首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that hen egg white lysozyme (HEWL) forms amyloid fibrils. Since HEWL is one of the proteins that have been studied most extensively and is closely related to human lysozyme, the variants of which form the amyloid fibrils that are related to hereditary systemic amyloidosis, this protein is an ideal model to study the mechanism of amyloid fibril formation. In order to gain an insight into the mechanism of amyloid fibril formation, systematic and detailed studies to detect and characterize various structural states of HEWL were conducted. Since HEWL forms amyloid fibrils in highly concentrated ethanol solutions, solutions of various concentrations of HEWL in various concentrations of ethanol were prepared, and the structures of HEWL in these solutions were investigated by small-angle X-ray and neutron scattering. It was shown that the structural states of HEWL were distinguished as the monomer state, the state of the dimer formation, the state of the protofilament formation, the protofilament state, and the state towards the formation of amyloid fibrils. A phase diagram of these structural states was obtained as a function of protein, water and ethanol concentrations. It was found that under the monomer state the structural changes of HEWL were not gross changes in shape but local conformational changes, and the dimers, formed by the association at the end of the long axis of HEWL, had an elongated shape. Circular dichroism measurements showed that the large changes in the secondary structures of HEWL occurred during dimer formation. The protofilaments were formed by stacking of the dimers with their long axis (nearly) perpendicular to and rotated around the protofilament axis to form a helical structure. These protofilaments were characterized by their radius of gyration of the cross-section of 2.4nm and the mass per unit length of 16,000(+/-2300)Da/nm. It was shown that the changes of the structural states towards the amyloid fibril formation occurred via lateral association of the protofilaments. A pathway of the amyloid fibril formation of HEWL was proposed from these results.  相似文献   

2.
Amyloid fibrils formed by the 29-residue peptide hormone glucagon at different concentrations have strikingly different morphologies when observed by transmission electron microscopy. Fibrils formed at low concentration (0.25 mg/mL) consist of two or more protofilaments with a regular twist, while fibrils at high concentration (8 mg/mL) consist of two straight protofilaments. Here, we explore the structural differences underlying glucagon polymorphism using proteolytic degradation, linear and circular dichroism, Fourier transform infrared spectroscopy (FTIR), and X-ray fiber diffraction. Morphological differences are perpetuated at all structural levels, indicating that the two fibril classes differ in terms of protofilament backbone regions, secondary structure, chromophore alignment along the fibril axis, and fibril superstructure. Straight fibrils show a conventional β-sheet-rich far-UV circular dichroism spectrum whereas that of twisted fibrils is dominated by contributions from β-turns. Fourier transform infrared spectroscopy confirms this and also indicates a more dense backbone with weaker hydrogen bonding for the twisted morphology. According to linear dichroism, the secondary structural elements and the aromatic side chains in the straight fibrils are more highly ordered with respect to the alignment axis than the twisted fibrils. A series of highly periodical reflections in the diffractogram of the straight fibrils can be fitted to the diffraction pattern expected from a cylinder. Thus, the highly integrated structural organization in the straight fibril leads to a compact and highly uniform fibril with a well-defined edge. Prolonged proteolytic digestion confirmed that the straight fibrils are very compact and stable, while parts of the twisted fibril backbone are much more readily degraded. Differences in the digest patterns of the two morphologies correlate with predictions from two algorithms, suggesting that the polymorphism is inherent in the glucagon sequence. Glucagon provides a striking illustration of how the same short sequence can be folded into two remarkably different fibrillar structures.  相似文献   

3.
Amyloid- (A) oligomers play a crucial role in Alzheimer’s disease due to their neurotoxic aggregation properties. Fibrillar A oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel -sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A monomers. From that, we propose the following growth mechanism from A oligomers to fibrils: (1) elongation of short protofilaments; (2) breakage of large protofilaments; (3) formation of short protofilament pairs; and (4) elongation of protofilament pairs.  相似文献   

4.
Various proteins have been shown to form various aggregated structures including the filamentous aggregates known as amyloid fibrils depending on the solution conditions. Hen egg white lysozyme (HEWL) is one of the proteins that form the amyloid fibrils. To gain insight into the mechanism of this polymorphism of the aggregated structures, we employed a model system consisting of HEWL, pure water, and ethanol, and investigated the kinetic process of the fibril formation in various salt concentrations with time-resolved neutron scattering. It was shown that by addition of NaCl in a range between 0.3 mM and 1.0 mM to HEWL solution in 90% ethanol, gelation occurred, and this gelation proceeded through a two-step process: the lateral association of the protofilaments, followed by the cross-linking of these fibrils formed. Both the structures of the fibrils and the rate of the gelation depended on NaCl concentration. The average structures of the fibrils formed at 1.0 mM NaCl were characterized by the radius of gyration of their cross-section (45.9(+/-0.4)A) and the number of the protofilaments within the fibril (4.10(+/-0.12)), corresponding to the mature amyloid fibrils. A range of intermediate structures was formed below 1 mM NaCl. Above 2 mM NaCl, precipitation occurred because of the formation of amorphous aggregates. Here the branch point to the formation of the mature amyloid fibrils or to the amorphous aggregates was after the formation of the protofilaments. Sensitivity of the aggregated structures to salt concentration suggests that electrostatic interaction plays an essential role in the formation of these structures. The structural diversity both in the fibrils and the aggregated structures of the fibrils can be interpreted in terms of the difference in the degree of the electrostatic shielding at different salt concentrations.  相似文献   

5.
The formation of amyloid-like fibrils is characteristic of various diseases, but the underlying mechanism and the factors that determine whether, when, and how proteins form amyloid, remain uncertain. Certain mechanisms have been proposed based on the three-dimensional or runaway domain swapping, inspired by the fact that some proteins show an apparent correlation between the ability to form domain-swapped dimers and a tendency to form fibrillar aggregates. Intramolecular β-sheet contacts present in the monomeric state could constitute intermolecular β-sheets in the dimeric and fibrillar states. One example is an amyloid-forming mutant of the immunoglobulin binding domain B1 of streptococcal protein G, which in its native conformation consists of a four-stranded β-sheet and one α-helix. Under native conditions this mutant adopts a domain-swapped dimer, and it also forms amyloid-like fibrils, seemingly in correlation to its domain-swapping ability. We employ magic angle spinning solid-state NMR and other methods to examine key structural features of these fibrils. Our results reveal a highly rigid fibril structure that lacks mobile domains and indicate a parallel in-register β-sheet structure and a general loss of native conformation within the mature fibrils. This observation contrasts with predictions that native structure, and in particular intermolecular β-strand interactions seen in the dimeric state, may be preserved in "domain-swapping" fibrils. We discuss these observations in light of recent work on related amyloid-forming proteins that have been argued to follow similar mechanisms and how this may have implications for the role of domain-swapping propensities for amyloid formation.  相似文献   

6.
Soluble amyloid oligomers are potent neurotoxins that are involved in a wide range of human degenerative diseases, including Alzheimer disease. In Alzheimer disease, amyloid β (Aβ) oligomers bind to neuronal synapses, inhibit long term potentiation, and induce cell death. Recent evidence indicates that several immunologically distinct structural variants exist as follows: prefibrillar oligomers (PFOs), fibrillar oligomers (FOs), and annular protofibrils. Despite widespread interest, amyloid oligomers are poorly characterized in terms of structural differences and pathological significance. FOs are immunologically related to fibrils because they react with OC, a conformation-dependent, fibril-specific antibody and do not react with antibodies specific for other types of oligomers. However, fibrillar oligomers are much smaller than fibrils. FOs are soluble at 100,000 × g, rich in β-sheet structures, but yet bind weakly to thioflavin T. EPR spectroscopy indicates that FOs display significantly more spin-spin interaction at multiple labeled sites than PFOs and are more structurally similar to fibrils. Atomic force microscopy indicates that FOs are approximately one-half to one-third the height of mature fibrils. We found that Aβ FOs do not seed the formation of thioflavin T-positive fibrils from Aβ monomers but instead seed the formation of FOs from Aβ monomers that are positive for the OC anti-fibril antibody. These results indicate that the lattice of FOs is distinct from the fibril lattice even though the polypeptide chains are organized in an immunologically identical conformation. The FOs resulting from seeded reactions have the same dimensions and morphology as the initial seeds, suggesting that the seeds replicate by growing to a limiting size and then splitting, indicating that their lattice is less stable than fibrils. We suggest that FOs may represent small pieces of single fibril protofilament and that the addition of monomers to the ends of FOs is kinetically more favorable than the assembly of the oligomers into fibrils via sheet stacking interaction. These studies provide novel structural insight into the relationship between fibrils and FOs and suggest that the increased toxicity of FOs may be due to their ability to replicate and the exposure of hydrophobic sheet surfaces that are otherwise obscured by sheet-sheet interactions between protofilaments in a fibril.  相似文献   

7.
Alzheimer's disease is a debilitating neurodegenerative disorder associated with the abnormal self-assembly of amyloid-beta (Abeta) peptides into fibrillar species. N-methylated peptides homologous to the central hydrophobic core of the Abeta peptide are potent inhibitors of this aggregation process. In this work, we use fully atomistic molecular dynamics simulations to study the interactions of the N-methylated peptide inhibitor Abeta16-20m (Ac-Lys(16)-(Me)Leu(17)-Val(18)-(Me)Phe(19)-Phe(20)-NH(2)) with a model protofilament consisting of Alzheimer Abeta16-22 peptides. Our simulations indicate that the inhibitor peptide can bind to the protofilament at four different sites: 1), at the edge of the protofilament; 2), on the exposed face of a protofilament layer; 3), between the protofilament layers; and 4), between the protofilament strands. The different binding scenarios suggest several mechanisms of fibrillogenesis inhibition: 1), fibril inhibition of longitudinal growth (in the direction of monomer deposition); 2), fibril inhibition of lateral growth (in the direction of protofilament assembly); and 3), fibril disassembly by strand removal and perturbation of the periodicity of the protofilament (disruption of fibril morphology). Our simulations suggest that the Abeta16-20m inhibitor can act on both prefibrillar species and mature fibers and that the specific mechanism of inhibition may depend on the structural nature of the Abeta aggregate. Disassembly of the fibril can be explained by a mechanism through which the inhibitor peptides bind to disaggregated or otherwise free Abeta16-22 peptides in solution, leading to a shift in the equilibrium from a fibrillar state to one dominated by inhibitor-bound Abeta16-22 peptides.  相似文献   

8.
Fibrils are β-sheet-rich aggregates that are generally composed of several protofibrils and may adopt variable morphologies, such as twisted ribbons or flat-like sheets. This polymorphism is observed for many different amyloid associated proteins and polypeptides. In a previous study we proposed the existence of another level of amyloid polymorphism, namely, that associated with fibril supramolecular chirality. Two chiral polymorphs of insulin, which can be controllably grown by means of small pH variations, exhibit opposite signs of vibrational circular dichroism (VCD) spectra. Herein, using atomic force microscopy (AFM) and scanning electron microscopy (SEM), we demonstrate that indeed VCD supramolecular chirality is correlated not only by the apparent fibril handedness but also by the sense of supramolecular chirality from a deeper level of chiral organization at the protofilament level of fibril structure. Our microscopic examination indicates that normal VCD fibrils have a left-handed twist, whereas reversed VCD fibrils are flat-like aggregates with no obvious helical twist as imaged by atomic force microscopy or scanning electron microscopy. A scheme is proposed consistent with observed data that features a dynamic equilibrium controlled by pH at the protofilament level between left- and right-twist fibril structures with distinctly different aggregation pathways for left- and right-twisted protofilaments.  相似文献   

9.
Extracellular accumulation of transthyretin (TTR) variants in the form of fibrillar amyloid deposits is the pathological hallmark of familial amyloidotic polyneuropathy (FAP). The TTR Leu55Pro variant occurs in the most aggressive forms of this disease. Inhibition of TTR wild-type (WT) and particularly TTR Leu55Pro fibril formation is of interest as a potential therapeutic strategy and requires a thorough understanding of the fibril assembly mechanism. To this end, we report on the in vitro assembly properties as observed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and quantitative scanning transmission electron microscopy (STEM) for both TTR WT fibrils produced by acidification, and TTR Leu55Pro fibrils assembled at physiological pH. The morphological features and dimensions of TTR WT and TTR Leu55Pro fibrils were similar, with up to 300 nm long, 8 nm wide fibrils being the most prominent species in both cases. Other species were evident; 4-5 nm wide fibrils, 9-10 nm wide fibrils and oligomers of various sizes. STEM mass-per-length (MPL) measurements revealed discrete fibril types with masses of 9.5 and 14.0(+/-1.4) KDa/nm for TTR WT fibrils and 13.7, 18.5 and 23.2(+/-1.5) kDa/nm for TTR Leu55Pro fibrils. These MPL values are consistent with a model in which fibrillar TTR structures are composed of two, three, four or five elementary protofilaments, with each protofilament being a vertical stack of structurally modified TTR monomers assembled with the 2.9 nm axial monomer-monomer spacing indicated by X-ray fibre diffraction data. Ex vivo TTR amyloid fibrils were examined. From their morphological appearance compared to these, the in vitro assembled TTR WT and Leu55Pro fibrils examined may represent immature fibrillar species. The in vitro system operating at physiological pH for TTR Leu55Pro and the model presented for the molecular arrangement of TTR monomers within fibrils may, therefore, describe early fibril assembly events in vivo.  相似文献   

10.
In experiments designed to characterize the basis of amyloid fibril stability through mutational analysis of the Abeta (1-40) molecule, fibrils exhibit consistent, significant structural malleability. In these results, and in other properties, amyloid fibrils appear to more resemble plastic materials generated from synthetic polymers than globular proteins. Thus, like synthetic polymers and plastics, amyloid fibrils exhibit both polymorphism, the ability of one polypeptide to form aggregates of different morphologies, and isomorphism, the ability of different polypeptides to grow into a fibrillar amyloid morphology. This view links amyloid with the prehistorical and 20th century use of proteins as starting materials to make films, fibers, and plastics, and with the classic protein fiber stretching experiments of the Astbury group. Viewing amyloids from the point of view of the polymer chemist may shed new light on a number of issues, such as the role of protofibrils in the mechanism of amyloid formation, the biological potency of fibrils, and the prospects for discovering inhibitors of amyloid fibril formation.  相似文献   

11.
Deposits of amyloid fibrils characterize a diverse group of human diseases that includes Alzheimer disease, Creutzfeldt-Jakob disease and type II diabetes. Amyloid fibrils formed from different polypeptides contain a common cross-β spine. Nevertheless, amyloid fibrils formed from the same polypeptide can occur in a range of structurally different morphologies. The heterogeneity of amyloid fibrils reflects different types of polymorphism: (1) variations in the protofilament number, (2) variations in the protofilament arrangement and (3) different polypeptide conformations. Amyloid fibril polymorphism implies that fibril formation can lead, for the same polypeptide sequence, to many different patterns of inter- or intra-residue interactions. This property differs significantly from native, monomeric protein folding reactions that produce, for one protein sequence, only one ordered conformation and only one set of inter-residue interactions.Key words: Alzheimer disease, aggregation, neurodegeneration, prion, protein folding  相似文献   

12.
13.
In the tendon, the development of mature mechanical properties is dependent on the assembly of a tendon-specific extracellular matrix. This matrix is synthesized by the tendon fibroblasts and composed of collagen fibrils organized as fibers, as well as fibril-associated collagenous and non-collagenous proteins. All of these components are integrated, during development and growth, to form a functional tissue. During tendon development, collagen fibrillogenesis and matrix assembly progress through multiple steps where each step is regulated independently, culminating in a structurally and functionally mature tissue. Collagen fibrillogenesis occurs in a series of extracellular compartments where fibril intermediates are assembled and mature fibrils grow through a process of post-depositional fusion of the intermediates. Linear and lateral fibril growth occurs after the immature fibril intermediates are incorporated into fibers. The processes are regulated by interactions of extracellular macromolecules with the fibrils. Interactions with quantitatively minor fibrillar collagens, fibril-associated collagens and proteoglycans influence different steps in fibrillogenesis and the extracellular microdomains provide a mechanism for the tendon fibroblasts to regulate these extracellular interactions.  相似文献   

14.
《Journal of molecular biology》2019,431(17):3229-3245
α-Synuclein (αSyn) is an intrinsically disordered protein that can form amyloid fibrils. Fibrils of αSyn are implicated with the pathogenesis of Parkinson's disease and other synucleinopathies. Elucidating the mechanism of fibril formation of αSyn is therefore important for understanding the mechanism of the pathogenesis of these diseases. Fibril formation of αSyn is sensitive to solution conditions, suggesting that fibril formation of αSyn arises from the changes in its inherent physico-chemical properties, particularly its dynamic properties because intrinsically disordered proteins such as αSyn utilize their inherent flexibility to function. Characterizing these properties under various conditions should provide insights into the mechanism of fibril formation. Here, using the quasielastic neutron scattering and small-angle x-ray scattering techniques, we investigated the dynamic and structural properties of αSyn under the conditions, where mature fibrils are formed (pH 7.4 with a high salt concentration), where clumping of short fibrils occurs (pH 4.0), and where fibril formation is not completed (pH 7.4). The small-angle x-ray scattering measurements showed that the extended structures at pH 7.4 with a high salt concentration become compact at pH 4.0 and 7.4. The quasielastic neutron scattering measurements showed that both intra-molecular segmental motions and local motions such as side-chain motions are enhanced at pH 7.4 with a high salt concentration, compared to those at pH 7.4 without salt, whereas only the local motions are enhanced at pH 4.0. These results imply that fibril formation of αSyn requires not only the enhanced local motions but also the segmental motions such that proper inter-molecular interactions are possible.  相似文献   

15.
Self-assembling peptides present attractive platforms for engineering materials with controlled nanostructures. Recently, an alpha-helical fibril forming peptide (alphaFFP) was designed that self-assembles into nanofibrils at acid pH. Circular dichroism spectroscopy, electron-microscopy and x-ray fibre diffraction data showed that the most likely structure of alphaFFP fibrils is a five-stranded coiled coil rope. In the present study, scanning transmission electron microscopy (STEM) was used to improve our understanding of the alphaFFP fibril structure. The measurements of fibril mass per length suggest that there are ten alpha-helices in transverse sections of the fibrils. Based on the known data, it is proposed that a predominant fibrillar structure of alphaFFP is a dimer of alpha-helical five stranded protofilaments wrapped around a common axis. It is shown that these structures have an axial dimension of 58 +/- 16 nm and a width of 4 +/- 1 nm. A small number of thin fibrils is also observed in the negative stained preparation and STEM images. The thin fibrils may correspond to the single protofilament.  相似文献   

16.
The in vitro assembly of a soluble protein into its mature fibrillar form is usually accompanied by loss of its functional activity. Our study is the first demonstration of a natural enzyme (HylP2) retaining its enzymatic activity on conversion from pre-fibril to mature fibril and supports the contention that minor conformational changes in the native folded form of a protein can lead to the formation of a functional fibril. Hyaluronate lyase (HylP2) is a natural enzyme of bacteriophage 10403 of Streptococcus pyogenes. At pH 5.0, the enzyme undergoes partial unfolding localized in its N-terminal domain while the C-terminal domain maintains its folded trimeric conformation. This structural variant of HylP2 retains about 70% enzymatic activity with hyaluronan. It further self-assembles into a fibrillar film in vitro through solvent-exposed nonpolar surfaces and intermolecular beta-sheet formation by the beta-strands in the protein. Interestingly, the mature fibrillar film of HylP2 also retains about 60 and 20% enzymatic activity for hyaluronic acid and chondroitin sulfate, respectively. The possession of broad substrate specificity by the fibrillar form of HylP2 indicates that fluctuations in pH, which do not lead to loss of functionality of HylP2, might assist in bacterial pathogenesis. The formation of fibrillar film-like structure has been observed for the first time among the hyaluronidase enzymes. After acquiring this film-like structure in bacteriophage, HylP2 still retains its enzymatic activity, which establishes that these fibrils are a genuinely acquired protein fold/structure.  相似文献   

17.
《朊病毒》2013,7(2):89-93
Deposits of amyloid fibrils characterize a diverse group of human diseases that includes Alzheimer’s disease, Creutzfeldt-Jakob disease and type II diabetes. Amyloid fibrils formed from different polypeptides contain a common cross-β spine. Nevertheless, amyloid fibrils formed from the same polypeptide can occur in a range of structurally different morphologies. The heterogeneity of amyloid fibrils reflects different types of polymorphism: (i) variations in the protofilament number, (ii) variations in the protofilament arrangement and (iii) different polypeptide conformations. Amyloid fibril polymorphism implies that fibril formation can lead, for the same polypeptide sequence, to many different patterns of inter- or intra-residue interactions. This property differs significantly from native, monomeric protein folding reactions that produce, for one protein sequence, only one ordered conformation and only one set of inter-residue interactions.  相似文献   

18.
Lung surfactant protein C (SP-C) is a lipopeptide that contains two fatty acyl (palmitoyl) chains bound via intrinsically labile thioester bonds. SP-C can transform from a monomeric alpha-helix into beta-sheet aggregates, reminiscent of structural changes that are supposed to occur in amyloid fibril formation. SP-C is here shown to form amyloid upon incubation in solution. Furthermore, one patient with pulmonary alveolar proteinosis (PAP, a rare disease where lung surfactant proteins and lipids accumulate in the airspaces) and six healthy controls have been studied regarding presence and composition of amyloid fibrils in the cell-free fraction of bronchoalveolar lavage (BAL) fluid. Abundant amyloid fibrils were found in BAL fluid from the patient with PAP and, in low amounts, in three of the six healthy controls. SDS-insoluble fibrillar material associated with PAP mainly consists of SP-C, in contrast to the fibrils found in controls. Fibrillated SP-C has to a significant extent lost the palmitoyl groups, and removal of the palmitoyl groups in vitro increases the rate of fibril formation.  相似文献   

19.
Functional amyloids are a rapidly expanding class of fibrillar protein structures, with a core cross-β scaffold, where novel and advantageous biological function is generated by the assembly of the amyloid. The growing number of amyloid structures determined at high resolution reveal how this supramolecular template both accommodates a wide variety of amino acid sequences and also imposes selectivity on the assembly process. The amyloid fibril can no longer be considered a generic aggregate, even when associated with disease and loss of function. In functional amyloids the polymeric β-sheet rich structure provides multiple different examples of unique control mechanisms and structures that are finely tuned to deliver assembly or disassembly in response to physiological or environmental cues. Here we review the range of mechanisms at play in natural, functional amyloids, where tight control of amyloidogenicity is achieved by environmental triggers of conformational change, proteolytic generation of amyloidogenic fragments, or heteromeric seeding and amyloid fibril stability. In the amyloid fibril form, activity can be regulated by pH, ligand binding and higher order protofilament or fibril architectures that impact the arrangement of associated domains and amyloid stability. The growing understanding of the molecular basis for the control of structure and functionality delivered by natural amyloids in nearly all life forms should inform the development of therapies for amyloid-associated diseases and guide the design of innovative biomaterials.  相似文献   

20.
Amyloid fibrils are assemblies of misfolded proteins and are associated with pathological conditions such as Alzheimer's disease and the spongiform encephalopathies. In the amyloid diseases, a diverse group of normally soluble proteins self-assemble to form insoluble fibrils. X-ray fibre diffraction studies have shown that the protofilament cores of fibrils formed from the various proteins all contain a cross-beta-scaffold, with beta-strands perpendicular and beta-sheets parallel to the fibre axis. We have determined the threedimensional structure of an amyloid fibril, formed by the SH3 domain of phosphatidylinositol-3'-kinase, using cryo-electron microscopy and image processing at 25 A resolution. The structure is a double helix of two protofilament pairs wound around a hollow core, with a helical crossover repeat of approximately 600 A and an axial subunit repeat of approximately 27 A. The native SH3 domain is too compact to fit into the fibril density, and must unfold to adopt a longer, thinner shape in the amyloid form. The 20x40-A protofilaments can only accommodate one pair of flat beta-sheets stacked against each other, with very little inter-strand twist. We propose a model for the polypeptide packing as a basis for understanding the structure of amyloid fibrils in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号