首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the gregarious males of Schistocerca gregaria Forsk., imaginal moulting (mitosis, apolysis, new cuticle synthesis, ecdysis) is associated with the differentiation of numerous glandular units. These units, involved in a sexual, excitatory pheromone secretion are at that time composed only of a basal glandular cell and an apical duct cell. Each glandular unit originates from an isogenic group of cells of which the four elements (tetrade) are disposed on two levels. At each level a principal cell and an accessory one may be recognized. The lower accessory, or ciliary, cell shows, at the time of apolysis, both a strong cytoplasmic protrusion and a typical ciliary formation. This formation associated with a diplosome goes through the duct cell and ends up in the exuvial space. It makes a inner mould; arranged around it are epicuticular materials characteristic of the duct wall; then it disappears. The strong cytoplasmic protrusion also retracts thus allowing a glandular reservoir to form. A glandular cell may be recognized at an early stage owing to its R.E.R. development. The upper accessory cell strengthens the duct cell and secretes junctional cuticle between the duct and general cuticle. Accessory cells, after the imaginal moult do not degenerate but acquire epithelial cell characteristics. The duct has a dual origin : the receptive part is secreted by the ciliary cell and the vector part by the duct cell. The organization and stages of morphogenesis of the glandular unit are discussed and compared to those of other apterygote or pterygote insects.  相似文献   

2.
Summary Tarsal glands are located in the 6th tarsomere of adult honeybee queens, workers and drones. Their structural features are not cast or sex specific. The glandular epithelium is lined by a thin endocuticular layer. A cuticular pocket is formed from a postimaginal delamination of the cuticle secreted by the glandular epithelium. The apical plasma membrane of the glandular cells shows numerous cristae and microvilli lining large crypts that communicate with the subcuticular space. Pinocytotic vesicles, multivesicular bodies and residual dense bodies are present in the apical part of the glandular cells. The RER is well developed in perinuclear and basal parts of the glandular cells, but the Golgi apparatus is a discrete organelle without secretory granules. No exocytotic secretory structures were observed. To reach the glandular pocket, the non-proteinaceous secretory product must pass across the subcuticular space, the cuticular intima, the space between the intima and the cuticular wall, and the cuticular wall of the glandular pocket.  相似文献   

3.
Summary During the period between apolysis and ecdysis, the vesicular glands show many important transformations which affect not only the cuticular ductules, but all the cells. The cytoplasm of the glandular cells undergoes a partial autolysis, whereas other parts of the cells present a high secretory activity. Immediately after the apolysis the cellular reservoir empties and disappears almost completely; soon after, refills with secretion. The most interesting transformations concern each ciliary cell, always associated with a glandular cell. In the first phase of the moulting cycle, the dendrite of the ciliary cell grows a ciliumlike extension (= distal region of the dendrite), which penetrates into the corresponding ductule; the new intima of this ductule is laid around the cilium. At the same time, the proximal region of the dendrite forms a circular fold around the base of the cilium and begins to secrete a material which will form the end apparatus. This latter is finished during the second phase of the cycle. The third phase is characterized by the degeneration of the distal region of the dendrite and the circular fold. Thus, the end apparatus is not a secretion of the ductule-carrying cell, but of the ciliary cell. At the end of the moulting period, just before ecdysis, the vesicular gland again takes the structure characteristic of the intermoult: the reservoir of the glandular cell is very large; the cuticular apparatus is almost formed; the dendrite of the ciliary cells shows, at its apex, a short cilium (= ciliary region s. str. + short distal region) surrounded by microvilli, free in the secretion of the reservoir.  相似文献   

4.
The exocrine glands located in the penis of Thermobia domestica (Thysanura : Lepismatidae) are composed of about 100 distinct units, each containing several cell types: one large secretory cell with an apical reservoir; 2 groups of envelope cells, an inner group of 2 superimposed cells, and an outer group of 4 cells arranged in a ring, and also 2 basal cells, called ciliary cells owing to their elongated processes, which look like the dendrite of a sensory cell. Each functional unit includes cuticular differentiations: a tubular bristle, fixed on a small tubercle; and a long “internal” ductule communicating basally with the reservoir of the glandular cell and opening distally at the tip of the bristle. A study of the modifications affecting the phallic glands during moulting, shows that the inner envelope cells deposit the cuticle that forms the ductule, the outer envelope cells elaborate the cuticule of the tubercle, while a temporary distal projection of only one of these cells ensures the formation of the bristle. In addition, a lengthening of the outer dendritic segment of the 2 ciliary cells takes place before ductule formation, but this segment partially degenerates after ecdysis. These findings are compared with data already obtained on the morphogenesis of other insect integumental glands. In T. domestica, the secretion of the phallic glands is presumed to be used, during the mating sequences, for spinning fine threads before spermatophore deposition.  相似文献   

5.
The ejaculatory duct of the migratory grasshopper (Melanoplus sanguinipes [Fabr.]) (Orthoptera : Acrididae) is divisible into 3 regions: upper ejaculatory duct (UED) into whose anterior end the accessory glands and vasa deferentia empty; the funnel characterized by its slit-like lumen; and the lower ejaculatory duct (LED). Anteriorly, the UED has a keyhole-shaped lumen surrounded by a thin intima and highly columnar epithelial cells whose most conspicuous feature is massive aggregations of microtubules. More posteriorly, the UED lumen differentiates into dorsal and ventral chambers, the former having a thick cuticular lining armed with spines. In the hindmost part of the UED, the ventral chamber expands to obliterate the dorsal chamber; its cuticular lining thickens, and conspicuous lateral evaginations develop. The thick cuticle includes 3 distinct layers and on its surface carries numerous spatulate processes. In this region, the epithelial cells develop numerous short microvilli beneath which are many mitochondria. As the funnel is reached, the intima becomes extremely thick, and the epithelial cells lack microvilli and most microtubules. Within the funnel, a new, very distinct form of cuticle appears, which is in “units”, each associated with an epithelial cell and having a rounded epicuticular cap. The new cuticle arises ventrally but rapidly spreads to encircle the entire lumen, at which point the LED is considered to begin. Beneath this new cuticle, the epithelial cells are columnar, have long microvilli, numerous mitochondria in the apical cytoplasm, and rough endoplasmic reticulum basally. Apically, adjacent cells are tightly apposed; however, prominent intercellular channels develop more basally. The ejaculatory duct's features are briefly discussed in terms of its role in spermatophore formation.  相似文献   

6.
The accessory glands ofAllacma fusca(L.) (Insecta, Collembola, Sminthuridae) consist of a series of secretory units that are arranged in parallel and open into the ejaculatory duct. Each unit is composed of microvillate cells stacked around a common cavity. Basal cells are involved in ion-control of fluids from the hemocoel to the cavity. The intermediate and apical cells, which have a laminar appearance and contain many microtubules, are involved in the structural integrity of the unit. Supporting cells ensheath the most apical cells. Large openings in the cuticle allow the gland secretion to flow into the ejaculatory duct lumen. These openings are protected by a porous cuticle different from that lining the epithelium of the ejaculatory duct. Conspicuous muscle fibers run along the lateroventral side of the ejaculatory duct beneath the insertion of the accessory glands. The fine structure of the accessory glands indicates that they are type I ectodermic glands as defined by Noirot & Quennedey (1974). Their function could be to control the fluidity of the material for spermatophore formation and to ensure the proper physiological conditions for spermatozoa stored in the ejaculatory duct lumen.  相似文献   

7.
ABSTRACT The fine structure of female accessory reproductive gland (FARG) of the adult mealworm beetle, Tenebrio molitor is studied with light and electron microscopes. The FARG is a simple tubular organ that composed of two kinds of cells-secretory epithelial cells and duct forming cells. The lumen of FARG is lined with a thin cuticle and filled with secretory materials. Each secretory epithelial cell has its peculiar end apparatus in addition to well-developed rough endoplasmic reticulum (rER), mitochondria, and secretory vesicles. They are forming basal infolding along the plasma membrane. Along the inner surface of the plasma membrane, numerous secretory vesicles are seen. The glandular secretions of the epithelial secretory cells are synthesized via rER to Golgi apparatus, and are stored in the extracellular cavity in the epithelial cell. These secretions are drained to the lumen through the end apparatus and this type of glandular secretion in the insects is type III. Histochemical reactions reveal the major component of these glandular secretions is an acid mucopolysaccharide.  相似文献   

8.
The spermathecae of 4 species of Microcoryphia (Lepismachilis targionii, Trigoniophthalmus alternatus, Machilis sp. and Machilinus rupestris) present characteristics related to the primitive phylogenetic position of these apterygote insects. They are paired organs situated in the 8th abdominal segment on each side of the rudimentary genital chamber. Each spermatheca includes 2 different tissues: (a) a simple epithelium surrounding 2 spermathecal capsules and communicating with the genital chamber by short ducts; (b) a complex glandular tissue composed of numerous functional units, each made up of several cell types — a large glandular cell with a subapical reservoir, 2 basal cells, a ductule cell and enveloping cells. One of the basal cells, called the ciliary cell, presents a dendrite-like process containing 2 apical centrioles in alignment. Several ductules of neighbouring units join together before opening in the genital chamber, independently of the ducts of the spermathecal capsules.The spermathecae undergo marked changes during moulting periods. Apolysis is followed by a partial dedifferentiation of the glandular cells, then the formation of new ductule cavities and the growth of a pseudocilium at the apex of the dendrite-like process of each ciliary cell. Afterwards, cuticular material is laid down around the pseudocilia, forming the intima of the new ductules, which results from the secretions of at least the ciliary and ductule cells. The pseudocilia degenerate before ecdysis. A comparison is made with the organogenesis of analogous organs described in different insect species.  相似文献   

9.
Philonthus and other genera of Philonthina possess a pair of prototergal glands located in the first abdominal tergum and hidden at rest by hind wings and elytra. In Philonthus varians they occupy the whole length of the tergum and form a pouch-like invaginated reservoir with a scaly glandular zone and a smooth outlet. A grille of long setae covers the opening of each gland. The fine structure of these glands is given for the first time. Three types of cells are found in the glandular epithelium. Epidermal cells underlie the cuticular scales, numerous class 1 secretory cells open in the centre of calyces made of finger-like processes of the cuticle, and class 3 cells are connected to pored tubercles. A cytological comparison is made with the diverse class 1 cells described to date in Coleoptera. In these cells different evolutionary trends are shown in the structure of the cuticular apparatus, particularly in the number, size and position of the cuticular apertures as well as in the length and abundance of epicuticular filaments. A possible defensive function of the prototergal glands against pathogens and their interest for the phylogenetic study of Staphylininae are discussed.  相似文献   

10.
The dermal sheath of glandular trichomes of Cannabis sativa L., consisting of cuticle and a subcuticular wall, was examined by transmission electron microscopy. Cuticle thickened selectively on the outer wall of disc cells of each trichome prior to formation of the secretory cavity, whereas thickening was less evident on the dermal cells of the bract. Membraned secretory vesicles that differ in size and appearance in the secretory cavity were the source of precursors for synthesis of cuticle. Vesicle contents, released following the degradation of the vesicle membrane upon contact with the subcuticular wall, contributed to both structured and amorphous phases of cuticle development. The structured phase was represented by deposition and thickening of cuticle at the subcuticular wall-cuticle interface to form a thickened cuticle. In the amorphous phase precursors permeated the cuticle in a liquid state, as shown by fusion of cuticles and wax layers between contiguous glands, and may have contributed to growth in surface area of the expanding sheath. Disc cells are interpreted to control growth of secretory cavity by secretion of membraned vesicles into the cavity. The thickened cuticle, which increased eightfold in thickness during enlargement of the gland, provided structural strength for the extensive surface area of the dermal sheath. The gland of Cannabis in which vesicle contents contribute to the growth in thickness and surface area of the cuticle of the sheath is interpreted to represent a phylogenetically derived state as contrasted to secretory glands possessing only cuticle and lacking a complement of secretory vesicles.  相似文献   

11.
Females of Chrysomya putoria (Diptera: Calliphoridae) have two sexual accessory glands, which are tubular and more dilated at the distal extremity. The glands open independently into the common oviduct. Two morpho-physiological regions were distinguished in the longitudinal semi-thin sections of the glands. The secretory region is constituted by three layers: a cuticular intima, lining the lumen, followed by a layer of small cells, and then a layer of very large secretory cells. The ductal region of the gland presents only two layers: the cuticular intima and a cellular layer. In both regions a basement membrane is present. Each secretory cell has in its apical region a reservoir, which enlarges throughout oogenesis; in its basal region there is a large nucleus. The ductal cells are cylindrical and smaller than the secretory cells. The glandular secretion is synthesized in the cytoplasm of the secretory cells, stored and/or modified in the reservoir, then drained to the lumen through an end apparatus seen in the apical region of the secretory cell. Histochemical tests indicate that this secretion is a glycoprotein. Measurements of the glands from females at different physiological conditions and fed on different diets correlate with the results obtained for changes in the ovary during oogenesis. Cell number averaged 561.2 ± 77.54 per gland. There was no increase in cell number during oogenesis.  相似文献   

12.
Light and electron microscopy of the glandular epithelium of intersegmental membranes between sternites three and seven and tergites two and eight of various age groups of Nauphoeta cinerea male adults and one age group of female adults discloses differences in the epithelia of the intersternite and intertergite. The intersternal epithelium appears thicker, more glandular, and stratified. Altogether, seven cell types are recognizable, six in the male and two in the female. They are designated as types 1, 2a, 2b, 2c, 3, 4, and 5. Of these, types 1, 2a, 3, and 4 are recognizable on the sternum; types 1, 2b, and 5 on the tergum of the mature male integuments. Types 1 and 2c are found on the sternum of mature female. The cell types undergo morphological differentiation after adult emergence and show different stages of secretory activity. Type 1 are squamous cuticle-secreting cells; type 2a, 2b, and 2c are columnar-glandular and contain electron-transparent secretory vesicles of various sizes, which increase greatly in number and size in the 5-day-old adult males when the glands are most active. The vesicular size and number also differ between types 2a, 2b, and 2c cells of the same age group. The vesicles are assumed to be derived from smooth endoplasmic reticulum. The type 2 gland cells are also provided with a secretory end apparatus lined by cuticle and bordered by microvilli through which the secretion is believed to be released by exocytosis. The end apparatus leads into a cuticular ductule that opens to the surface of the cuticle as a cup-shaped receptacle, which is more conspicuous in the male intersternite. In the active gland cells, the mitochondria near the end apparatus are swollen and vacuolated. Type 3 cells are seen only on the intersternum and are believed to secrete the cuticular ductule that proceeds from the end apparatus. Type 4 cells are also recognizable only on the male intersternum and contain closely packed, electron-dense bodies, which are most numerous in mature (5-day-old) males. Type 5 cells with their dense cytoplasm are located basally in the intertergal epithelium. The functional significance of type 4 and 5 cells in the males and type 2c cells in the female is not clear. On the basis of differences in morphology, pheromone activity, and sexual behavior, it is suggested that the pheromones secreted by the intersternal and intertergal glands in the male are different, the former secreting a seducin that attracts the female to the male and the latter an “aphrodisiac” acting as a contact pheromone important in accomplishing mating.  相似文献   

13.
Abstract. Species of Helicoradomenia are constantly found at hydrothermal vent sites of the eastern and western Pacific Ocean. The digestive tract of 2 species of the genus was investigated with special focus on the ultrastructure and histochemistry of epithelia and glandular organs. The preoral cavity and foregut epithelia are composed of microvillous main cells, secretory cells producing protein-rich substances, and sensory cells with specialized cilia. The foregut bears a pair of glands with 3 types of extremely long-necked glandular cells surrounded by musculature. Each glandular cell opens directly into the radula pocket without a gland duct. The large radula apparatus consists of pairs of denticulated bars resting on a flexible radular membrane without elaboration of a subradular membrane. The midgut has a narrow, mid-dorsal tract of ciliary cells, but most of the epithelium is composed of digestive cells with a highly developed lysosomal system. The hindgut is lined by ciliated cells and free of glands. The foregut and radula seem to be highly efficient in the capture of relatively large, motile prey. Food contents within the midgut lumen and within some of the large secondary lysosomes indicate a triploblastic metazoan prey of non-cnidarian origin. The digestive tract is not adapted to microvory and there is no indication of a symbiosis with chemoautotrophic bacteria.  相似文献   

14.
Pheromone glands were discovered in the prothorax of male Hylotrupes bajulus (L.) (Coleoptera : Cerambycidae). These exocrine glands were investigated by SEM and light microscopy. Almost the entire prothorax is internally lined with a glandular matrix composed of numerous heap-like complex glands. Each gland is divided into several subunits (“pore field units”), which in turn are composed of a varying number of glandular units. The glandular unit comprises a distal voluminous glandular cell, a medial (intercalary) canal cell I, and a minute canal cell II near the cuticle. The spindle-like, basally constricted receiving canal of the gland cell leads into the long, non-porous conducting canal, which, by a single cuticle canal, opens in an external pore field, an aggregate of orifices of other such cuticle canals. In varying numbers, these randomly arranged pore fields are located in superficial pits that are distributed over nearly the entire prothorax. The structure of these male sex pheromone glands is discussed in comparison with other known glands in species of Coleoptera characterized by multicellular aggregations and by pore plates.  相似文献   

15.
Exocrine dermal glands, comparable to the class 3 glandular units of insects, are found in the gills of the grass shrimp, Palaemonetes pugio. The dermal glands are composed of three cells: secretory cell, hillock cell and canal cell. Originating as a complex invagination of the apical cytoplasm of the granular secretory cell, a duct ascends through the hillock and canal cells to the cuticular surface. The duct is divisible into four regions: the secretory apparatus in the granular secretory cell, the locular complex, the hillock region within the hillock cell and the canal within the canal cell. A tubular ductule is contained within the latter two regions. As the ductule ascends to the cuticular surface, its constitution gradually changes from one of a fibrous material to one which possesses layers of epicuticle. During the proecdysial period, the ductule is extruded into the ecdysial space and this is followed by the secretion of a new ductule. Temporary ciliary structures, located near the secretory apparatus of the secretory cell, are associated with the extrusion and reformation of the ductule. Characterized only by a basal body and rootlets throughout most of the intermolt cycle, the ciliary organelles give rise to temporary axonemic processes which ascend through the ductule toward the ecdysial space at the onset of proecdysis. Subsequently, the old ductule is sloughed off and a new ductule is reformed around the ciliary axonemes. Following this reformation, the ciliary axonemes degenerate. The function of cytoplasmic processes, derived from the apical cytoplasm of the secretory cell, is also discussed.  相似文献   

16.
The ultrastructure of wax glands (integumentary, stigmatic, and peristigmatic glands) was investigated in larvae, cysts, and adult females and males of species belonging to the genera Porphyrophora, Sphaeraspis, and Eurhizococcus. The general organization and cytological characteristics are similar for all glands studied. Each gland is composed of a single layer of 8 to 40 cells. The glandular cells are characterized by a very large quantity of smooth endoplasmic reticulum which forms dense zones throughout the cytoplasm, but is always placed near the collecting canals in the presence of mitochondria. Each cell has a central canal reservoir which penetrates it deeply and gives rise to a large number of lateral collecting canals, formed by the invagination of the apical plasma membrane. The canals open into a subcuticular cavity forming a common reservoir in which the secretion is accumulated. This reservoir is covered by a modified cuticle formed from the endocuticle and the epicuticle. The endocuticle is composed of a network of fine tubular structures and has many filaments on its surface. The epicuticle is perforated by numerous pores. There is no cuticular duct. The secretion crosses the cuticle in three successive steps. First, it passes through the filaments, then through fine tubular structures of the endocuticle, and finally through the epicuticular pores.  相似文献   

17.
Summary Ciliary aggregations occur as the prototroch, neurotroch, apical system and as tufts associated with the eyes and superficial glands. The major collection of cilia is the locomotory organ or prototroch that runs around the equatorial plane of the larva. This band is composed of four contiguous rows of cells, the two medial rows bearing the long locomotory cilia. The cilia occur in clumps, with several clumps arising from each prototroch cell while both the main cells contribute to each clump. The central filaments of these cilia are orientated at right angles to the long axis of the clump, the direction of ciliary beat being at right angles to the progression of the metachronal wave along the prototroch. The neurotroch, extending from the mouth to the posterior pole of the larva, beats away from the mouth. The rate of beating is rapid, and the cilia are short. The apical area of the larva is bordered by five single lines of compound cilia that surround a few stiff cilia. All the cilia beat occasionally. A further line of cilia, the akrotroch, exists at a position halfway between the apical area and the prototroch on the same side as the mouth. These cilia beat towards the prototroch. Some of these cilia are associated with sets of glandular openings. The fine structure of the glands and cuticle is described. The glands are small mucous glands that open via a projecting pore which is encircled by rings of microvilli. They often occur in groups of four or in pairs. The cuticle is similar to that described previously for adult polychaetes.This work was started under a Science Research Council (U.K.) grant (B/SR/1871) for a Research Assistantship to Dr. M. S. Laverack and grateful acknowledgement is made for this. We would like to thank Dr. A. Boyde for all his advice and use of apparatus. The scanning electron microscope used in this study was provided by a Science Research Council (U. K.) grant to Dr. Boyde. We would like to thank Mrs. J. Parkes for photographic assistance.  相似文献   

18.
In female alates of Macrotermes annandalei, two types of abdominal glands are involved in the secretion of sex pheromone. Tergal glands are found at the anterior margin of tergites 6-10 and posterior sternal glands (PSGs) are located at the anterior margin of sternites 6-7. The cytological features of both types of glands are quite similar. The fine structural organization of PSGs is studied more precisely and described for the first time. The glandular cuticle is pitted with narrow apertures corresponding to the openings of numerous subcuticular pouches. Several Class 3 glandular units open in each pouch. One canal cell and one secretory cell make an individual glandular unit. The canal cell is enlarged apically and is connected with the other canal cells to form a common pouch. Based on the structural features found in these glands, we propose a common secretory process for PSGs and tergal glands. During the physiological maturation of alates inside the nest, secretory vesicles amass in the cytoplasm of secretory cells, while large intercellular spaces collapse the cuticular pouches. At the time of dispersal flight, pouches are filled with the content of secretory vesicles while intercellular spaces are sharply reduced. After calling behavior, no secretion remains in the glands and pouches collapse again, while secretory cells are drastically reduced in size. The structure and the secretory processes of PSGs and tergal glands are compared to those of abdominal sexual glands known in termites.  相似文献   

19.
In the notostigmophoran centipedes, two pairs of vesicular glands have evolved. These paired glands are situated in the first and second trunk segment and open via cuticular ducts in the upper part of the particular pleura. The vesicular glands of Scutigera coleoptrata were investigated using light and, for the first time, electron microscopical methods. The glands consist of wide sac‐like cavities that often appear vesicular. The epithelia of both glands are identically structured and consist of numerous glandular units. Each of these units consists of four different cells: a single secretory cell, a small intermediary cell, and one proximal and one distal canal cell. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cells. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the ultrastructure of glandular units of the vesicular glands is comparable to that of the glandular units of other epidermal glands in Chilopoda and Diplopoda, although the glands look completely different in the light microscope. Thus, it is likely that the vesicular glands and epidermal glands share the same ground pattern. With regard to specific differences in the cuticular lining of the intermediary cells, a common origin of epidermal glands in Myriapoda and Hexapoda is not supported. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Abstract: The internal and external morphology of the female sex pheromone gland in Cameraria ohridella Deschka & Dimic, an European pest on Aesculus hippocastanum L., has been investigated by histological and electron microscopic techniques. The gland consists of a single layer of modified epidermal cells in the dorsal part of the intersegmental membrane between the eighth and ninth abdominal segments and laterally extends to the posterior apophyses. The epithelium contains large columnar- and cone-shaped cells with basally situated nuclei. The cuticle, which covers the glandular region, has a wrapped appearance and is divided into a hyalin and thickened endocuticle and a thin outer epicuticle: it considerably expands when the gland is protruded and provides a sufficiently large surface for evaporation of the pheromone. The cuticle does not show any orifices of pore channels. In the retracted position, the gland is folded within the body cavity of the seventh and eighth abdominal segments but is exposed to the environment by extension of the abdominal tip along with female calling. In virgin females, pheromone glands are well developed at least within the first days after eclosion; if copulation occurs, glandular epithelia degenerate soon. According to the current classification, the glandular type of C. ohridella most easily is consistent with eversible dorsal scent folds that are widely distributed amongst diverse taxa of Lepidoptera. However, this is the first report on the morphology of pheromone glands in the Gracillariidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号