首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Developmental reading disorder (RD) affects 5-10% of school aged children, with a heritability of approximately 60%. Genetic association studies have identified several candidate RD susceptibility genes, including DCDC2; however, a direct connection between the function of these genes and cognitive or learning impairments remains unclear. Variants in DCDC2, a member of the doublecortin family of genes, have been associated in humans with RD and ADHD and Dcdc2 may play a role in neuronal migration in rats. In this study, we examined the effect of Dcdc2 mutation on cognitive abilities in mice using a visual attention and visuo-spatial learning and memory task. We show that both heterozygous and homozygous mutations of Dcdc2 result in persistent visuo-spatial memory deficits, as well as visual discrimination and long-term memory deficits. These behavioral deficits occur in the absence of neuronal migration disruption in the mutant mice, and may be comorbid with an anxiety phenotype. These are the first results to suggest a direct relationship between induced mutation in Dcdc2 and changes in behavioral measures. Dcdc2 mutant mice should prove useful in future studies designed to further dissect the underlying neural mechanisms that are impaired following Dcdc2 mutation.  相似文献   

2.
The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of alpha-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders.  相似文献   

3.
Shu T  Ayala R  Nguyen MD  Xie Z  Gleeson JG  Tsai LH 《Neuron》2004,44(2):263-277
Correct neuronal migration and positioning during cortical development are essential for proper brain function. Mutations of the LIS1 gene result in human lissencephaly (smooth brain), which features misplaced cortical neurons and disarrayed cerebral lamination. However, the mechanism by which LIS1 regulates neuronal migration remains unknown. Using RNA interference (RNAi), we found that the binding partner of LIS1, NudE-like protein (Ndel1, formerly known as NUDEL), positively regulates dynein activity by facilitating the interaction between LIS1 and dynein. Loss of function of Ndel1, LIS1, or dynein in developing neocortex impairs neuronal positioning and causes the uncoupling of the centrosome and nucleus. Overexpression of LIS1 partially rescues the positioning defect caused by Ndel1 RNAi but not dynein RNAi, whereas overexpression of Ndel1 does not rescue the phenotype induced by LIS1 RNAi. These results provide strong evidence that Ndel1 interacts with LIS1 to sustain the function of dynein, which in turn impacts microtubule organization, nuclear translocation, and neuronal positioning.  相似文献   

4.
Developmental dyslexia is a heritable disability characterized by difficulties in learning to read and write. The neurobiological and genetic mechanisms underlying dyslexia remain poorly understood; however, several dyslexia candidate risk genes have been identified. One of these candidate risk genes—doublecortin domain containing 2 (DCDC2)—has been shown to play a role in neuronal migration and cilia function. At a behavioral level, variants of DCDC2 have been associated with impairments in phonological processing, working memory and reading speed. Additionally, a specific mutation in DCDC2 has been strongly linked to deficits in motion perception—a skill subserving reading abilities. To further explore the relationship between DCDC2 and dyslexia, a genetic knockout (KO) of the rodent homolog of DCDC2 (Dcdc2) was created. Initial studies showed that Dcdc2 KOs display deficits in auditory processing and working memory. The current study was designed to evaluate the association between DCDC2 and motion perception, as these skills have not yet been assessed in the Dcdc2 KO mouse model. We developed a novel motion perception task, utilizing touchscreen technology and operant conditioning. Dcdc2 KOs displayed deficits on the Pairwise Discrimination task specifically as motion was added to visual stimuli. Following behavioral assessment, brains were histologically prepared for neuroanatomical analysis of the lateral geniculate nucleus (LGN). The cumulative distribution showed that Dcdc2 KOs exhibited more small neurons and fewer larger neurons in the LGN. Results compliment findings that DCDC2 genetic alteration results in anomalies in visual motion pathways in a subpopulation of dyslexic patients.  相似文献   

5.
6.
A substantial genetic contribution in the etiology of developmental dyslexia (DD) has been well documented with independent groups reporting a susceptibility locus on chromosome 15q. After the identification of the DYX1C1 gene as a potential candidate for DD, several independent association studies reported controversial results. We performed a family-based association study to determine whether the DYX1C1 single nucleotide polymorphisms (SNPs) that have been associated with DD before, that is SNPs '-3GA' and '1249GT', influence a broader phenotypic definition of DD. A significant linkage disequilibrium was observed with 'Single Letter Backward Span' (SLBS) in both single-marker and haplotype analyses. These results provide further support to the association between DD and DYX1C1 and it suggests that the linkage disequilibrium with DYX1C1 is more saliently explained in Italian dyslexics by short-term memory, as measured by 'SLBS', than by the categorical diagnosis of DD or other related phenotypes.  相似文献   

7.
Li J  Chen C  Chen C  He Q  Li H  Li J  Moyzis RK  Xue G  Dong Q 《PloS one》2011,6(3):e17365

Background

Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation) and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT), in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans.

Methods

Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable.

Results

ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453) were significantly associated with working memory. These results survived corrections for multiple comparisons.

Conclusions

Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators.  相似文献   

8.
The fasciculation and elongation protein zeta-1 (FEZ1), a mammalian orthologue of Caenorhabditis elegans UNC-76 protein, is a 45-kDa protein with four coiled-coiled domains and efficiently promotes the neurite elongation in the rat phaeochromocytoma PC12 cells. UNC-76 proteins of C. elegans and Drosophila have been genetically demonstrated to be involved in the axonal guidance. We here show that FEZ1 RNA interference (RNAi) represses the formation of axon in rat embryo hippocampal neurons. An anterograde mitochondrial movement is also retarded in neurites of the RNAi-treated hippocampal neurons. Moreover, the size of mitochondria is considerably elongated by the RNAi treatment. The transport of mitochondria from soma to axon or dendrites is essential for the neuronal differentiation. Therefore, our results strongly suggest that FEZ1 participates in the establishment of neuronal polarity by controlling the mitochondrial motility along axon.  相似文献   

9.
Behavioral pharmacological studies have implicated a role for the neurophysin arginine-vasopressin in learning and memory. Vasopressin, and its analogues, can produce either improvements or impairments in mnemonic functions, effects that depend upon the agent administered, the memory process measured and the task employed. As recent data have implicated vasopressin in regulating the cognitive functions of the prefrontal cortex, we sought to determine whether changes in vasopressinergic tone would affect a form of memory that is dependent upon this brain region. To that end, we used a genetic approach to examine how haploinsufficiency of the vasopressin gene affects working memory performance. Specifically, we tested a naturally occurring null-mutant rat on an operant delayed-non-match-to-position task. Male and female heterozygous and wild-type rats were trained to perform this working memory task, and the effects of varying the delay across which they had to maintain task information were systematically varied. Although vasopressin-deficient rats omitted fewer trials and completed trials more quickly, they exhibited delay-dependent deficits of choice accuracy. The genotype effects were not modified by sex. Collectively, these data indicate that even partial vasopressin deficiency can trigger deficits of spatial working memory performance and add to the growing body of results supporting a regulatory control of neocortical-dependent cognitive functions by this neurohormone.  相似文献   

10.
Ménard C  Quirion R 《PloS one》2012,7(1):e28666
Normal aging is associated with impairments in cognition, especially learning and memory. However, major individual differences are known to exist. Using the classical Morris Water Maze (MWM) task, we discriminated a population of 24-months old Long Evans aged rats in two groups--memory-impaired (AI) and memory-unimpaired (AU) in comparison with 6-months old adult animals. AI rats presented deficits in learning, reverse memory and retention. At the molecular level, an increase in metabotropic glutamate receptors 5 (mGluR5) was observed in post-synaptic densities (PSD) in the hippocampus of AU rats after training. Scaffolding Homer 1b/c proteins binding to group 1 mGluR facilitate coupling with its signaling effectors while Homer 1a reduces it. Both Homer 1a and 1b/c levels were up-regulated in the hippocampus PSD of AU animals following MWM task. Using immunohistochemistry we further demonstrated that mGluR5 as well as Homer 1b/c stainings were enhanced in the CA1 hippocampus sub-field of AU animals. In fact mGluR5 and Homer 1 isoforms were more abundant and co-localized in the hippocampal dendrites in AU rats. However, the ratio of Homer 1a/Homer 1b/c bound to mGluR5 in the PSD was four times lower for AU animals compared to AI rats. Consequently, AU animals presented higher PKCγ, ERK, p70S6K, mTOR and CREB activation. Finally the expression of immediate early gene Arc/Arg3.1 was shown to be higher in AU rats in accordance with its role in spatial memory consolidation. On the basis of these results, a model of successful cognitive aging with a critical role for mGluR5, Homer 1 proteins and downstream signalling pathways is proposed here.  相似文献   

11.
Attention-deficit/hyperactivity disorder (ADHD) a common neurodevelopmental disorder of childhood and often comorbid with other externalizing disorders (EDs). There is evidence that externalizing behaviors share a common genetic etiology. Recently, a genome-wide, multigenerational sample linked variants in the Lphn3 gene to ADHD and other externalizing behaviors. Likewise, limited research in animal models has provided converging evidence that Lphn3 plays a role in EDs. This study examined the impact of Lphn3 deletion (i.e., Lphn3−/−) in rats on measures of behavioral control associated with externalizing behavior. Impulsivity was assessed for 30 days via a differential reinforcement of low rates (DRL) task and working memory evaluated for 25 days using a delayed spatial alternation (DSA) task. Data from both tasks were averaged into 5-day testing blocks. We analyzed overall performance, as well as response patterns in just the first and last blocks to assess acquisition and steady-state performance, respectively. “Positive control” measures on the same tasks were measured in an accepted animal model of ADHD–the spontaneously hypertensive rat (SHR). Compared with wildtype controls, Lphn3−/− rats exhibited deficits on both the DRL and DSA tasks, indicative of deficits in impulsive action and working memory, respectively. These deficits were less severe than those in the SHRs, who were profoundly impaired on both tasks compared with their control strain, Wistar-Kyoto rats. The results provide evidence supporting a role for Lphn3 in modulating inhibitory control and working memory, and suggest additional research evaluating the role of Lphn3 in the manifestation of EDs more broadly is warranted.  相似文献   

12.
Twin studies indicate genetic overlap between symptoms of attention deficit hyperactivity disorder (ADHD) and reading disabilities (RD), and linkage studies identify several chromosomal regions possibly containing common susceptibility genes, including the 15q region. Based on a translocation finding and association to two specific alleles, the candidate gene, DYX1C1, has been proposed as the susceptibility gene for RD in 15q. Previously, we tested markers in DYX1C1 for association with ADHD. Although we identified association for haplotypes across the gene, we were unable to replicate the association to the specific alleles reported. Thus, the risk alleles for ADHD are yet to be identified. The susceptibility alleles may be in a remote regulatory element, or DYX1C1 may not be the risk gene. To continue study of 15q, we tested a coding region change in DYX1C1, followed by markers across the gene Protogenin (PRTG) in 253 ADHD nuclear families. PRTG was chosen based on its location and because it is closely related to DCC and Neogenin, two genes known to guide migratory cells and axons during development. The markers in DYX1C1 were not associated to ADHD when analyzed individually; however, six markers in PRTG showed significant association with ADHD as a categorical trait (P = 0.025–0.005). Haplotypes in both genes showed evidence for association. We identified association with ADHD symptoms measured as quantitative traits in PRTG, but no evidence for association with two key components of reading, word identification and decoding was observed. These findings, while preliminary, identify association of ADHD to a gene that potentially plays a role in cell migration and axon growth.  相似文献   

13.
Four genes have recently been proposed as candidates for dyslexia: dyslexia susceptibility 1 candidate 1 (DYX1C1), roundabout Drosophila homolog 1 (ROBO1), doublecortin domain-containing protein 2 (DCDC2) and KIAA0319. Each gene is implicated in global brain-development processes such as neural migration and axonal guidance, with the exception of DYX1C1, the function of which is still unknown. The most immediate clinical prospect of the discovery of these genes is the possibility of early identification of dyslexia via genetic screening. However, research efforts have yet to identify a functional mutation in any of these genes. When causal variants are identified, they will need to be considered within a multifactorial framework, which is likely to involve gene-gene and gene-environment interactions, to make accurate predictions of diagnostic status.  相似文献   

14.
15.
In rodents, neuronal plasticity decreases and spatial learning and working memory deficits increase upon aging. Several authors have shown that rats reared in enriched environments have better cognitive performance in association with increased neuronal plasticity than animals reared in standard environments. We hypothesized that enriched environment could preserve animals from the age-associated neurological impairments, mainly through NO-dependent mechanisms of induction of neuronal plasticity. We present evidence that 27 months old rats from an enriched environment show a better performance in spatial working memory than standard reared rats of the same age. Both mtNOS and cytosolic nNOS activities were found significantly increased (73% and 155%, respectively) in female rats from enriched environment as compared with control animals kept in a standard environment. The enzymatic activity of complex I was 80% increased in rats from enriched environment as compared with control rats. We conclude that an extensively enriched environment prevents old rats from the aging-associated impairment of spatial cognition, synaptic plasticity and nitric oxide production.  相似文献   

16.
Transient global ischemia induces selective, delayed neuronal death in the hippocampal CA1 and delayed cognitive deficits. Estrogen treatment ameliorates hippocampal injury associated with global ischemia. Although much is known about the impact of estrogen on neuronal survival, relatively little is known about its impact on functional outcome assessed behaviorally. We investigated whether long-term estradiol (21-day pellets implanted 14 days prior to ischemia) or acute estradiol (50 μg infused into the lateral ventricles immediately after ischemia) attenuates ischemia-induced cell loss and improves visual and spatial working memory in ovariectomized female rats. Global ischemia significantly impaired visual and spatial memory, assessed by object recognition and object placement tests at 6-9 days. Global ischemia did not affect locomotion, exploration, or anxiety-related behaviors, assessed by an open-field test at 6 days. Long-term estradiol prevented the ischemia-induced deficit in visual working memory, maintaining normal performance in tests with retention intervals of up to 1 h. Long-term estradiol also prevented ischemia-induced deficits in spatial memory tests with short (1 and 7 min), but not longer (15 min), retention intervals. Acute estradiol significantly improved visual memory assessed with short retention intervals, but did not prevent deficits in spatial memory. Acute estradiol significantly increased the number of surviving CA1 neurons, assessed either at 7 days after ischemia or after the completion of behavioral testing 9 days after ischemia. In contrast, chronic estradiol did not reduce CA1 cell death 9 days after ischemia. Thus, long-term estradiol at near physiological levels and acute estradiol administered after ischemic insult improve functional recovery after global ischemia. These findings have important implications for intervention in the neurological sequellae associated with global ischemia.  相似文献   

17.
Scopolamine-treated rats are commonly used as a psychopharmacological model of memory dysfunction and have been extensively studied to establish the effectiveness of acetylcholinesterase inhibitors in the treatment of Alzheimer's disease. Scopolamine is a muscarinic acetylcholine receptor antagonist that induces memory deficits in young subjects similar to those occurring during aging. The amnesic effect of scopolamine is well established but the molecular and cellular mechanisms that sustain its neuropharmacological action are still unclear. The present genome wide study investigates hippocampal gene expression profiling in scopolamine-treated adult rats following stimulation in a spatial memory task. Using microarray and quantitative real-time RT-PCR approaches, we identified several genes previously known to be associated with memory processes (Homer1, GABA(B) receptor, early growth response 1, prodynorphin, VGF nerve growth factor inducible) and multiple novel candidate genes possibly involved in cognition (including calcium/calmodulin-dependent protein kinase kinase 2, dual specificity phosphatase 5 and 6, glycophorin C) that were altered following scopolamine treatment. Moreover, we found that stable over-expression of glutamatergic components Homer1a and 1c in the hippocampus of adult rats induced by recombinant adeno-associated virus vector abolished memory improvement produced by the GABA(B) receptor antagonist SGS742 in scopolamine-treated rats. Taken together, these results reveal novel genes and mechanisms involved in scopolamine-induced amnesia, and demonstrate the involvement of both GABA and glutamate neurotransmission in this animal model of cognitive dysfunctions.  相似文献   

18.
Epigenetic mechanisms are crucial to regulate the expression of different genes required for neuronal plasticity. Neurotoxic substances such as arsenic, which induces cognitive deficits in exposed children before any other manifestation of toxicity, could interfere with the epigenetic modulation of neuronal gene expression required for learning and memory. This study assessed in Wistar rats the effects that developmental arsenic exposure had on DNA methylation patterns in hippocampus and frontal cortex. Animals were exposed to arsenic in drinking water (3 and 36ppm) from gestation until 4 months of age, and DNA methylation in brain cells was determined by flow cytometry, immunohistochemistry and methylation-specific polymerase chain reaction (PCR) of the promoter regions of reelin (RELN) and protein phosphatase 1 (PP1) at 1, 2, 3 and 4 months of age. Immunoreactivity to 5 methyl-cytosine was significantly higher in the cortex and hippocampus of exposed animals compared to controls at 1 month, and DNA hypomethylation was observed the following months in the cortex at high arsenic exposure. Furthermore, we observed a significant increase in the non-methylated form of PP1 gene promoter at 2 and 3 months of age, either in cortex or hippocampus. In order to determine whether this exposure level is associated with memory deficits, a behavioral test was performed at the same age points, revealing progressive and dose-dependent deficits of fear memory. Our results demonstrate alterations of the methylation pattern of genes involved in neuronal plasticity in an animal model of memory deficit associated with arsenic exposure.  相似文献   

19.
Cognitive impairments are prominent sequelae of prolonged continuous seizures (status epilepticus; SE) in humans and animal models. While often associated with dendritic injury, the underlying mechanisms remain elusive. The mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated following SE. This pathway modulates learning and memory and is associated with regulation of neuronal, dendritic, and glial properties. Thus, in the present study we tested the hypothesis that SE-induced mTORC1 hyperactivation is a candidate mechanism underlying cognitive deficits and dendritic pathology seen following SE. We examined the effects of rapamycin, an mTORC1 inhibitor, on the early hippocampal-dependent spatial learning and memory deficits associated with an episode of pilocarpine-induced SE. Rapamycin-treated SE rats performed significantly better than the vehicle-treated rats in two spatial memory tasks, the Morris water maze and the novel object recognition test. At the molecular level, we found that the SE-induced increase in mTORC1 signaling was localized in neurons and microglia. Rapamycin decreased the SE-induced mTOR activation and attenuated microgliosis which was mostly localized within the CA1 area. These findings paralleled a reversal of the SE-induced decreases in dendritic Map2 and ion channels levels as well as improved dendritic branching and spine density in area CA1 following rapamycin treatment. Taken together, these findings suggest that mTORC1 hyperactivity contributes to early hippocampal-dependent spatial learning and memory deficits and dendritic dysregulation associated with SE.  相似文献   

20.
Dyslexia is a hereditary neurological disorder that manifests as an unexpected difficulty in learning to read despite adequate intelligence, education, and normal senses. The prevalence of dyslexia ranges from 3 to 15% of the school aged children. Many genetic studies indicated that loci on 6p21.3, 15q15-21, and 18p11.2 have been identified as promising candidate gene regions for dyslexia. Recently, it has been suggested that allelic variants of gene, DYX1C1 influence dyslexia. In the present study, exon 2 and 10 of DYX1C1 has been analyzed to verify whether these single nucleotide polymorphisms (SNPs) influence dyslexia, in our population. Our study identified 4 SNPs however, none of these SNPS were found to be significantly associated with dyslexia suggesting DYX1C1 allelic variants are not associated with dyslexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号