Leucine zipper proteins comprise a recently identified class of DNA binding proteins that contain a bipartite structural motif consisting of a "leucine zipper" dimerization domain and a segment rich in basic residues responsible for DNA interaction. Protein fragments encompassing the zipper plus basic region domains (bZip) have previously been used to determine the conformational and dynamic properties of this motif. In the absence of DNA, the coiled-coil portion is alpha-helical and dimeric, whereas the basic region is flexible and partially disordered. Addition of DNA containing a specific recognition sequence induces a fully helical conformation in the basic regions of these fragments. However, the question remained whether the same conformational change would be observed in native bZip proteins where the basic regions might be stabilized in an alpha-helical conformation even in the absence of DNA, through interactions with portions of the protein not included in the bZip motif. We have now examined the DNA-induced conformational transition for an intact bZip protein, GCN4, and for the bZip fragment of C/EBP with two enhancers that are differentially symmetric. Our results are consistent with the induced helical fork model wherein the basic regions are largely flexible in the absence of DNA and become fully helical in the presence of the specific DNA recognition sequence.  相似文献   

10.
11.
Basic region leucine zipper (bZip) proteins contain a bipartite DNA-binding motif consisting of a coiled-coil leucine zipper dimerization domain and a highly charged basic region that directly contacts DNA. The basic region is largely unfolded in the absence of DNA, but adopts a helical conformation upon DNA binding. Although a coil --> helix transition is entropically unfavorable, this conformational change positions the DNA-binding residues appropriately for sequence-specific interactions with DNA. The N-terminal residues of the GCN4 DNA-binding domain, DPAAL, make no DNA contacts and are not part of the conserved basic region, but are nonetheless important for DNA binding. Asp and Pro are often found at the N-termini of alpha-helices, and such N-capping motifs can stabilize alpha-helical structure. In the present study, we investigate whether these two residues serve to stabilize a helical conformation in the GCN4 basic region, lowering the energetic cost for DNA binding. Our results suggest that the presence of these residues contributes significantly to helical structure and to the DNA-binding ability of the basic region in the absence of the leucine zipper. Similar helix-capping motifs are found in approximately half of all bZip domains, and the implications of these findings for in vivo protein function are discussed.  相似文献   

12.
Alpha-helical coiled coils represent a common protein oligomerization motif that are mainly stabilized by hydrophobic interactions occurring along their coiled-coil interface, the so-called hydrophobic seam. We have recently de novo designed and optimized a series of two-heptad repeat long coiled-coil peptides which are further stabilized by a complex network of inter- and intrahelical salt bridges. Here we have extended the de novo design of such two heptad-repeat long peptides by removing the central and most important g-e' Arg to Glu (g-e'RE) ionic interhelical interaction and replacing these residues by alanine residues. The effect of the missing interhelical ionic interaction on coiled-coil formation and stability has been analyzed by CD spectroscopy, analytical ultracentrifugation, and X-ray crystallography. We show that the peptide, while being highly alpha-helical, is no longer able to form a parallel coiled-coil structure but rather assumes an octameric globular helical assembly devoid of any coiled-coil interactions.  相似文献   

13.
Wang M  Shan L  Wang J 《Biopolymers》2006,83(3):268-279
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase.  相似文献   

14.
15.
The design, total chemical synthesis, and immunological properties of a four-alpha-helix bundle template-assembled synthetic protein (TASP) mimicking some of the structural features of the major histocompatibility complex (MHC) class I is described. In a first approach, the native sequence 58-74 of the alpha 1 heavy chain domain of HLA-A2 was modeled in order to increase helix stability and amphiphilicity of the 17-mer peptide, preserving the residues for potential T-cell receptor (TcR) binding properties. According to the TASP concept, these helical segments were covalently attached to a cyclic template molecule designed for the induction of a four-helix-bundle topology of the assembled peptide blocks. After extensive HPLC purification, stepwise solid-phase synthesis resulted in a TASP molecule of high chemical purity as demonstrated by analytical HPLC, mass spectrometry, and amino acid analysis. CD spectroscopic investigations are consistent with the onset of a partial alpha-helical conformation in aqueous buffer as well as in TFE. Antibodies raised directly against this four-alpha-helix bundle TASP molecule (without prior conjugation to a carrier molecule) were detected by ELISA. Flow cytometry studies showed that these antibodies recognize the native MHC class I molecule on the surface of HLA-A2-positive cells. The results indicate that the TASP approach represents a versatile tool for mimicking conformational epitopes.  相似文献   

16.
Introduction of aldehyde groups into protein conjugates enhanced the immune response to a coupled peptide without the use of strong adjuvants. Synthetic peptides representing the N-terminal (residues 1-16) and internal (residues 53-65) epitopes of toxic shock syndrome toxin-1 (TSST-1) were coupled to carrier protein, and carbonyl tags were introduced by Amadori reaction with glycolaldehyde. Modified and unmodified antigens in alum were used to immunize rabbits and the reactivities of antisera were compared. Aldehyde modification augmented the response detected by ELISA, which included enhanced binding to peptides and to native TSST-1. In western blot, TSST-1 was detected by antiserum elicited to the N-terminal peptide, but not that generated to the peptide representing the internal sequence. The same antiserum also neutralized TSST-1 activity in a lymphocyte proliferation assay. The circular dichroism spectrum of the N-terminal peptide indicated a propensity for helical conformation, similar to the structure at the corresponding sequence of the native protein. These data suggest that aldehyde modification can boost immunogenicity of peptide-based vaccines, generating epitope-specific immune responses against the cognate protein antigens without using potent adjuvants.  相似文献   

17.
It has been reported recently that genes encoding antigens of bacterial and viral pathogens can be expressed in plants in a form in which they retain native immunogenic properties. The structural protein VP1 of foot-and-mouth disease virus (FMDV), which has frequently been shown to contain critical epitopes, has been expressed in different vectors and shown to induce virus-neutralizing antibodies and protection in experimental and natural hosts. Here we report the production of transformed plants (Arabidopsis thaliana) expressing VP1. Mice immunized with leaf plant extracts elicited specific antibody responses to synthetic peptides representing amino acid residues 135 to 160 of VP1, to VP1 itself, and to intact FMDV particles. Additionally, all of the immunized mice were protected against challenge with virulent FMDV. To our knowledge, this is the first study showing protection against a viral disease by immunization with an antigen expressed in a transgenic plant.  相似文献   

18.
The synthetic peptide DP178, derived from the carboxyl-terminal heptad repeat region of human immunodeficiency virus type 1 GP41 protein is a potent inhibitor of viral-mediated fusion and contains the sequence ELDKWA, which constitutes the recognition epitope for the broadly neutralizing human monoclonal antibody 2F5. Efforts at eliciting a 2F5-like immune response by immunization with peptides or fusion proteins containing this sequence have not met with success, possibly because of incorrect structural presentation of the epitope. Although the structure of the carboxyl-terminal heptad repeat on the virion is not known, several recent reports have suggested a propensity for alpha-helical conformation. We have examined DP178 in the context of a model for optimized alpha-helices and show that the native sequence conforms poorly to the model. Solution conformation of DP178 was studied by circular dichroism and NMR spectroscopy and found to be predominantly random, consistent with previous reports. NMR mapping was used to show that the low percentage of alpha-helix present was localized to residues Glu(662) through Asn(671), a region encompassing the 2F5 epitope. Using NH(2)-terminal extensions derived from either GP41 or the yeast GCN4 leucine zipper dimerization domain, we designed peptide analogs in which the average helicity is significantly increased compared with DP178 and show that these peptides exhibit both a modest increase in affinity for 2F5 using a novel competitive solution-based binding assay and an increased ability to inhibit viral entry in a single-cycle infectivity model. Selected peptides were conjugated to carrier protein and used for guinea pig immunizations. High peptide-specific titers were achieved using these immunogens, but the resulting sera were incapable of viral neutralization. We discuss these findings in terms of structural and immunological considerations as to the utility of a 2F5-like response.  相似文献   

19.
Heat shock factor-binding protein (HSBP) 1 is a small, evolutionarily conserved protein originally identified in a yeast two-hybrid screen using the trimerization domain of heat shock factor (HSF) 1 as the bait. Similar in size to HSF1 trimerization domain, human HSBP1 contains two arrays of hydrophobic heptad repeats (designated HR-N and HR-C) characteristic of coiled-coil proteins. Proteins of the HSBP family are relatively small (<100 residues), comprising solely a putative coiled-coil oligomerization domain without any other readily recognizable structural or functional motif. Our biophysical and biochemical characterization of human HSBP1 reveals a cooperatively folded protein with high alpha-helical content and moderate stability. NMR analyses reveal a single continuous helix encompassing both HR-N and HR-C in the highly conserved central region, whereas the less conserved carboxyl terminus is unstructured and accessible to proteases. Unlike previously characterized coiled-coils, backbone 15N relaxation measurements implicate motional processes on the millisecond time scale in the coiled-coil region. Analytical ultracentrifugation and native PAGE studies indicate that HSBP1 is predominantly trimeric over a wide concentration range. NMR analyses suggest a rotationally symmetric trimer. Because the highly conserved hydrophobic heptad repeats extend over 60% of HSBP1, we propose that HSBP most likely regulates the function of other proteins through coiled-coil interactions.  相似文献   

20.
Several monosaccharide-centered multivalent HIV-1 gp41 peptides containing the sequence of DP178 were synthesized. Conformational studies showed that multivalent assembly enhanced the alpha-helical content of the peptide. Therefore, 2-, 3-, or 4-alpha-helix bundles of peptide DP178 could be obtained by assembling the peptide on a suitable bi-, tri-, or tetravalent template. Immunization studies indicated that while peptide DP178 alone was poorly immunogenic, the tetravalent peptide MVP-1 raised high titers of antibodies in mice that recognize not only peptide DP178 but also the native HIV-1 glycoprotein gp41, even in the absence of a carrier protein or adjuvant. The study suggests that carbohydrate-centered multivalent peptides provide not only a model for mimicking protein alpha-helix-bundle structure, but also an effective immunogen for raising high-titer antibodies against HIV-1 envelope glycoprotein gp41.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号