首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli open reading frame YbdK encodes a member of a large bacterial protein family of unknown biological function. The sequences within this family are remotely related to the sequence of gamma-glutamate-cysteine ligase (gamma-GCS), an enzyme in the glutathione biosynthetic pathway. A gene encoding gamma-GCS in E. coli is already known. The 2.15 A resolution crystal structure of YbdK reveals an overall fold similar to that of glutamine synthetase (GS), a nitrogen metabolism enzyme that ligates glutamate and ammonia to yield glutamine. GS and gamma-GCS perform related chemical reactions and require ATP and Mg2+ for their activity. The Mg2+-dependent binding of ATP to YbdK was confirmed by fluorescence spectroscopy employing 2'(or 3')-O-(trinitrophenyl)adenosine 5'-triphosphate, and yielding a dissociation constant of 3 +/- 0.5 microM. The structure of YbdK contains a crevice that corresponds to the binding sites of ATP, Mg2+ and glutamate in GS. Many of the GS residues that coordinate the metal ions and interact with glutamic acid and the phosphoryl and ribosyl groups of ATP are also present in YbdK. GS amino acids that have been associated with ammonia binding have no obvious counterparts in YbdK, consistent with a substrate specificity that is different from that of GS. Ligase activity between glutamic acid and each of the twenty amino acid residues was tested on high performance liquid chromatography (HPLC) by following the hydrolysis of ATP to ADP. Catalysis was observed only with cysteine. A pyruvate kinase/lactic acid dehydrogenase coupled assay was used to rule out GS activity and to determine that YbdK exhibits gamma-GCS activity. The catalytic rate was found to be approximately 500-fold slower than that reported for authentic gamma-GCS.  相似文献   

2.
The contribution of metal ion ligand type and charge to catalysis and regulation at the lower affinity metal ion site (n2 site) of Escherichia coli glutamine synthetase (GS) was tested by mutagenesis and kinetic analysis. The 2 glutamate residues at the n2 site, E129 and E357, were changed to E129D, E129H, E357H, E357Q, and E357D, representing conservative and nonconservative alterations. Unadenylylated and fully adenylylated enzyme forms were studied. The Mn(2+)-KD values, UV-cis and fluorescence emission properties were similar for all mutants versus WTGS, except E129H. For kinetic determinations with both Mn2+ and Mg2+, nonconservative mutants (E357H, E129H, E357Q) showed lower biosynthetic activities than conservative mutants (E129D, E357D). Relative to WTGS, all the unadenylylated Mn(2+)-activated enzymes showed reduced kcat/Km values for ATP (> 7-fold) and for glutamate (> 10-fold). Of the unadenylylated Mg(2+)-activated enzymes, only E129D showed kinetic parameters competitive with WTGS, and adenylylated E129D was a 20-fold better catalyst than WTGS. We propose the n2-site metal ion activates ADP for departure in the phosphorylation of glutamate by ATP to generate gamma-glutamyl phosphate. Alteration of the charge density at this metal ion alters the transition-state energy for phosphoryl group transfer and may affect ATP binding and/or ADP release. Thus, the steady-state kinetic data suggest that modifying the charge density increases the transition-state energies for chemical steps. Importantly, the data demonstrate that each ligand position has a specialized spatial environment and the charge of the ligand modulates the catalytic steps occurring at the metal ion. The data are discussed in the context of the known X-ray structures of GS.  相似文献   

3.
Gamma-glutamylcysteine synthetase (gamma-GCS, glutamate-cysteine ligase), which catalyzes the first and rate-limiting step in glutathione biosynthesis, is present in many prokaryotes and in virtually all eukaryotes. Although all eukaryotic gamma-GCS isoforms examined to date are rapidly inhibited by buthionine sulfoximine (BSO), most reports indicate that bacterial gamma-GCS is resistant to BSO. We have confirmed the latter finding with Escherichia coli gamma-GCS under standard assay conditions, showing both decreased initial binding affinity for BSO and a reduced rate of BSO-mediated inactivation compared with mammalian isoforms. We also find that substitution of Mn2+ for Mg2+ in assay mixtures increases both the initial binding affinity of BSO and the rate at which BSO causes mechanism-based inactivation. Similarly, the specificity of E. coli gamma-GCS for its amino acid substrates is broadened in the presence of Mn2+, and the rate of reaction for some very poor substrates is improved. These results suggest that divalent metal ions have a role in amino acid binding to E. coli gamma-GCS. Electron paramagnetic resonance (EPR) studies carried out with Mn2+ show that E. coli gamma-GCS binds two divalent metal ions; Kd values for Mn2+ are 1.1 microm and 82 microm, respectively. Binding of l-glutamate or l-BSO to the two Mn2+/gamma-GCS species produces additional upfield and downfield X-band EPR hyperfine lines at 45 G intervals, a result indicating that the two Mn2+ are spin-coupled and thus apparently separated by 5 A or less in the active site. Additional EPR studies in which Cu2+ replaced Mg2+ or Mn2+ suggest that Cu2+ is bound by one N and three O ligands in the gamma-GCS active site. The results are discussed in the context of the catalytic mechanism of gamma-GCS and its relationship to the more fully characterized glutamine synthetase reaction.  相似文献   

4.
Abbott JJ  Ford JL  Phillips MA 《Biochemistry》2002,41(8):2741-2750
gamma-Glutamylcysteine synthetase (gamma-GCS) catalyzes the ATP-dependent ligation of L-Glu and L-Cys, which is the first step in de novo biosynthesis of the tripeptide glutathione. Recently it was demonstrated that gamma-GCS is a structural homologue of glutamine synthetase (GS), providing the basis to build a model for the gamma-GCS active site [Abbott et al. (2001) J. Biol. Chem. 276, 42099-42107]. Substrate binding determinants in the active site of gamma-GCS have been identified and characterized in the enzyme from the parasitic protozoa Trypanosoma brucei using this model as a guide for site-directed mutagenesis. R366 and R491 were identified as key determinants of L-Glu binding. Mutation of R366 to Ala increases the K(d) for L-Glu by 160-fold and eliminates the positive cooperativity observed for the binding of L-Glu and ATP to the wild-type enzyme, based on a rapid equilibrium random mechanism of substrate binding. Unlike the wild-type enzyme, the R366A mutant enzyme was able to form product using the substrate analogue gamma-aminobutyric acid, suggesting that R366 interacts with the alpha-carboxylate of L-Glu. Mutation of R491 to Ala decreased k(cat) for ATP hydrolysis by 70-fold; however, dipeptide product was only formed in 5% of these turnovers. These data suggest that R491 stabilizes the phosphorylated gamma-carboxylate of L-Glu during nucleophilic attack by the L-Cys to form the dipeptide product. T323, R474, and R487 were predicted to be ATP binding determinants. Mutation of each of these residues to Ala increased the apparent K(m) for ATP by 20-100-fold while having only modest effects on k(cat) or the apparent K(m)'s for the other substrates. Finally, mutation of R179, a conserved residue that is present in gamma-GCS, but not in GS, increased the apparent K(m) for both L-Cys and L-Glu.  相似文献   

5.
An assay of gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in crude extracts of cultured cells and tissues is described. It represents a novel combination of known methods, and is based on the formation of glutathione (GSH) from cysteine, glutamate and glycine in the presence of rat kidney GS for the assay of gamma-GCS, or from gamma-glutamylcysteine and glycine for the assay of GS. GSH is then quantified by the Tietze recycling method. Assay mixtures contain the gamma-glutamyl transpeptidase (GGT) inhibitor acivicin in order to prevent the degradation of gamma-glutamylcysteine and of the accumulating GSH, and dithiothreitol in order to prevent the oxidation of cysteine and gamma-glutamylcysteine. gamma-GCS and GS levels determined by this method are comparable to those determined by others. The method is suitable for the rapid determination of gamma-GCS GS in GGT-containing tissues and for the studies of induction of gamma-GCS and GS in tissue cultures.  相似文献   

6.
In most organisms, glutathione (GSH) is synthesized by the sequential action of distinct enzymes, gamma-glutamylcysteine synthetase (gamma-GCS) and GSH synthetase (GS). In Streptococcus agalactiae, GSH synthesis is catalyzed by a single enzyme, gamma-glutamylcysteine synthetase-glutathione synthetase (gamma-GCS-GS). The N-terminal sequence of gamma-GCS-GS is similar to Escherichia coli gamma-GCS, but the C-terminal sequence is an ATP-grasp domain more similar to d-Ala, d-Ala ligase than to any known GS. In the present studies, C-terminally and N-terminally truncated constructs were characterized in order to define the limits of the gamma-GCS and GS domains, respectively. Although WT gamma-GCS-GS is nearly uninhibited by GSH (K(i) approximately 140 mM), shorter gamma-GCS domain constructs were unexpectedly found to be strongly inhibited (K(i) approximately 15 mM), reproducing a physiologically important regulation seen in monofunctional gamma-GCS enzymes. Because studies with E. coli gamma-GCS implicate a flexible loop region in GSH binding, chimeras of S. agalactiae gamma-GCS-GS were made containing gamma-GCS domain flexible loop sequences from Enterococcus faecalis and Pasteurella multocida gamma-GCS-GS, isoforms that are inhibited by GSH. Inhibition remained S. agalactiae-like (i.e., very weak). C-Terminal constructs of gamma-GCS-GS have GS activity (0.01-0.04% of WT), but proper folding and significant GS activity required a covalently linked gamma-GCS domain. In addition, site-directed mutants in the middle region of the gamma-GCS-GS sequence established that GS activity depends on residues in a region that is also part of the gamma-GCS domain. Our results provide new insights into the structure of gamma-GCS-GS and suggest gamma-GCS-GS evolved from a monomeric gamma-GCS that became C-terminally fused to a multimeric ATP-grasp protein.  相似文献   

7.
Glutathione (GSH) is synthesized by gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed gamma-GCS-GS catalyzing both gamma-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the gamma-GCS activity, S. agalactiae gamma-GCS-GS had different substrate specificities from those of Escherichia coli gamma-GCS. Furthermore, S. agalactiae gamma-GCS-GS synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-X(aa)-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding gamma-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae gamma-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed gamma-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-Cys-X(aa). Whereas the substrate specificities of gamma-GCS domain protein and GS domain protein of S. agalactiae gamma-GCS-GS were the same as those of S. agalactiae gamma-GCS-GS.  相似文献   

8.
Glutathione is essential for maintaining the intracellular redox environment and is synthesized from gamma-glutamylcysteine, glycine, and ATP by glutathione synthetase (GS). To examine the reaction mechanism of a eukaryotic GS, 24 Arabidopsis thaliana GS (AtGS) mutants were kinetically characterized. Within the gamma-glutamylcysteine/glutathione-binding site, the S153A and S155A mutants displayed less than 4-fold changes in kinetic parameters with mutations of Glu-220 (E220A/E220Q), Gln-226 (Q226A/Q226N), and Arg-274 (R274A/R274K) at the distal end of the binding site resulting in 24-180-fold increases in the K(m) values for gamma-glutamylcysteine. Substitution of multiple residues interacting with ATP (K313M, K367M, and E429A/E429Q) or coordinating magnesium ions to ATP (E148A/E148Q, N150A/N150D, and E371A) yielded inactive protein because of compromised nucleotide binding, as determined by fluorescence titration. Other mutations in the ATP-binding site (E371Q, N376A, and K456M) resulted in greater than 30-fold decreases in affinity for ATP and up to 80-fold reductions in turnover rate. Mutation of Arg-132 and Arg-454, which are positioned at the interface of the two substrate-binding sites, affected the enzymatic activity differently. The R132A mutant was inactive, and the R132K mutant decreased k(cat) by 200-fold; however, both mutants bound ATP with K(d) values similar to wild-type enzyme. Minimal changes in kinetic parameters were observed with the R454K mutant, but the R454A mutant displayed a 160-fold decrease in k(cat). In addition, the R132K, R454A, and R454K mutations elevated the K(m) value for glycine up to 11-fold. Comparison of the pH profiles and the solvent deuterium isotope effects of A. thaliana GS and the Arg-132 and Arg-454 mutants also suggest distinct mechanistic roles for these residues. Based on these results, a catalytic mechanism for the eukaryotic GS is proposed.  相似文献   

9.
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site.  相似文献   

10.
Gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS), distinct enzymes that together account for glutathione (GSH) synthesis, have been isolated and characterized from several Gram-negative prokaryotes and from numerous eukaryotes including mammals, amphibians, plants, yeast, and protozoa. Glutathione synthesis is relatively uncommon among the Gram-positive bacteria, and, to date, neither the genes nor the proteins involved have been identified. In the present report, we show that crude extracts of Streptococcus agalactiae catalyze the gamma-GCS and GS reactions and can synthesize GSH from its constituent amino acids. The putative gene for S. agalactiae gamma-GCS was identified and cloned, and the corresponding protein was expressed and purified. Surprisingly, it was found that the isolated enzyme catalyzes both the ATP-dependent synthesis of L-gamma-glutamyl-L-cysteine from L-glutamate and L-cysteine and the ATP-dependent synthesis of GSH from L-gamma-glutamyl-L-cysteine and glycine. This novel bifunctional enzyme, referred to as gamma-GCS-GS, has been characterized in terms of catalytic activity, substrate specificity, and inhibition by GSH, cystamine, and transition state analog sulfoximines. The N-terminal 518 amino acids of gamma-GCS-GS (total M(r) 85,000) show 32% identity and 43% similarity with E. coli gamma-GCS (M(r) 58,000), but the C-terminal putative GS domain (remaining 202 amino acids) of gamma-GCS-GS shows no significant homology with known GS sequences. The C terminus (360 amino acids) is, however, homologous to D-Ala, D-Ala ligase (24% identity; 38% similarity), an enzyme having the same protein fold as known GS proteins. These results are discussed in terms of the evolution of GSH synthesis and the possible occurrence of a similar bifunctional GSH synthesis enzyme in other bacterial species.  相似文献   

11.
Bacillus subtilis glutamine synthetase was modified by two ATP analogs, 5'-p-fluorosulfonylbenzoyladenosine (FSBA) and 8-azidoadenosine 5'-triphosphate (8-N3-ATP), each one containing either Mg2+ or Mn2+. The FSBA labeled peptide was monitored by measuring the characteristic absorbance of the 4-carboxybenzenesulfonyl (CBS) part at 243 nm. The 8-N3ATP photolabeled peptide could also be monitored by measuring its absorption at 310 nm. A single CBS-labeled tryptic peptide was obtained, spanning residues 89-91 from the N-terminal of the subunit polypeptide chain, and sequence analysis by Edman degradation revealed that CBS-arginine was at position 91. The amino acids photolabeled by 8-N3ATP at the ATP-binding site in B. subtilis GS were His-186, His-187, and Trp-424. These results suggested that these four amino acids constitute an ATP-binding active site located at the interface between two subunits. The region surrounding Trp-424, which varies among different prokaryotic enzymes, was considered to be involved in a catalytic or regulatory role in B. subtilis GS. Since the same amino acids were labeled when B. subtilis GS was modified with FSBA or 8-N3ATP in the presence of Mn2+ or Mg2+, no conformational difference between B. subtilis GS binding Mn(2+)-ATP and that binding Mg(2+)-ATP was detected by affinity labeling with ATP analogs.  相似文献   

12.
Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS because ADP binding induces movement of Asp 50' toward this monovalent cation site, essentially forming the site. This observation supports a two-step mechanism with ordered substrate binding: ATP first binds to GS, then Glu binds and attacks ATP to form gamma-glutamyl phosphate and ADP, which complete the ammonium binding site. The third substrate, an ammonium ion, then binds to GS, and then loses a proton to form the more active species ammonia, which attacks the gamma-glutamyl phosphate to yield Gln. (5) Because the products (Glu or Gln) of the reactions catalyzed by GS are determined by the molecule (water or ammonium) attacking the intermediate gamma-glutamyl phosphate, this negatively charged ammonium binding pocket has been designed naturally for high affinity of ammonium to GS, permitting glutamine synthesis to proceed in aqueous solution.  相似文献   

13.
Harris TK  Wu G  Massiah MA  Mildvan AS 《Biochemistry》2000,39(7):1655-1674
The MutT enzyme catalyzes the hydrolysis of nucleoside triphosphates (NTP) to NMP and PP(i) by nucleophilic substitution at the rarely attacked beta-phosphorus. The solution structure of the quaternary E-M(2+)-AMPCPP-M(2+) complex indicated that conserved residues Glu-53, -56, -57, and -98 are at the active site near the bound divalent cation possibly serving as metal ligands, Lys-39 is positioned to promote departure of the NMP leaving group, and Glu-44 precedes helix I (residues 47-59) possibly stabilizing this helix which contributes four catalytic residues to the active site [Lin, J. , Abeygunawardana, C., Frick, D. N., Bessman, M. J., and Mildvan, A. S. (1997) Biochemistry 36, 1199-1211]. To test these proposed roles, the effects of mutations of each of these residues on the kinetic parameters and on the Mn(2+), Mg(2+), and substrate binding properties were examined. The largest decreases in k(cat) for the Mg(2+)-activated enzyme of 10(4.7)- and 10(2.6)-fold were observed for the E53Q and E53D mutants, respectively, while 97-, 48-, 25-, and 14-fold decreases were observed for the E44D, E56D, E56Q, and E44Q mutations, respectively. Smaller effects on k(cat) were observed for mutations of Glu-98 and Lys-39. For wild type MutT and its E53D and E44D mutants, plots of log(k(cat)) versus pH exhibited a limiting slope of 1 on the ascending limb and then a hump, i.e., a sharply defined maximum near pH 8 followed by a plateau, yielding apparent pK(a) values of 7.6 +/- 0.3 and 8.4 +/- 0.4 for an essential base and a nonessential acid catalyst, respectively, in the active quaternary MutT-Mg(2+)-dGTP-Mg(2+) complex. The pK(a) of 7.6 is assigned to Glu-53, functioning as a base catalyst in the active quaternary complex, on the basis of the disappearance of the ascending limb of the pH-rate profile of the E53Q mutant, and its restoration in the E53D mutant with a 10(1.9)-fold increase in (k(cat))(max). The pK(a) of 8.4 is assigned to Lys-39 on the basis of the disappearance of the descending limb of the pH-rate profile of the K39Q mutant, and the observation that removal of the positive charge of Lys-39, by either deprotonation or mutation, results in the same 8.7-fold decrease in k(cat). Values of k(cat) of both wild type MutT and the E53Q mutant were independent of solvent viscosity, indicating that a chemical step is likely to be rate-limiting with both. A liganding role for Glu-53 and Glu-56, but not Glu-98, in the binary E-M(2+) complex is indicated by the observation that the E53Q, E53D, E56Q, and E56D mutants bound Mn(2+) at the active site 36-, 27-, 4.7-, and 1.9-fold weaker, and exhibited 2.10-, 1.50-, 1.12-, and 1.24-fold lower enhanced paramagnetic effects of Mn(2+), respectively, than the wild type enzyme as detected by 1/T(1) values of water protons, consistent with the loss of a metal ligand. However, the K(m) values of Mg(2+) and Mn(2+) indicate that Glu-56, and to a lesser degree Glu-98, contribute to metal binding in the active quaternary complex. Mutations of the more distant but conserved residue Glu-44 had little effect on metal binding or enhancement factors in the binary E-M(2+) complexes. Two-dimensional (1)H-(15)N HSQC and three-dimensional (1)H-(15)N NOESY-HSQC spectra of the kinetically damaged E53Q and E56Q mutants showed largely intact proteins with structural changes near the mutated residues. Structural changes in the kinetically more damaged E44D mutant detected in (1)H-(15)N HSQC spectra were largely limited to the loop I-helix I motif, suggesting that Glu-44 stabilizes the active site region. (1)H-(15)N HSQC titrations of the E53Q, E56Q, and E44D mutants with dGTP showed changes in chemical shifts of residues lining the active site cleft, and revealed tighter nucleotide binding by these mutants, indicating an intact substrate binding site. (ABSTRACT TRUNCATED)  相似文献   

14.
Gamma-glutamylcysteine synthetase (EC 6.3.2.2, gamma-GCS) catalyzes the first step of glutathione synthesis: l-Glu + l-Cys + ATP = gamma-l-glutamyl-l-cysteine (gamma-GC) + ADP + Pi. We have cloned the gene alr3351 of Anabaena sp. PCC 7120, expressed the recombinant enzyme in Escherichia coli, and characterized its product as gamma-GCS by analyzing gamma-GC production, ADP formation and Pi release. Apparent Km values for l-Glu, ATP and l-Cys were estimated to be 0.82, 0.23 and 0.14 mM, respectively. Glutathione and l-buthionine sulfoximine were inhibitors with Ki values of 6.5 and 29.3 mM, respectively. The molecular mass of Anabaena gamma-GCS was estimated to be 43.4 kDa by SDS-PAGE and matrix-assisted laser desorption/ionization time of flight mass spectrometry. The important sequence for the activity of plant gamma-GCS was found in alpha-proteobacterial gamma-GCSs but not in cyanobacterial enzymes, suggesting that the cyanobacterial gamma-GCS gene is not the primary progenitor for the plant genes.  相似文献   

15.
Lanthanide luminescence was used to examine the effects of posttranslational adenylylation on the metal binding sites of Escherichia coli glutamine synthetase (GS). These studies revealed the presence of two lanthanide ion binding sites of GS of either adenylylation extrema. Individual emission decay lifetimes were obtained in both H2O and D2O solvent systems, allowing for the determination of the number of water molecules coordinated to each bound Eu3+. The results indicate that there are 4.3 +/- 0.5 and 4.6 +/- 0.5 water molecules coordinated to Eu3+ bound to the n1 site of unadenylylated enzyme, GS0, and fully adenylylated enzyme, GS12, respectively, and that there are 2.6 +/- 0.5 water molecules coordinated to Eu3+ at site n2 for both GS0 and GS12. Energy transfer measurements between the lanthanide donor-acceptor pair Eu3+ and Nd3+, obtained an intermetal distance measurement of 12.1 +/- 1.5 A. Distances between a Tb3+ ion at site n2 and tryptophan residues were also performed with the use of single-tryptophan mutant forms of E. coli GS. The dissociation constant for lanthanide ion binding to site n1 was observed to decrease from Kd = 0.35 +/- 0.09 microM for GS0 to Kd = 0.06 +/- 0.02 microM for GS12. The dissociation constant for lanthanide ion binding to site n2 remained unchanged as a function of adenylylation state; Kd = 3.8 +/- 0.9 microM and Kd = 2.6 +/- 0.7 microM for GS0 and GS12, respectively. Competition experiments indicate that Mn2+ affinity at site n1 decreases as a function of increasing adenylylation state, from Kd = 0.05 +/- 0.02 microM for GS0 to Kd = 0.35 +/- 0.09 microM for GS12. Mn2+ affinity at site n2 remains unchanged (Kd = 5.3 +/- 1.3 microM for GS0 and Kd = 4.0 +/- 1.0 microM for GS12). The observed divalent metal ion affinities, which are affected by the adenylylation state, agrees with other steady-state substrate experiments (Abell LM, Villafranca JJ, 1991, Biochemistry 30:1413-1418), supporting the hypothesis that adenylylation regulates GS by altering substrate and metal ion affinities.  相似文献   

16.
Phospholipase D from Streptomyces chromofuscus (sc-PLD) is a member of the diverse family of metallo-phosphodiesterase/phosphatase enzymes that also includes purple acid phosphatases, protein phosphatases, and nucleotide phosphodiesterases. Whereas iron is an essential cofactor for scPLD activity, Mn2+ is also found in the enzyme. A third metal ion, Ca2+, has been shown to enhance scPLD catalytic activity although it is not an essential cofactor. Sequence alignment of scPLD with known phosphodiesterases and phosphatases requiring metal ions suggested that His-212, Glu-213, and Asp-389 could be involved in Mn2+ binding. H212A, E213A, and D389A were prepared to test this hypothesis. These three mutant enzymes and wild type scPLD show similar metal content but considerably different catalytic properties, suggesting different roles for each residue. His-212 appears involved in binding the phosphate group of substrates, whereas Glu-213 acts as a ligand for Ca2+. D389A showed a greatly reduced phosphodiesterase activity but almost unaltered ability to hydrolyze the phosphate group in p-nitrophenyl phosphate suggesting it had a critical role in aligning groups at the active site to control phosphodiesterase versus phosphatase activities. We propose a model for substrate and cofactor binding to the catalytic site of scPLD based on these results and on sequence alignment to purple acid phosphatases of known structure.  相似文献   

17.
Previous studies [Dautry-Varsat, A., Cohen, G. N., & Stadtman, E.R. (1979) J. Biol. Chem. 254, 3124-3128; Lei, M., Aebi, U., Heidner, E. G., & Eisenberg, D. (1979) J. Biol. Chem. 254, 3129-3134] have shown that Escherichia coli glutamine synthetase (GS) can be cleaved by proteases to form a limited digestion species called nicked glutamine synthetase (GS). The present study gives the amino acid sequence of the protease-sensitive region of glutamine synthetase. The present study also shows that GS is enzymatically active, but this activity is low compared to the activity of GS. The apparent Michaelis constant value for glutamate was 90 mM for GS as compared to 3 mM for GS, while the Michaelis constant values for ATP were similar for GS and GS*. The dissociation constant values for ATP, as determined by intrinsic fluorescence measurements, were similar for GS and GS*. Glutamate decreased the dissociation constant value of ATP for GS because of synergism between the two binding sites; glutamate did not decrease the dissociation constant value of ATP for GS*. The glutamate analogue methionine sulfoximine bound very tightly to GS and inactivated the enzyme in the presence of ATP. Methionine sulfoximine did not appear to bind to GS* and did not inactivate GS* in the presence of ATP. The ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine bound to GS and inactivated the enzyme by forming a covalent bond with it. Glutamate accelerated this inactivation because of the synergism between the ATP and glutamate binding sites of GS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Glutathione synthetase is an enzyme that belongs to the glutathione synthetase ATP-binding domain-like superfamily. It catalyzes the second step in the biosynthesis of glutathione from gamma-glutamylcysteine and glycine in an ATP-dependent manner. Glutathione synthetase has been purified and sequenced from a variety of biological sources; still, its exact mechanism is not fully understood. A variety of structural alignment methods were applied and four highly conserved residues of human glutathione synthetase (Glu-144, Asn-146, Lys-305, and Lys-364) were identified in the binding site. The function of these was studied by experimental and computational site-directed mutagenesis. The three-dimensional coordinates for several human glutathione synthetase mutant enzymes were obtained using molecular mechanics and molecular dynamics simulation techniques, starting from the reported crystal structure of human glutathione synthetase. Consistent with circular dichroism spectroscopy, our results showed no major changes to overall enzyme structure upon residue mutation. However, semiempirical calculations revealed that ligand binding is affected by these mutations. The key interactions between conserved residues and ligands were detected and found to be essential for enzymatic activity. Particularly, the negatively charged Glu-144 residue plays a major role in catalysis.  相似文献   

19.
Németi B  Anderson ME  Gregus Z 《Biochimie》2012,94(6):1327-1333
The environmentally prevalent arsenate (As(V)) undergoes reduction in the body to the much more toxic arsenite (As(III)). Phosphorolytic enzymes and ATP synthase can promote the reduction As(V) by converting it into arsenylated products in which the pentavalent arsenic is more reducible by glutathione (GSH) to As(III) than in inorganic As(V). Glutathione synthetase (GS) can catalyze the arsenolysis of GSH (γ-Glu-Cys-Gly) yielding two arsenylated products, i.e. γ-Glu-Cys-arsenate and ADP-arsenate. Thus, GS may also promote the reduction of As(V) by GSH. This hypothesis was tested with human recombinant GS, a Mg(2+) dependent enzyme. GS markedly increased As(III) formation when incubated with As(V), GSH, Mg(2+) and ADP, but not when GSH, Mg(2+) or ADP were separately omitted. Phosphate, a substrate competitive with As(V) in the arsenolysis of GSH, as well as the products of GSH arsenolysis or their analogs, e.g. glycine and γ-Glu-aminobutyrate, decreased As(V) reduction. Replacement of ADP with ATP or an analog that cannot be phosphorylated or arsenylated abolished As(V) reduction, indicating that GS-supported As(V) reduction requires formation of ADP-arsenate. In the presence of ADP, however, ATP (but not its metabolically inert analog) tripled As(V) reduction because ATP permits GS to remove the arsenolysis inhibitory glycine and γ-Glu-Cys by converting them into GSH. GS failed to promote As(V) reduction when GSH was replaced with ophthalmic acid, a GSH analog substrate of GS containing no SH group (although ophthalmic acid did undergo GS-catalyzed arsenolysis), indicating that the SH group of GSH is important for As(V) reduction. Our findings support the conclusion that GS promotes reduction of As(V) by catalyzing the arsenolysis of GSH, thus producing ADP-arsenate, which upon being released from the enzyme is readily reduced by GSH to As(III).  相似文献   

20.
植物的硫同化及其相关酶活性在镉胁迫下的调节   总被引:11,自引:0,他引:11  
植物对土壤中硫的利用包括根系对硫酸盐的吸收、转运、同化、分配等过程,也是由一系列酶和蛋白质参与和调节的代谢过程。近年来的研究表明,在植物体内,硫同化与植物对镉等重金属元素的胁迫反应机制有着密切关系。镉胁迫能调节植物对硫酸盐的吸收、转运、同化,以及半胱氨酸、谷胱甘肽(glutathione,GSH)和植物螯合肽(Dhytochelatins,pc)的合成。植物在镉胁迫下通过多种调节机制,增强对硫酸盐的吸收和还原,迅速合成半胱氨酸和谷胱甘肽等代谢物,从而合成足够的PC,以满足植物生理的需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号