首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immature thymocytes express clonotype-independent CD3 complexes that, when engaged by anti-CD3 antibodies, can signal CD4-CD8- thymocytes to differentiate into CD4+CD8+ cells. Clonotype-independent CD3 complexes consist of CD3 components associated with an unknown 90 kDa surface protein. We now report the surprising finding that this 90 kDa surface protein is the molecular chaperone calnexin, an integral membrane protein previously thought to reside only in the endoplasmic reticulum (ER). We found that calnexin-CD3 complexes escaping to the cell surface utilize interchain associations distinct from those utilized by calnexin-CD3 complexes remaining within the ER. Specifically, we demonstrate that carbohydrate-mediated luminal domain interactions that are necessary for formation of most internal calnexin-CD3 complexes destined to be expressed on the cell surface, and we provide evidence that cytoplasmic domain interactions between calnexin and CD3 epsilon chains mask calnexin's ER retention signal, permitting calnexin and associated proteins to escape ER retention. Thus, the present study demonstrates that partial T cell antigen receptor complexes can escape the ER of immature thymocytes in association with their molecular chaperone to be expressed at low levels on the cell surface where they may function as a signaling complex to regulate thymocyte maturation.  相似文献   

2.
The subcellular distribution of calnexin is mediated by PACS-2   总被引:1,自引:0,他引:1       下载免费PDF全文
Calnexin is an endoplasmic reticulum (ER) lectin that mediates protein folding on the rough ER. Calnexin also interacts with ER calcium pumps that localize to the mitochondria-associated membrane (MAM). Depending on ER homeostasis, varying amounts of calnexin target to the plasma membrane. However, no regulated sorting mechanism is so far known for calnexin. Our results now describe how the interaction of calnexin with the cytosolic sorting protein PACS-2 distributes calnexin between the rough ER, the MAM, and the plasma membrane. Under control conditions, more than 80% of calnexin localizes to the ER, with the majority on the MAM. PACS-2 knockdown disrupts the calnexin distribution within the ER and increases its levels on the cell surface. Phosphorylation by protein kinase CK2 of two calnexin cytosolic serines (Ser554/564) reduces calnexin binding to PACS-2. Consistent with this, a Ser554/564 Asp phosphomimic mutation partially reproduces PACS-2 knockdown by increasing the calnexin signal on the cell surface and reducing it on the MAM. PACS-2 knockdown does not reduce retention of other ER markers. Therefore, our results suggest that the phosphorylation state of the calnexin cytosolic domain and its interaction with PACS-2 sort this chaperone between domains of the ER and the plasma membrane.  相似文献   

3.
A mutation in the alpha1-subunit (A322D) of GABA(A)Rs is responsible for juvenile myoclonic epilepsy in a large Canadian family. Previous work has identified that this mutant affects the cell expression and function of recombinant GABA(A)Rs, expressed in HEK293 cells. Here we have extended these observations by showing that the mutation promotes association with the endoplasmic reticulum chaperone calnexin and accelerates the degradation rate of the subunits approximately 2.5-fold. We also find that the mutation causes the subunit to be degraded largely by a lysosomal-dependent process. Furthermore, we find that the mutation results in receptors that are inserted into the plasma membrane but are more rapidly endocytosed by a dynamin and caveolin1-dependent mechanism. These results suggest that the mutant subunit can form functional receptors, but that these have a shorter lifetime on the plasma membrane.  相似文献   

4.
Calreticulin and calnexin are Ca2+-binding proteins with chaperone activity in the endoplasmic reticulum. These proteins have been eliminated by gene replacement in Dictyostelium, the only microorganism known to harbor both proteins; family members in Dictyostelium are located at the base of phylogenetic trees. A dramatic decline in the rate of phagocytosis was observed in double mutants lacking calreticulin and calnexin, whereas only mild changes occurred in single mutants. Dictyostelium cells are professional phagocytes, capable of internalizing particles by a sequence of activities: adhesion of the particle to the cell surface, actin-dependent outgrowth of a phagocytic cup, and separation of the phagosome from the plasma membrane. In the double-null mutants, particles still adhered to the cell surface, but the outgrowth of phagocytic cups was compromised. Green fluorescent protein-tagged calreticulin and calnexin, expressed in wild-type cells, revealed a direct link of the endoplasmic reticulum to the phagocytic cup enclosing a particle, such that the Ca2+ storage capacity of calreticulin and calnexin might directly modulate activities of the actin system during particle uptake.  相似文献   

5.
Voltage-gated Kv1 channels are key factors regulating excitability in the mammalian central nervous system. Diverse posttranslational regulatory mechanisms operate to determine the density, subunit composition, and localization of Kv1 channel complexes in the neuronal plasma membrane. In this study, we investigated the role of the endoplasmic reticulum chaperone calnexin in the intracellular trafficking of Kv1 channels. We found that coexpressing calnexin with the Kv1.2alpha subunit in transfected mammalian COS-1 cells produced a dramatic dose-dependent increase in cell surface Kv1.2 channel complexes. In calnexin-transfected COS-1 cells, the proportion of Kv1.2 channels with mature N-linked oligosaccharide chains was comparable to that observed in neurons. In contrast, calnexin coexpression exerted no effects on trafficking of the intracellularly retained Kv1.1 or Kv1.6alpha subunits. We also found that calnexin and auxiliary Kvbeta2 subunit coexpression was epistatic, suggesting that they share a common pathway for promoting Kv1.2 channel surface expression. These results provide yet another component in the elaborate repertoire of determinants regulating the density of Kv1 channels in the plasma membrane.  相似文献   

6.
High-grade glioma cells express subunits of the ENaC/Deg superfamily, including members of ASIC subfamily. Our previous work has shown that glioma cells exhibit a basally active cation current, which is not present in low-grade tumor cells or normal astrocytes, and that can be blocked by amiloride. When ASIC2 is present within the channel complex in the plasma membrane, the channel is rendered non-functional because of inherent negative effectors that require ASIC2. We have previously shown that high-grade glioma cells functionally express this current because of the lack of ASIC2 in the plasma membrane. We now hypothesize that ASIC2 trafficking in glioma cells is regulated by a specific chaperone protein, namely Hsc70. Our results demonstrated that Hsc70 co-immunoprecipitates with ASIC2 and that it is overexpressed in glioma cells as compared with normal astrocytes. In contrast, there was no difference in the expression of calnexin, which also co-immunoprecipitates with ASIC2. In addition, glycerol and sodium 4-phenylbutyrate reduced the amount of Hsc70 expressed in glioma cells to levels found in normal astrocytes. Transfection of Hsc70 siRNA inhibited the constitutively activated amiloride-sensitive current, decreased migration, and increased ASIC2 surface expression in glioma cells. These results support an association between Hsc70 and ASIC2 that may underlie the increased retention of ASIC2 in the endoplasmic reticulum of glioma cells. The data also suggest that decreasing Hsc70 expression promotes reversion of a high-grade glioma cell to a more normal astrocytic phenotype.  相似文献   

7.
Calnexin is an endoplasmic reticulum (ER)-resident molecular chaperone that plays an essential role in the correct folding of membrane proteins. We found that calnexin is subjected to partial cleavage in apoptotic mouse cells. Both ER stress-inducing and ER stress-non-inducing apoptotic stimuli caused the cleavage of calnexin, indicating that this event does not always occur downstream of ER stress. The inhibition of caspases that target the amino acid sequence DXXD abrogated calnexin cleavage in apoptotic stimulus-treated cells. In addition, disruption of one of two DXXD sequences located in the cytoplasmic domain caused calnexin to escape cleavage during apoptosis. Furthermore, calnexin was cleaved in vitro by recombinant caspase-3 or caspase-7. Finally, the overexpression of a presumed cleavage product of calnexin partly inhibited apoptosis. These results collectively suggest that caspase-3 or caspase-7 cleaves calnexin, whose cleaved product leads to the attenuation of apoptosis.  相似文献   

8.
9.
G protein-coupled receptors (GPCRs) are heptahelical integral membrane proteins that require cell surface expression to elicit their effects. The lack of appropriate expression of GPCRs may be the underlying cause of a number of inherited disorders. There is evidence that newly synthesized GPCRs must attain a specific conformation for their correct trafficking to the cell surface. In this study, we show that a single point mutation in human melanin-concentrating hormone receptor (hMCHR1) at position 255 (T255A), which is located at the junction of intracellular loop 3 and transmembrane domain 6, reduces the hMCHR1 cell surface expression level to 20% of that observed for the wild-type receptor. Most of these mutant receptors are located intracellularly, as opposed to the wild-type receptor, which is located primarily on the cell surface. Immunoprecipitation experiments show that hMCHR1-T255A has reduced glycosylation compared with the wild-type receptor and is associated with the chaperone protein, calnexin, and it colocalizes in the endoplasmic reticulum with KDEL-containing proteins. We also demonstrate that a cell-permeable small molecule antagonist of hMCHR1 can function as a pharmacological chaperone to restore cell surface expression of this and other MCHR1 mutants to wild-type levels. Once rescued, the T255A mutant couples to Gq proteins as efficiently as the wild-type receptor. These data suggest that this single mutation produces an hMCHR1 that folds incorrectly, resulting in its retention in the endoplasmic reticulum, but once rescued to the cell surface can still function normally.  相似文献   

10.
Calnexin is an endoplasmic reticulum (ER) resident type I integral membrane phosphoprotein. This protein is actively involved in the ER glycoprotein quality control through its luminal domain. In addition, although calnexin also interacts with membrane-bound ribosomes, the nature of this interaction remains poorly characterized. Herein, using in vitro approaches, we demonstrate that calnexin cytosolic domain directly interacts with, at least 5 ribosomal proteins. Furthermore, we characterize more specifically its interaction with the ribosomal protein L4 and that L4 binds to the 19 carboxy terminal amino acids of calnexin. We suggest that the direct interaction of calnexin with membrane-bound ribosomes may represent a regulatory mechanism for its lectin-like chaperone function.  相似文献   

11.
As for all proteins, G protein-coupled receptors (GPCRs) undergo synthesis and maturation within the endoplasmic reticulum (ER). The mechanisms involved in the biogenesis and trafficking of GPCRs from the ER to the cell surface are poorly understood, but they may involve interactions with other proteins. We have now identified the ER chaperone protein calnexin as an interacting protein for both D(1) and D(2) dopamine receptors. These protein-protein interactions were confirmed using Western blot analysis and co-immunoprecipitation experiments. To determine the influence of calnexin on receptor expression, we conducted assays in HEK293T cells using a variety of calnexin-modifying conditions. Inhibition of glycosylation either through receptor mutations or treatments with glycosylation inhibitors partially blocks the interactions with calnexin with a resulting decrease in cell surface receptor expression. Confocal fluorescence microscopy reveals the accumulation of D(1)-green fluorescent protein and D(2)-yellow fluorescent protein receptors within internal stores following treatment with calnexin inhibitors. Overexpression of calnexin also results in a marked decrease in both D(1) and D(2) receptor expression. This is likely because of an increase in ER retention because confocal microscopy revealed intracellular clustering of dopamine receptors that were co-localized with an ER marker protein. Additionally, we show that calnexin interacts with the receptors via two distinct mechanisms, glycan-dependent and glycan-independent, which may underlie the multiple effects (ER retention and surface trafficking) of calnexin on receptor expression. Our data suggest that optimal receptor-calnexin interactions critically regulate D(1) and D(2) receptor trafficking and expression at the cell surface, a mechanism likely to be of importance for many GPCRs.  相似文献   

12.
Calnexin is a membrane protein of the endoplasmic reticulum (ER) that functions as a molecular chaperone and as a component of the ER quality control machinery. Calreticulin, a soluble analog of calnexin, is thought to possess similar functions, but these have not been directly demonstrated in vivo. Both proteins contain a lectin site that directs their association with newly synthesized glycoproteins. Although many glycoproteins bind to both calnexin and calreticulin, there are differences in the spectrum of glycoproteins that each binds. Using a Drosophila expression system and the mouse class I histocompatibility molecule as a model glycoprotein, we found that calreticulin does possess apparent chaperone and quality control functions, enhancing class I folding and subunit assembly, stabilizing subunits, and impeding export of assembly intermediates from the ER. Indeed, the functions of calnexin and calreticulin were largely interchangeable. We also determined that a soluble form of calnexin (residues 1-387) can functionally replace its membrane-bound counterpart. However, when calnexin was expressed as a soluble protein in L cells, the pattern of associated glycoproteins changed to resemble that of calreticulin. Conversely, membrane-anchored calreticulin bound to a similar set of glycoproteins as calnexin. Therefore, the different topological environments of calnexin and calreticulin are important in determining their distinct substrate specificities.  相似文献   

13.
Li HD  Liu WX  Michalak M 《PloS one》2011,6(7):e21678

Background

Calnexin, together with calreticulin, constitute the calnexin/calreticulin cycle. Calnexin is a type I endoplasmic reticulum integral membrane protein and molecular chaperone responsible for the folding and quality control of newly-synthesized (glyco)proteins. The endoplasmic reticulum luminal domain of calnexin is responsible for lectin-like activity and interaction with nascent polypeptide chains. The role of the C-terminal, cytoplasmic portion of calnexin is not clear.

Methodology/Principal Findings

Using yeast two hybrid screen and immunoprecipitation techniques, we showed that the Src homology 3-domain growth factor receptor-bound 2-like (Endophilin) interacting protein 1 (SGIP1), a neuronal specific regulator of endocytosis, forms complexes with the C-terminal cytoplasmic domain of calnexin. The calnexin cytoplasmic C-tail interacts with SGIP1 C-terminal domains containing the adaptor complexes medium subunit (Adap-Comp-Sub) region. Calnexin-deficient cells have enhanced clathrin-dependent endocytosis in neuronal cells and mouse neuronal system. This is reversed by expression of full length calnexin or calnexin C-tail.

Conclusions/Significance

We show that the effects of SGIP1 and calnexin C-tail on clathrin-dependent endocytosis are due to modulation of the internalization of the receptor-ligand complexes. Enhanced clathrin-dependent endocytosis in the absence of calnexin may contribute to the neurological phenotype of calnexin-deficient mice.  相似文献   

14.
The endoplasmic reticulum (ER) has evolved specific mechanisms to ensure protein folding as well as the maintenance of its own homeostasis. When these functions are not achieved, specific ER stress signals are triggered to activate either adaptive or apoptotic responses. Here, we demonstrate that MCF-7 cells are resistant to tunicamycin-induced apoptosis. We show that the expression level of the ER chaperone calnexin can directly influence tunicamycin sensitivity in this cell line. Interestingly, the expression of a calnexin lacking the chaperone domain (DeltaE) partially restores their sensitivity to tunicamycin-induced apoptosis. Indeed, we show that DeltaE acts as a scaffold molecule to allow the cleavage of Bap31 and thus generate the proapoptotic p20 fragment. Utilizing the ability of MCF-7 cells to resist tunicamycin-induced apoptosis, we have characterized a molecular mechanism by which calnexin regulates ER-stress-mediated apoptosis in a manner independent of its chaperone functions but dependent of its binding to Bap31.  相似文献   

15.
Missense point mutations in Gas3/PMP22 are responsible for the peripheral neuropathies Charcot-Marie-Tooth 1A and Dejerine Sottas syndrome. These mutations induce protein misfolding with the consequent accumulation of the proteins in the endoplasmic reticulum and the formation of aggresomes. During folding, Gas3/PMP22 associates with the lectin chaperone calnexin. Here, we show that calnexin interacts with the misfolded transmembrane domains of Gas3/PMP22, fused to green fluorescent protein, in a glycan-independent manner. In addition, photobleaching experiments in living cells revealed that Gas3/PMP22-green fluorescent protein mutants are mobile but diffuse at almost half the diffusion coefficient of wild type protein. Our results support emerging models for a glycan-independent chaperone role for calnexin and for the mechanism of retention of misfolded membrane proteins in the endoplasmic reticulum.  相似文献   

16.
Calnexin is an endoplasmic reticulum chaperone that binds to substrates containing monoglucosylated oligosaccharides. Whether calnexin can also directly recognize polypeptide components of substrates is controversial. We found that calnexin displayed significant conformational lability for a chaperone and that heat treatment and calcium depletion induced the formation of calnexin dimers and higher order oligomers. These conditions enhanced the chaperone activity of calnexin toward glycosylated and non-glycosylated major histocompatibility complex (MHC) class I heavy chains, and enhanced calnexin binding to MHC class I heavy chains. In contrast to these observations, calnexin binding to oligosaccharide substrates has been reported to be impaired under calcium-depleting conditions. Calnexin dimers were induced in HeLa cells upon heat shock and under calcium-depleting conditions, and heat shock enhanced calnexin binding to MHC class I heavy chains in HeLa cells. Virus-induced endoplasmic reticulum stress also resulted in the appearance of calnexin dimers. Tunicamycin treatment of HeLa cells induced a slow accumulation of calnexin dimers, the appearance of which correlated with enhanced calnexin binding to deglycosylated MHC class I heavy chains. In vitro, the presence of calnexin-specific oligosaccharides inhibited the formation of calnexin dimers and higher order structures. Together, these data indicate that polypeptide binding is favored by conditions that induce partial unfolding of calnexin monomers, whereas oligosaccharide binding is favored by conditions that enhance the structural stability (folding) of calnexin monomers. Conditions that induce the calnexin "polypeptide-binding" conformation also induce self-association of calnexin if the concentration is sufficiently high; however, calnexin dimerization/oligomerization per se is not essential for polypeptide substrate binding.  相似文献   

17.
Assembly of HLA class I-peptide complexes is assisted by multiple proteins that associate with HLA molecules in loading complexes. These include the housekeeping chaperones calnexin and calreticulin and two essential proteins, the transporters associated with antigen processing (TAP) for peptide supply, and the protein tapasin which is thought to act as a specialized chaperone. We dissected functional effects of processing cofactors by co-expressing in insect cells various combinations of the human proteins HLA-A2, HLA-B27, beta(2)-microglobulin, TAP, calnexin, calreticulin, and tapasin. Stability at 37 degrees C and surface expression of class I dimers correlated closely in baculovirus-infected Sf9 cells, suggesting that these cells retain empty dimers in the endoplasmic reticulum. Both HLA molecules form substantial quantities of stable complexes with insect cell-produced peptide pools. These pools are TAP-selected cytosolic peptides for HLA-B27 but endoplasmic reticulum-derived, i.e. TAP-independent peptides for HLA-A2. This discrepancy may be due to peptide selection by human TAP which is much better adapted to the HLA-B27 than to the HLA-A2 ligand preferences. HLA class I assembly with peptides from TAP-dependent and -independent pools was enhanced strongly by tapasin. Thus, tapasin acts as a chaperone and/or peptide editor that facilitates assembly of peptides with HLA class I molecules independently of mediating their interaction with TAP and/or retention in the endoplasmic reticulum.  相似文献   

18.
Cannon KS  Cresswell P 《The EMBO journal》2001,20(10):2443-2453
Retention of misfolded proteins in the endoplasmic reticulum (ER) is a primary mechanism of quality control. To discover whether quality control can monitor assembly inside the hydrophobic ER membrane, we characterized the folding and transport of the tetraspanin glycoprotein CD82. Truncated forms of CD82 that are missing one or more transmembrane segments remain in the ER. A construct (TM 2-4) that is missing the first transmembrane segment remains in the ER, even though its extracellular domain, which is facing the ER lumen, has folded to the native structure. Transport to the cell surface is restored by co-expressing the missing segment (TM 1) as a separate polypeptide. Prior to leaving the ER, CD82 transiently associates with the membrane-bound chaperone calnexin but not with its soluble homolog calreticulin. TM 2-4, in contrast, remains in a prolonged interaction with calnexin that is partially reversed by co-expressing TM 1. These findings establish a simple system to study transmembrane domain assembly, show that ER quality control can directly monitor assembly inside the lipid bilayer and suggest that calnexin may play a role in this process.  相似文献   

19.
The ATP-binding cassette transporter ABCB4 is a phosphatidylcholine translocator specifically expressed at the bile canalicular membrane in hepatocytes, highly homologous to the multidrug transporter ABCB1. Variations in the ABCB4 gene sequence cause progressive familial intrahepatic cholestasis type 3. We have shown previously that the I541F mutation, when reproduced either in ABCB1 or in ABCB4, led to retention in the endoplasmic reticulum (ER)/Golgi. Here, Madin-Darby canine kidney cells expressing ABCB1-GFP were used as a model to investigate this mutant. We show that ABCB1-I541F is not properly folded and is more susceptible to in situ protease degradation. It colocalizes and coprecipitates with the ER chaperone calnexin and coprecipitates with the cytosolic chaperone Hsc/Hsp70. Silencing of calnexin or overexpression of Hsp70 have no effect on maturation of the mutant. We also tested potential rescue by chemical and pharmacological chaperones. Thapsigargin and sodium 4-phenyl butyrate were inefficient. Glycerol improved maturation and exit of the mutant from the ER. Cyclosporin A, a competitive substrate for ABCB1, restored maturation, plasma membrane expression, and activity of ABCB1-I541F. Cyclosporin A also improved maturation of ABCB4-I541F in Madin-Darby canine kidney cells. In HepG(2) cells transfected with ABCB4-I541F cDNA, cyclosporin A allowed a significant amount of the mutant protein to reach the membrane of bile canaliculi. These results show that the best strategy to rescue conformation-defective ABCB4 mutants is provided by pharmacological chaperones that specifically target the protein. They identify cyclosporin A as a potential novel therapeutic tool for progressive familial intrahepatic cholestasis type 3 patients.  相似文献   

20.
Microsomal epoxide hydrolase (mEH) is a bifunctional membrane protein that plays a central role in the metabolism of xenobiotics and in the hepatocyte uptake of bile acids. Numerous studies have established that this protein is expressed both in the endoplasmic reticulum and at the sinusoidal plasma membrane. Preliminary evidence has suggested that mEH is expressed in the endoplasmic reticulum (ER) membrane with two distinct topological orientations. To further characterize the membrane topology and targeting of this protein, an N-glycosylation site was engineered into mEH to serve as a topological probe for the elucidation of the cellular location of mEH domains. The cDNAs for mEH and this mEH derivative (mEHg) were then expressed in vitro and in COS-7 cells. Analysis of total expressed protein in these systems indicated that mEHg was largely unglycosylated, suggesting that expression in the ER was primarily of a type I orientation (Ccyt/Nexo). However, analysis, by biotin/avidin labeling procedures, of mEHg expressed at the surface of transfected COS-7 cells, showed it to be fully glycosylated, indicating that the topological form targeted to this site originally had a type II orientation (Cexo/Ncyt) in the ER. The surface expression of mEH was also confirmed by confocal fluorescence scanning microscopy. The sensitivity of mEH topology to the charge at the N-terminal domain was demonstrated by altering the net charge over a range of 0 to +3. The introduction of one positive charge led to a significant inversion in mEH topology based on glycosylation site analysis. A truncated form of mEH lacking the N-terminal hydrophobic transmembrane domain was also detected on the extracellular surface of transfected COS-7 cells, demonstrating the existence of at least one additional transmembrane segment. These results suggest that mEH may be integrated into the membrane with multiple transmembrane domains and is inserted into the ER membrane with two topological orientations, one of which is targeted to the plasma membrane where it mediates bile acid transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号