共查询到20条相似文献,搜索用时 0 毫秒
1.
Roland Brandt 《Cell and tissue research》1998,292(2):181-189
The use of modern techniques involving gene transfer and functional knock-out strategies has lead to new concepts of the way
in which cytoskeletal elements interact to produce the unique morphologies of neurons. This review presents these concepts
and discusses their implications for neuronal development, especially with respect to the role of microtubules, microfilaments,
and neurofilaments.
Received: 29 July 1997 / Accepted: 27 October 1997 相似文献
2.
Hülsmeier J Pielage J Rickert C Technau GM Klämbt C Stork T 《Development (Cambridge, England)》2007,134(4):713-722
Cell-shape changes during development require a precise coupling of the cytoskeleton with proteins situated in the plasma membrane. Important elements controlling the shape of cells are the Spectrin proteins that are expressed as a subcortical cytoskeletal meshwork linking specific membrane receptors with F-actin fibers. Here, we demonstrate that Drosophila karussell mutations affect beta-spectrin and lead to distinct axonal patterning defects in the embryonic CNS. karussell mutants display a slit-sensitive axonal phenotype characterized by axonal looping in stage-13 embryos. Further analyses of individual, labeled neuroblast lineages revealed abnormally structured growth cones in these animals. Cell-type-specific rescue experiments demonstrate that beta-Spectrin is required autonomously and non-autonomously in cortical neurons to allow normal axonal patterning. Within the cell, beta-Spectrin is associated with alpha-Spectrin. We show that expression of the two genes is tightly regulated by post-translational mechanisms. Loss of beta-Spectrin significantly reduces levels of neuronal alpha-Spectrin expression, whereas gain of beta-Spectrin leads to an increase in alpha-Spectrin protein expression. Because the loss of alpha-spectrin does not result in an embryonic nervous system phenotype, beta-Spectrin appears to act at least partially independent of alpha-Spectrin to control axonal patterning. 相似文献
3.
Giasuddin Ahmed Yohei Shinmyo Iftekhar Bin Naser Mahmud Hossain Xiaohong Song Hideaki Tanaka 《Biochemical and biophysical research communications》2010,398(4):730-14023
Olfactory bulb (OB) projection neurons receive sensory input from olfactory receptor neurons and precisely relay it through their axons to the olfactory cortex. Thus, olfactory bulb axonal tracts play an important role in relaying information to the higher order of olfactory structures in the brain. Several classes of axon guidance molecules influence the pathfinding of the olfactory bulb axons. Draxin, a recently identified novel class of repulsive axon guidance protein, is essential for the formation of forebrain commissures and can mediate repulsion of diverse classes of neurons from chickens and mice. In this study, we have investigated the draxin expression pattern in the mouse telencephalon and its guidance functions for OB axonal projection to the telencephalon. We have found that draxin is expressed in the neocortex and septum at E13 and E17.5 when OB projection neurons form the lateral olfactory tract (LOT) rostrocaudally along the ventrolateral side of the telencephalon. Draxin inhibits axonal outgrowth from olfactory bulb explants in vitro and draxin-binding activity in the LOT axons in vivo is detected. The LOT develops normally in draxin−/− mice despite subtle defasciculation in the tract of these mutants. These results suggest that draxin functions as an inhibitory guidance cue for OB axons and indicate its contribution to the formation of the LOT. 相似文献
4.
Neuronal precursor proliferation and axodendritic outgrowth have been traditionally regarded as discrete and sequential developmental stages. However, we recently found that sympathetic neuroblasts in vitro often elaborate long neuritic processes before dividing. Furthermore, these “paramitotic” neurites were maintained during cell division and neuritic morphology was consistently preserved by daughter cells after mitosis. This inheritance of neuritic morphology in vitro raised the possibility that proliferating neuroblasts engage in axodendritic outgrowth. To determine whether mitotic superior cervical ganglion (SCG) neuroblasts are engaged in pathfinding in vivo, we have combined retrograde axonal tracing of efferent nerve trunks with bromodeoxyuridine (BrdU) labeling of cells in S‐phase. In fact, about 13% of BrdU(+) cells were retrogradely labeled, indicating that mitotic neuroblasts often have extraganglionic axonal projections. Moreover, the presence of axons during S‐phase was observed at two developmental ages (E15.5 and E16.5), implicating an ongoing function of paramitotic axons during neuronal ontogeny. Using a calculation to account for experimental limitations, we estimate that virtually all mitotic SCG neuroblasts have direct access to extraganglionic signals during development. We conclude that mitotic neuronal precursors in vivo engage in pathfinding, raising the possibility that interaction of proliferating populations with distant signals actively coordinates cell division and neural connectivity. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 366–374, 1999 相似文献
5.
Neuronal precursor proliferation and axodendritic outgrowth have been traditionally regarded as discrete and sequential developmental stages. However, we recently found that sympathetic neuroblasts in vitro often elaborate long neuritic processes before dividing. Furthermore, these "paramitotic" neurites were maintained during cell division and neuritic morphology was consistently preserved by daughter cells after mitosis. This inheritance of neuritic morphology in vitro raised the possibility that proliferating neuroblasts engage in axodendritic outgrowth. To determine whether mitotic superior cervical ganglion (SCG) neuroblasts are engaged in pathfinding in vivo, we have combined retrograde axonal tracing of efferent nerve trunks with bromodeoxyuridine (BrdU) labeling of cells in S-phase. In fact, about 13% of BrdU(+) cells were retrogradely labeled, indicating that mitotic neuroblasts often have extraganglionic axonal projections. Moreover, the presence of axons during S-phase was observed at two developmental ages (E15.5 and E16. 5), implicating an ongoing function of paramitotic axons during neuronal ontogeny. Using a calculation to account for experimental limitations, we estimate that virtually all mitotic SCG neuroblasts have direct access to extraganglionic signals during development. We conclude that mitotic neuronal precursors in vivo engage in pathfinding, raising the possibility that interaction of proliferating populations with distant signals actively coordinates cell division and neural connectivity. 相似文献
6.
7.
Yoda H Hirose Y Yasuoka A Sasado T Morinaga C Deguchi T Henrich T Iwanami N Watanabe T Osakada M Kunimatsu S Wittbrodt J Suwa H Niwa K Okamoto Y Yamanaka T Kondoh H Furutani-Seiki M 《Mechanisms of development》2004,121(7-8):715-728
We screened for mutations affecting retinotectal axonal projection in Medaka, Oryzias latipes. In wild-type Medaka embryos, all the axons of retinal ganglion cells (RGCs) project to the contralateral tectum, such that the topological relationship of the retinal field is maintained. We labeled RGC axons using DiI/DiO at the nasodorsal and temporoventral positions of the retina, and screened for mutations affecting the pattern of stereotypic projections to the tectum. By screening 184 mutagenized haploid genomes, seven mutations in five genes causing defects in axonal pathfinding were identified, whereas mutations affecting the topographic projection of RGC axons were not found. The mutants were grouped into two classes according to their phenotypes. In mutants of Class I, a subpopulation of the RGC axons branched out either immediately after leaving the eye or after reaching the midline, and this axonal subpopulation projected to the ipsilateral tectum. In mutants of Class II, subpopulations of RGC axons branched out after crossing the midline and projected aberrantly. These mutants will provide clues to understanding the functions of genes essential for axonal pathfinding, which may be conserved or partly divergent among vertebrates. 相似文献
8.
9.
Neuronal extracellular proteases facilitate cell migration, axonal growth, and pathfinding 总被引:2,自引:0,他引:2
The release of extracellular proteases by the axonal growth cone has been proposed to facilitate its movement by digesting
cell-cell and cell-matrix contacts in the path of the advancing growth cone. The serine protease plasminogen activator (PA)
has been shown to be secreted and focally concentrated at axonal growth cones of cultured mammalian neurons. Thus, PAs are
well-placed to play an active role in growth cone movement and axonal pathfinding in development and regeneration. We discuss
recent findings that suggest that the biological action of these proteases is more complex than originally thought.
Received: 15 May 1997 / Accepted: 4 June 1997 相似文献
10.
A neuron-specific cytoskeletal antigen (5E10), whose expression pattern during initial motoneuron outgrowth into the chick limb suggests that it is playing a role in axon guidance, is described. This antigen, which was shown to be a phosphorylated epitope, probably of the intermediate weight neurofilament protein (NF-M), exhibits a highly stereotyped and spatially heterogeneous pattern of expression. The point of onset of expression, which was abrupt and occurred in the distal axon and base of the growth cone, differed between groups of neurons that projected to different targets. Specifically, expression occurred from positions where previous perturbation experiments suggested that the axons in question would begin responding to specific guidance cues, and it remained high along the axon from this point to the target. Expression of this antigen could also be induced in cultured motoneurons by activating several second messenger systems. 相似文献
11.
Chingju Lin Phillip Lamoureux Robert E. Buxbaum Steven R. Heidemann 《Journal of biomechanics》1995,28(12):1429-1438
Mechanical tension is a potent stimulator of axonal growth rate, which is also stimulated by osmotic dilution. We wished to determine the relationship, if any, between osmotic stimulation and tensile regulation of axonal growth. We used calibrated glass needles to apply constant force to elongate axons of cultured chick sensory neurons. We find that a neurite being pulled at a constant force will grow 50–300% faster following a 50% dilution of inorganic ions in the culture medium. That is, osmotic dilution appears to cause axons to increase their sensitivity to applied tensions. Experimental interventions suggest that this effect is not mediated by dilution of extracellular calcium, or to osmotic stimulation of adenylate cyclase, or to osmotic stimulation of mechanosensitive ion channels. Rather, experiments measuring the static tension normally borne by neurites suggest a direct mechanical effect on the cytoskeletal proteins of the neurite shaft. Our results are consistent with a formal thermodynamic model for axonal growth in which removing a compressive load on axonal microtubules promotes their assembly, thus promoting axonal elongation. 相似文献
12.
Regulation of axonal development by plasma membrane gangliosides 总被引:1,自引:0,他引:1
13.
Wang P Jeng CJ Chien CL Wang SM 《Biochemical and biophysical research communications》2008,366(2):393-400
We aim to study the mechanisms underlying the neurotrophic effect of daidzein (Dz) in hippocampal neurons. Dz-enhanced axonal outgrowths manifested growth cone formation and increased immunostaining intensity of growth-associated protein 43 (GAP-43) in growth cones. Consistent with this, Dz increased GAP-43 phosphorylation and its membrane translocation without affecting total GAP-43 levels. In the presence of Dz, significant increase in the immunoreactivity for estrogen receptor (ER) β, but not ERα, was observed on the membrane of cell bodies and growing axons. Dz also induced the activation of protein kinase C α (PKCα), which was inhibited by the ICI182,780 pretreatment. Similarly, Dz-promoted axonal elongation was blocked by ICI182,780 and Gö6976. Moreover, Dz-stimulated activation of GAP-43 was specifically abolished by Gö6976, suggesting PKCα being the upstream effector of GAP-43. Taken together, our data suggest that Dz triggers an ERβ/PKCα/GAP-43 signaling cascade to promote axonal outgrowths in cultured hippocampal neurons. 相似文献
14.
In the developing chick hindlimb, sensory axons, which grow together in bundles as they extend distally, and the motoneuron axons they encounter express the cell adhesion molecule L1. Following injection of function-blocking anti-L1 antibodies into the limb at stage 25, some sensory axons choose inappropriate peripheral nerves even though motoneuron pathfinding is unaffected. Here, to further elucidate L1's role, we assessed the effects of this perturbation using pathway tracing, immune labeling, confocal microscopy, and electron microscopy. After L1 blockade, sensory axons were still bundled and closely apposed. However, clear signs of decreased adhesion were detectable ultrastructurally. Further, sensory axons grew into the limb more slowly than normal, wandering more widely, branching more frequently, and sometimes extending along inappropriate peripheral nerves. Sensory axons that ultimately projected along different cutaneous nerves showed increased intermixing in the spinal nerves, due to errors in pathfinding and also to a decreased ability to segregate into nerve-specific fascicles. These results suggest that, in the highly complex in vivo environment, as in tissue culture, L1 stimulates axon growth and enhances fasciculation, and that these processes contribute to the orderly, timely, and specific growth of sensory axons into the limb. 相似文献
15.
16.
17.
Bernhardt RR 《Journal of neurobiology》1999,38(1):137-160
The accessibility of the zebrafish embryo offers unique possibilities to study the mechanisms that guide growing axons in the developing vertebrate central nervous system. This review examines the current understanding of the pathfinding decisions by the growing axons, their substrates, and the recognition molecules that mediate axon-substrate interactions. The detailed analysis of pathfinding at the level of individual axons demonstrates that growing axons chose their paths unerringly. To do so, they rely on cues presented by their environment, in particular by neuroepithelial cells. Our understanding of the molecular bases of axon-substrate interactions is increasing. Members of most classes of recognition molecules have been identified in fish. Experimental evidence for the functions of these molecules in the zebrafish nervous system is accumulating. In the future, this analysis is expected to profit greatly from genetic screens that have recently been initiated. 相似文献
18.
19.
de Groot DM Coenen AJ Verhofstad A van Herp F Martens GJ 《Molecular endocrinology (Baltimore, Md.)》2006,20(11):2987-2998
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of neuronal cell survival and differentiation factors but is thought to be involved in neuronal cell proliferation and myelination as well. To explore the role of BDNF in vivo, we employed the intermediate pituitary melanotrope cells of the amphibian Xenopus laevis as a model system. These cells mediate background adaptation of the animal by producing high levels of the prohormone proopiomelanocortin (POMC) when the animal is black adapted. We used stable X. transgenesis in combination with the POMC gene promoter to generate transgenic frogs overexpressing BDNF specifically and physiologically inducible in the melanotrope cells. Intriguingly, an approximately 25-fold overexpression of BDNF resulted in hyperplastic glial cells and myelinated axons infiltrating the pituitary, whereby the transgenic melanotrope cells became located dispersed among the induced tissue. The infiltrating glial cells and axons originated from both peripheral and central nervous system sources. The formation of the phenotype started around tadpole stage 50 and was induced by placing white-adapted transgenics on a black background, i.e. after activation of transgene expression. The severity of the phenotype depended on the level of transgene expression, because the intermediate pituitaries from transgenic animals raised on a white background or from transgenics with only an approximately 5-fold BDNF overexpression were essentially not affected. In conclusion, we show in a physiological context that, besides its classical role as neuronal cell survival and differentiation factor, in vivo BDNF can also induce glial cell proliferation as well as axonal outgrowth and myelination. 相似文献
20.
M. Asrafuzzaman Riyadh Yohei Shinmyo Kunimasa Ohta Hideaki Tanaka 《Biochemical and biophysical research communications》2014
The rhombic lip, a dorsal stripe of the neuroepithelium lining the edge of the fourth ventricle, is the site of origin of precerebellar neurons (PCN), which migrate tangentially towards the floor plate. After reaching the floor plate, they project their axons to the cerebellum. Although previous studies have shown that the guidance molecules Netrin/DCC and Slit/Robo have critical roles in PCN migration, the molecular mechanisms underlying this process remain poorly understood. Here, we report that draxin, a repulsive axon guidance protein, is involved in PCN development. We found that draxin is expressed in the rhombic lip and migratory stream of some PCN in the developing hindbrain of mice. In addition, draxin inhibited neurite outgrowth and nuclei migration from rhombic lip explants. These results suggest that draxin functions as a repulsive guidance cue for PCN migration. However, we observed no significant differences in PCN distribution between draxin−/− and wild type embryos. Thus, draxin and other axon guidance cues may have redundant roles in PCN migration. 相似文献