首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carried out comparative DSC and Fourier transform infrared spectroscopic studies of the effects of cholesterol and lanosterol on the thermotropic phase behavior and organization of DPPC bilayers. Lanosterol is the biosynthetic precursor of cholesterol and differs in having three rather than two axial methyl groups projecting from the β-face of the planar steroid ring system and one axial methyl group projecting from the α-face, whereas cholesterol has none. Our DSC studies indicate that the incorporation of lanosterol is more effective than cholesterol is in reducing the enthalpy of the pretransition. Lanosterol is also initially more effective than cholesterol in reducing the enthalpies of both the sharp and broad components of the main phase transition. However, at sterol concentrations of 50 mol %, lanosterol does not abolish the cooperative hydrocarbon chain-melting phase transition as does cholesterol. Moreover, at higher lanosterol concentrations (~30–50 mol %), both sharp and broad low-temperature endotherms appear in the DSC heating scans, suggestive of the formation of lanosterol crystallites, and of the lateral phase separation of lanosterol-enriched phospholipid domains, respectively, at low temperatures, whereas such behavior is not observed with cholesterol at comparable concentrations. Our Fourier transform infrared spectroscopic studies demonstrate that lanosterol incorporation produces a less tightly packed bilayer than does cholesterol, which is characterized by increased hydration in the glycerol backbone region of the DPPC bilayer. These and other results indicate that lanosterol is less miscible in DPPC bilayers than is cholesterol, but perturbs their organization to a greater extent, probably due primarily to the rougher faces and larger cross-sectional area of the lanosterol molecule and perhaps secondarily to its decreased ability to form hydrogen bonds with adjacent DPPC molecules. Nevertheless, lanosterol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers, although this phase is not as tightly packed as comparable cholesterol/DPPC mixtures.  相似文献   

2.
The evolution throughout embryonic development of the rate at which acetate was converted into sterols was studied in chick brain and liver. Acetate incorporation (nmol/h/g tissue) was clearly higher in brain than in liver and sharply decreased with the age of embryo. Cholesterol and desmosterol were the major sterols formed from acetate by chick embryo brain, followed by lanosterol and squalene. No desmosterol was found in chick embryo liver, organ where cholesterol was the major sterol synthesized. In brain, the relative percentage of cholesterol increased throughout embryonic development reaching more than 50% at hatching, while the percentage of desmosterol decreased during the same period and represented at hatching only about 10–15% of the total nonsaponifiable fraction. The relative percentages of lanosterol and squalene did not change significantly throughout the period assayed. In liver, the percentage of cholesterol increased until 19 days but sharply decreased at hatching.  相似文献   

3.
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.  相似文献   

4.
The biosynthesis of C27 sterols (used as a generic term for 3 β-hydroxysterols containing 27 carbon atoms) from squalene and lanosterol, of cholesterol from desmosterol, and of lanosterol from squalene by microsomal fractions from adult rat heart, kidney, and brain was investigated. These conversions required the presence of 105,000g supernatant fraction. Heat treatment of the supernatant fractions resulted in a significant loss of their capacity to stimulate the conversion of squalene to sterols, but the capacity to stimulate conversion of lanosterol to C27 sterols and desmosterol to cholesterol was unaffected. The stimulatory activity (for the conversion of all three substrates) of both the heated and unheated supernatant fractions was lost on treatment with trypsin. Thus the soluble fraction appears to contribute at least two essential protein components for the overall conversion of squalene to cholesterol; one a heat labile protein, which functions in the squalene to lanosterol sequence, and the other a heat-stable protein, which is operative in the pathway between lanosterol and cholesterol. Hepatic supernatant factors required for cholesterol synthesis by liver microsomal enzymes function with heart, kidney, and brain microsomal enzymes in stimulating sterol synthesis from squalene and sterol precursors. Moreover, heart, kidney, and brain supernatant fractions prepared in 100 mm phosphate buffer stimulated cholesterol synthesis from squalene and other sterol precursors by liver microsomes. The supernatant fractions of the extrahepatic tissues prepared in 20 mm phosphate buffer lacked the ability to stimulate the biosynthesis of lanosterol from squalene by liver microsomes but were able to stimulate the conversion of lanosterol to C27 sterols or conversion of desmosterol to cholesterol. These findings indicate that the heat-stable protein factor present in the supernatant fractions from extrahepatic tissues is perhaps identical to that in liver, but that the heat-labile factor in extrahepatic tissues, which catalyzes the cyclization of squalene to lanosterol, differs in some respect from that in liver.  相似文献   

5.
Endress E  Heller H  Casalta H  Brown MF  Bayerl TM 《Biochemistry》2002,41(43):13078-13086
Quasi-elastic neutron scattering (QENS) was employed to study the molecular dynamics of three structurally related sterols, namely, cholesterol, lanosterol, and ergosterol. Oriented bilayers of dipalmitoylphosphatidylcholine (DPPC) were investigated at 40 mol % sterol content and at three temperatures (20, 36, and 50 degrees C) for two energy resolutions. Data analysis was concentrated on a direct comparison of the out-of-plane and the in-plane high-frequency motions of the three sterols in terms of their rates and amplitudes. The (spatially restricted) diffusive motion of the three sterols in the two directions was characterized by diffusion constants in the range of (5-30) x 10(-12) x m(2) x s(-1), with a significantly faster rate of diffusion along the membrane normal, resulting in a diffusional anisotropy, D(a). At low temperature (20 degrees C), cholesterol showed the highest value (D(a) = 4.5), while lanosterol gave the lowest one (D(a) = 2.0). At high temperature (50 degrees C), ergosterol diffusion had the highest diffusion anisotropy (D(a) = 2.0) compared to lanosterol (D(a) = 1.8) and cholesterol (D(a) = 1.6). Most interestingly, cholesterol showed at all three temperatures an amplitude of its out-of-plane-motion of 1.0-1.1 nm, more than a factor of 3 higher than measured for the other two sterols. This finding suggests that the short alkyl chain of the cholesterol molecule may cross at high frequency the bilayer midplane, while the other two sterols remain confined within the geometrical limits of each monolayer leaflet. The results provide an example of how slight structural alterations of sterols can affect their molecular dynamics in bilayers, which in turn may be relevant to the membrane micromechanical properties.  相似文献   

6.
Biosynthesis of squalene and sterols by rat aorta   总被引:1,自引:0,他引:1  
The synthesis of nonsaponifiable compounds from radioactive mevalonate by segments of adult rat aorta was studied in vitro. The labeled products consisted largely of substances with the chromatographic and chemical behavior of squalene, lanosterol, lathosterol, and cholesterol. Even after 3 or 4 hr of incubation, the incorporation of mevalonate into squalene was higher than its incorporation into C(27) sterols; cholesterol contained less than 20% of the radioactivity in the total sterols. Lanosterol was the most highly labeled sterol. The level of radioactivity in lathosterol was comparable to the level in cholesterol. Small amounts of radioactivity were found in other sterols. Material with the same mobility on TLC as 7-dehydrocholesterol had less radioactivity than cholesterol, but more than sterols with the mobility of desmosterol. The results of measurements made after short periods of incubation showed that squalene and lanosterol became labeled before the other nonsaponifiable compounds.  相似文献   

7.
Giant vesicles formed of 1,2-dipalmitoylphosphatidylcholine (DPPC) and sterols (cholesterol or ergosterol) in water and water/ethanol solutions have been used to examine the effect of sterol composition and ethanol concentration on the area compressibility modulus (K(a)), overall mechanical behavior, vesicle morphology, and induction of lipid alkyl chain interdigitation. Our results from micropipette aspiration suggest that cholesterol and ergosterol impact the order and microstructure of the gel (L(beta)') phase DPPC membrane. At low concentration (10-15 mol%) these sterols disrupt the long-range lateral order and fluidize the membrane (K(a) approximately 300 mN/m). Then at 18 mol%, these sterols participate in the formation of a continuous cohesive liquid-ordered (L(o)) phase with a sterol-dependent membrane density (K(a) approximately 750 for DPPC/ergosterol and K(a) approximately 1100 mN/m for DPPC/cholesterol). Finally at approximately 40 mol% both cholesterol and ergosterol impart similar condensation to the membrane (K(a) approximately 1200 mN/m). Introduction of ethanol (5-25 vol%) results in drops in the magnitude of K(a), which can be substantial, and sometimes individual vesicles with lowered K(a) reveal two slopes of tension versus apparent area strain. We postulate that this behavior represents disruption of lipid-sterol intermolecular interactions and therefore the membrane becomes interdigitation prone. We find that for DPPC vesicles with sterol concentrations of 20-25 mol%, significantly more ethanol is required to induce interdigitation compared to pure DPPC vesicles; approximately 7 vol% more for ergosterol and approximately 10 vol% more for cholesterol. For lower sterol concentrations (10-15 mol%), interdigitation is offset, but by <5 vol%. These data support the idea that ergosterol and cholesterol do enhance survivability for cells exposed to high concentrations of ethanol and provide evidence that the appearance of the interdigitated (L(beta)I) phase bilayer is a major factor in the disruption of cellular activity, which typically occurs between approximately 12 and approximately 16 vol% ethanol in yeast fermentations. We summarize our findings by producing, for the first time, "elasticity/phase diagrams" over a wide range of sterol (cholesterol and ergosterol) and ethanol concentrations.  相似文献   

8.
The plasma membrane is a dynamic environment with a complex composition of lipids, proteins, and cholesterol. Areas enriched in cholesterol and sphingolipids are believed to form lipid rafts, domains of highly ordered lipids. The unique physical properties of these domains have been proposed to influence many cellular processes. Here, we demonstrate that the activation of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) depends critically on the structures of membrane sterols. IR and IGF1R autophosphorylation in vivo was inhibited by cholesterol depletion, and autophosphorylation was restored by the replacement with exogenous cholesterol. We next screened a variety of sterols for effects on IR activation. The ability of sterols to support IR autophosphorylation was strongly correlated to the propensity of the sterols to form ordered domains. IR autophosphorylation was fully restored by the incorporation of ergosterol, dihydrocholesterol, 7-dehydrocholesterol, lathosterol, desmosterol, and allocholesterol, partially restored by epicholesterol, and not restored by lanosterol, coprostanol, and 4-cholesten-3-one. These data support the hypothesis that the ability to form ordered domains is sufficient for a sterol to support ligand-induced activation of IR and IGF1R in intact mammalian cells.  相似文献   

9.
Small-angle neutron scattering (SANS) measurements are performed on pure dimyristoyl phosphatidylcholine (DMPC) unilamellar vesicles (ULV) and those containing either 20 or 47 mol% cholesterol, ergosterol or lanosterol. From the SANS data, we were able to determine the influence of these sterols on ULV bilayer thickness and vesicle area expansion coefficients. While these parameters have been determined previously for membranes containing cholesterol, to the best of our knowledge, this is the first time such results have been presented for membranes containing the structurally related sterols, ergosterol and lanosterol. At both molar concentrations and at temperatures ranging from 10 to 45 degrees C, the addition of the different sterols leads to increases in bilayer thickness, relative to pure DMPC. We observe large differences in the influence of these sterols on the membrane thermal area expansion coefficient. All three sterols, however, produce very similar changes to membrane thickness.  相似文献   

10.
Cholesterol crystals treated with an aqueous solution of sodium oleate give rise to cylindrical lamellar associations which appear under the microscope as rapidly growing tubes. Myelin forms are also obtained with other membrane sterols (desmosterol, cholestanol, 7-dehydrocholesterol) but not with lanosterol, a metabolic precursor of cholesterol, nor with the catabolic products of cholesterol (coprosterol, cholecalciferol, pregnenolone). The structural requirements for obtaining myelin tubes from sterols and sodium oleate closely agree with the results obtained by studying sterol-lecithin associations using other experimental techniques (unimolecular films at the air/water interface and permeability of liposomes), association of sterols with an erythrocyte protein and cholesterol liquid crystals.  相似文献   

11.
As a simple model of rafts in plant cells, the effect of stigmasterol, one of the predominant sterols in plant plasma membranes, on the phase behavior of dipalmitoylphosphatidylcholine (DPPC) multilayers has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and freeze-fracture electron microscopy (FFEM) techniques. A partial phase diagram of the binary system has been constructed. Particularly, the stigmasterol concentrations of the "left endpoint" and "right endpoint" of the three-phase line have been determined using the newly developed linear and nonlinear fitting method. They are 6.2 and 23.7 mol%, respectively. Furthermore, the resemblance and difference of phase diagrams of DPPC/stigmasterol, DPPC/cholesterol, and DPPC/ergosterol have been compared and the efficiency of these sterols in promoting the formation of the liquid-ordered domains (rafts) have also been discussed.  相似文献   

12.
We investigated if magic angle spinning (MAS) 1H NMR can be used as a tool for detection of liquid-ordered domains (rafts) in membranes. In experiments with the lipids SOPC, DOPC, DPPC, and cholesterol we demonstrated that 1H MAS NMR spectra of liquid-ordered domains (lo) are distinctly different from liquid-disordered (ld) and solid-ordered (so) membrane regions. At a MAS frequency of 10 kHz the methylene proton resonance of hydrocarbon chains in the ld phase has a linewidth of 50 Hz. The corresponding linewidth is 1 kHz for the lo phase and several kHz for the so phase. According to results of 1H NMR dipolar echo spectroscopy, the broadening of MAS resonances in the lo phase results from an increase in effective strength of intramolecular proton dipolar interactions between adjacent methylene groups, most likely because of a lower probability of gauche/trans isomerization in lo. In spectra recorded as a function of temperature, the onset of lo domain (raft) formation is seen as a sudden onset of line broadening. Formation of small domains yielded homogenously broadened resonance lines, whereas large lo domains (diameter >0.3 microm) in an ld environment resulted in superposition of the narrow resonances of the ld phase and the much broader resonances of lo. 1H MAS NMR may be applied to detection of rafts in cell membranes.  相似文献   

13.
The resumption of meiosis is regulated by meiosis-preventing and meiosis-activating substances in testes and ovaries. Certain C29 precursors of cholesterol are present at elevated levels in gonadal tissue, but the mechanism by which these meiosis-activating sterols (MAS) accumulate has remained an unresolved question. Here we report that progestins alter cholesterol synthesis in HepG2 cells and rat testes to increase levels of major MAS (FF-MAS and T-MAS). These C29 sterols accumulated as a result of inhibition of Delta24-reduction and 4alpha-demethylation. Progesterone, pregnenolone, and 17alpha-OH-pregnenolone were potent inhibitors of Delta24-reduction in an in vitro cell assay and led to the accumulation of desmosterol, a Delta5,24 sterol precursor of cholesterol. A markedly different effect was observed for 17alpha-OH-progesterone, which caused the accumulation of sterols associated with inhibition of 4alpha-demethylation. The flux of 13C-acetate into lathosterol and cholesterol was decreased by progestins as measured by isotopomer spectral analysis, whereas newly synthesized MAS accumulated. The combined evidence that MAS concentrations can be regulated by physiological levels of progestins and their specific combination provides a plausible explanation for the elevated concentration of MAS in gonads and suggests a new role for progestins in fertility.  相似文献   

14.
As a simple model of rafts in plant cells, the effect of stigmasterol, one of the predominant sterols in plant plasma membranes, on the phase behavior of dipalmitoylphosphatidylcholine (DPPC) multilayers has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and freeze-fracture electron microscopy (FFEM) techniques. A partial phase diagram of the binary system has been constructed. Particularly, the stigmasterol concentrations of the “left endpoint” and “right endpoint” of the three-phase line have been determined using the newly developed linear and nonlinear fitting method. They are 6.2 and 23.7 mol%, respectively. Furthermore, the resemblance and difference of phase diagrams of DPPC/stigmasterol, DPPC/cholesterol, and DPPC/ergosterol have been compared and the efficiency of these sterols in promoting the formation of the liquid-ordered domains (rafts) have also been discussed.  相似文献   

15.
Cholesterol is implicated to play a role in Alzheimer disease pathology. Therefore, the concentrations of cholesterol, its precursors, and its degradation products in brain homogenates of aging wild-type and beta-amyloid precursor protein transgenic mice carrying the Swedish mutation (APP23) were analyzed. Among the sterols measured, lanosterol is the first common intermediate of two different pathways, which use either desmosterol or lathosterol as the predominant precursors for de novo synthesis of brain cholesterol. In young mice, cholesterol is mainly synthesized via the desmosterol pathway, while in aged mice, lathosterol is the major precursor. 24S-hydroxycholesterol (cerebrosterol), which plays a key role in the removal of cholesterol from the brain, modestly increased during aging. No differences in the levels of cholesterol, its precursors, or its metabolites were found between wild-type and APP23 transgenic mice. Moreover, the levels of the exogenous plant sterols campesterol and sitosterol were significantly elevated in the brains of APP23 animals at age 12 and 18 months. This time point coincides with abundant plaque formation.  相似文献   

16.
Binary mixtures of cholesterol, ergosterol, and lanosterol with phosphatidylcholines differing in the length of the saturated acyl chains, viz 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-myristoyl-sn-glycero-3-phosphocholine (DMPC), were analyzed using a Langmuir balance for recording force-area (pi-A) and surface potential-area (psi-A) isotherms. A progressive disappearance of the liquid expanded-liquid condensed transition was observed in mixed monolayers with DPPC after the increase in the content of all three sterols. For fluid DMPC matrix, no modulation of the monolayer phase behavior due to the sterols was evident with the exception of lanosterol, for which a pronounced discontinuity between mole fractions of X = 0.3 and X = 0.75 was discernible in the compression isotherms. Condensing and expanding effects in force-area (pi-A) isotherms due to varying X(sterols) and differences in the monolayer physical state were assessed from the values for the interfacial compression moduli. Surface potential measurements support the notion that cholesterol and ergosterol, but not lanosterol, reduce the penetration of water into the lipid monolayers. Examination of the excess free energy of mixing revealed an enhanced stability of binary monolayers containing cholesterol compared to those with ergosterol or lanosterol; the differences are emphasized in the range of surface pressure values found in natural membranes.  相似文献   

17.
Sterol biosynthesis by the sea urchin Echinus esculentus   总被引:2,自引:2,他引:0       下载免费PDF全文
1. The 4-demethyl sterols of Echinus esculentus consisted of cholesterol as the major component, with lower concentrations of nine other C(26), C(27), C(28) and C(29) Delta(5) sterols. 2. [2-(14)C]Mevalonic acid was readily incorporated by the urchin into squalene, lanosterol and desmosterol but only to a small extent into cholesterol. 3. [26-(14)C]Desmosterol did not appear to be reduced to give cholesterol, but conversion of 5alpha-[2-(3)H(2)]lanost-8-en-3beta-ol into cholesterol was observed. 4. No C-24 dealkylation of [4-(14)C]sitosterol or metabolism of [4-(14)C]cholesterol could be detected.  相似文献   

18.
Cholesterol is an important molecular component of the plasma membranes of mammalian cells. Its precursor in the sterol biosynthetic pathway, lanosterol, has been argued by Konrad Bloch (Bloch, K. 1965. Science. 150:19-28; 1983. CRC Crit. Rev. Biochem. 14:47-92; 1994. Blonds in Venetian Paintings, the Nine-Banded Armadillo, and Other Essays in Biochemistry. Yale University Press, New Haven, CT.) to also be a precursor in the molecular evolution of cholesterol. We present a comparative study of the effects of cholesterol and lanosterol on molecular conformational order and phase equilibria of lipid-bilayer membranes. By using deuterium NMR spectroscopy on multilamellar lipid-sterol systems in combination with Monte Carlo simulations of microscopic models of lipid-sterol interactions, we demonstrate that the evolution in the molecular chemistry from lanosterol to cholesterol is manifested in the model lipid-sterol membranes by an increase in the ability of the sterols to promote and stabilize a particular membrane phase, the liquid-ordered phase, and to induce collective order in the acyl-chain conformations of lipid molecules. We also discuss the biological relevance of our results, in particular in the context of membrane domains and rafts.  相似文献   

19.
The distribution of low concentrations of ganglioside GM1 in L-alpha-dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol monolayers supported on mica has been studied using atomic force microscopy (AFM). The monolayers studied correspond to a pure gel phase and a mixture of liquid-expanded (LE) and liquid-condensed (LC) phases for DPPC and to a single homogeneous liquid-ordered phase for 2:1 DPPC/cholesterol. The addition of 2.5-5% GM1 to phase-separated DPPC monolayers resulted in small round ganglioside-rich microdomains in the center and at the edges of the LC domains. Higher amounts of GM1 (10%) give numerous filaments in the center of the LC domains and larger patches at the edges. A gel phase DPPC monolayer containing GM1 showed large domains containing a network of GM1-rich filaments. The addition of GM1 to a liquid-ordered 2:1 DPPC/cholesterol monolayer gives small, round domains that vary in size from 50 to 150 nm for a range of surface pressures. Larger amounts of GM1 lead to coalescence of the small, round domains to give longer filaments that cover 30-40% of the monolayer surface for 10 mol % GM1. The results indicate that biologically relevant GM1 concentrations lead to submicron-sized domains in a cholesterol-rich liquid-ordered phase that is analogous to that found in detergent-insoluble membrane fractions, and are thought to be important in membrane microdomains or rafts. This demonstrates that AFM studies of model monolayers and bilayers provide a powerful method for the direct detection of microdomains that are too small for study with most other techniques.  相似文献   

20.
Recently, knockout mice entirely lacking cholesterol have been described as showing only a mild phenotype. For these animals, synthesis of cholesterol was interrupted at the level of its immediate precursor, desmosterol. Since cholesterol is a major and essential constituent of mammalian cellular membranes, we asked whether cholesterol with its specific impact on membrane properties might be replaced by desmosterol. By employing various approaches of NMR, fluorescence, and EPR spectroscopy, we found that the properties of phospholipid membranes like lipid packing in the presence of cholesterol or desmosterol are very similar. However, for lanosterol, a more distant precursor of cholesterol synthesis, we found significant differences in comparison with cholesterol and desmosterol. Our results show that, from the point of view of membrane biophysics, cholesterol and desmosterol behave identically and, therefore, replacement of cholesterol by desmosterol may not impact organism homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号