首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate that the differential effects Cbl and oncogenic 70Z/3 Cbl have on Ca2+/Ras-sensitive NF-AT reporters is partially due to their opposing ability to regulate phospholipase Cγ1 (PLCγ1) activation as demonstrated by analysis of the activation of an NF-AT reporter construct and PLCγ1-mediated inositol phospholipid (PI) hydrolysis. Cbl over-expression resulted in reduced T cell receptor-induced PI hydrolysis, in the absence of any effect on PLCγ1 tyrosine phosphorylation. In contrast, expression of 70Z/3 Cbl led to an increase in basal and OKT3-induced PLCγ1 phosphorylation and PI hydrolysis. These data indicate that Cbl and 70Z/3 Cbl differentially regulate PLCγ1 phosphorylation and activation. The implications of these data on the mechanism of Cbl-mediated signaling regulation are discussed.  相似文献   

2.
The protooncogene product Cbl has emerged as a negative regulator of tyrosine kinases. We have shown previously that Cbl binds to ZAP-70 through its N-terminal tyrosine kinase binding (TKB) domain. In this study, we demonstrate that overexpression of Cbl in Jurkat T cells decreases the TCR-induced phosphorylation of ZAP-70 and other cellular phosphoproteins. Coexpression of Cbl with ZAP-70 in COS cells reproduced the Cbl-induced reduction in the level of phosphorylated ZAP-70. The effect of Cbl was eliminated by the TKB-inactivating G306E mutation in Cbl as well as by a phenylalanine mutation of Tyr292 within the TKB domain binding site on ZAP-70. Notably, the oncogenic Cbl-70Z/3 mutant associated with ZAP-70, but did not reduce the levels of phosphorylated ZAP-70. Overexpression of Cbl, but not Cbl-G306E, in Jurkat T cells led to a decrease in the TCR-induced NF-AT luciferase reporter activity. Overexpression of the TKB domain itself, but not its G306E mutant, functioned in a dominant-negative manner and led to an increase in NF-AT reporter activity. Cbl-70Z/3-overexpressing cells exhibited an increase in both basal and TCR-induced NF-AT luciferase reporter activity, and this trend was reversed by the G306E mutation. Finally, by reconstituting a ZAP-70-deficient Jurkat T cell line, p116, we demonstrate that wild-type ZAP-70 is susceptible to the negative regulatory effect of Cbl, whereas the ZAP-70-Y292F mutant is resistant. Together, our results establish that the linker phosphorylation site Tyr292 mediates the negative regulatory effect of Cbl on ZAP-70 in T cells.  相似文献   

3.
4.
Phagocytosis mediated by FcgammaR plays an important role in host defense. The molecular events involved in this process have not been completely defined. The adapter protein Cbl has been implicated in FcgammaR signaling, but the function of Cbl in phagocytosis is unknown. Here we show that overexpression of the transforming mutants of Cbl, Cbl-70Z, and v-Cbl, but not wild-type (wt) Cbl, enhance phagocytosis mediated by FcgammaR in COS cells. Cbl-70Z, but not Cbl-wt, also enhanced FcgammaR-mediated phagocytosis in P388D1 murine macrophage cells. Cbl-70Z did not affect tyrosine phosphorylation or in vitro kinase activity of Syk, indicating that Syk may not be the direct target of Cbl-70Z in the enhancement of phagocytosis. A point mutation (G306E) in the phosphotyrosine domain of Cbl-70Z, as well as a C-terminal 67-aa deletion, partially abolished the enhancing effect on FcgammaR-mediated phagocytosis. A double mutant of Cbl-70Z containing both the G306E mutation and the C-terminal deletion completely lacked the ability to enhance phagocytosis. Thus, both the phosphotyrosine binding domain and the carboxyl-terminal tail were required for optimal enhancement of phagocytosis by Cbl-70Z. Functional phosphatidylinositol 3-kinase was required for Cbl-70Z to enhance phagocytosis, since wortmannin, a phosphatidylinositol 3-kinase inhibitor, inhibited FcgammaR-mediated phagocytosis in the presence of Cbl-70Z. These studies demonstrate that mutants of Cbl can modulate the phagocytic pathway mediated by FcgammaR and imply a functional involvement of c-Cbl in Fcgamma receptor-mediated phagocytosis.  相似文献   

5.
6.
One of the major proteins that is rapidly tyrosine phosphorylated upon stimulation of the TCR/CD3 complex is the 120-kDa product of the c-cbl protooncogene (Cbl). Upon activation, tyrosine-phosphorylated Cbl interacts with the Src homology 2 (SH2) domains of several signaling proteins, e.g., phosphatidylinositol 3-kinase (PI3-K) and CrkL. In the present study, we report that pretreatment of Jurkat T cells with PMA reduced the anti-CD3-induced tyrosine phosphorylation of Cbl and, consequently, its activation-dependent association with PI3-K and CrkL. A specific protein kinase C (PKC) inhibitor (GF-109203X) reversed the effect of PMA on tyrosine phosphorylation of Cbl and restored the activation-dependent association of Cbl with PI3-K and CrkL. We also provide evidence that PKCalpha and PKCtheta can physically associate with Cbl and are able to phosphorylate it in vitro and in vivo. Furthermore, a serine-rich motif at the C terminus of Cbl, which is critical for PMA-induced 14-3-3 binding, is also phosphorylated by PKCalpha and PKCtheta in vitro. These results suggest that, by regulating tyrosine and serine phosphorylation of Cbl, PKC is able to control the association of Cbl with signaling intermediates, such as SH2 domain-containing proteins and 14-3-3 proteins, which may consequently result in the modulation of its function.  相似文献   

7.
T-cell receptor (TCR) cross-linking increases tyrosine phosphorylation of multiple proteins, only a few of which have been identified. One of the most rapidly tyrosine-phosphorylated polypeptides is the 120-kDa product of the proto-oncogene c-cbl, a cytosolic and cytoskeletal protein containing multiple proline-rich motifs that are potential binding sites for proteins containing Src homology 3 (SH3) domains. We report here that in cultured Jurkat T cells, Cbl is coprecipitated with antibody against the adapter protein Grb2. Upon activation of Jurkat T cells via the TCR-CD3 complex, we find that high-affinity binding of Cbl requires the N-terminal SH3 domain of GST-Grb2 fusion protein but after cross-linking of the TCR-CD3 and CD4 receptors, Cbl binds equally to its SH2 domain. Grb2 antisera also precipitated p85 from serum-starved cells, while TCR activation increased p85 and tyrosine-phosphorylated Cbl but not Cbl protein in Grb2 immunocomplexes. Phosphatidylinositol (PI) 3-kinase activity was immunoprecipitated from serum-starved cells with Cbl and to a lesser extent with Grb2 antisera, and TCR cross-linking increased this activity severalfold. The PI 3-kinase activity associated with Cbl amounted to 5 to 10% of the total cellular activity that could be precipitated by p85 antisera. The Ras exchange factor Son-of-sevenless 1 (Sos-1) was not found in anti-Cbl immunoprecipitates from activated cells, and Cbl was not detectable in anti-Sos-1 precipitates, supporting the likelihood that Sos-Grb2 and Cbl-Grb2 are present as distinct complexes. Taken together, these data suggest that Cbl function in Jurkat T cells involves its constitutive association with Grb2 and its recruitment of PI 3-kinase in response to TCR activation.  相似文献   

8.
Role of Cbl in shear-activation of PI 3-kinase and JNK in endothelial cells   总被引:2,自引:0,他引:2  
Fluid shear stress can activate PI-3 kinase and JNK in vascular endothelial cells. This study was designed to establish the role of Cbl as an upstream molecule in the shear stress activation of PI-3 kinase and JNK. Confluent monolayers of bovine aortic endothelial cells (BAECs) were subjected to a shear stress of 12 dyn/cm(2) over intervals ranging from 0.5 to 30 min. Shear stress increased Cbl phosphorylation to 2.9-fold of control and Cbl association with the regulatory PI-3 kinase subunit p85 to 5.4-fold. The PI-3 kinase activity measured in Cbl-immunoprecipitated complexes increased to 11.7-fold in response to shear, suggesting that the shear stress activation of PI-3 kinase involves its association with Cbl. Furthermore, the shear stress induction of JNK was attenuated by a negative mutant of Cbl. Finally, shear stress caused an activation of PI 3-kinase only in BAECs seeded onto fibronectin, vitronectin, or laminin, but not poly-l-lysine. Our results suggest that Cbl plays a critical role in the shear stress induction of PI 3-kinase and JNK activities, and that this shear-induced activation requires the interaction of endothelial integrins with extracellular matrix proteins.  相似文献   

9.
10.
Src family tyrosine kinases have previously been proposed to mediate some of the biological effects of lipopolysaccharide on macrophages. Accordingly, we have sought to identify substrates of Src family kinases in lipopolysaccharide-stimulated macrophages. Stimulation of Bac1.2F5 macrophage cells with lipopolysaccharide was found to induce gradual and persistent tyrosine phosphorylation of Cbl in an Src family kinase-dependent manner. Immunoprecipitation experiments revealed that Cbl associates with Hck in Bac1.2F5 cells, while expression of an activated form of Hck in Bac1.2F5 cells induces tyrosine phosphorylation of Cbl in the absence of lipopolysaccharide stimulation. The Src homology 3 domain of Hck can directly bind Cbl, and this interaction is important for phosphorylation of Cbl. Association of the p85 subunit of phosphatidylinositol (PI) 3-kinase with Cbl is enhanced following lipopolysaccharide stimulation of Bac1.2F5 cells, and transient expression experiments indicate that phosphorylation of Cbl by Hck can facilitate the association of p85 with Cbl. Lipopolysaccharide treatment also stimulates the partial translocation of Hck to the cytoskeleton of Bac1.2F5 cells. Notably, lipopolysaccharide enhances the adherence of Bac1.2F5 cells, an effect that is dependent on the activity of Src family kinases and PI 3-kinase. Thus, we postulate that Hck enhances the adherence of lipopolysaccharide-stimulated macrophages, at least in part, via Cbl and PI 3-kinase.  相似文献   

11.
The TrkB protein tyrosine kinase is a high affinity receptor for brain derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). TrkB autophosphorylation occurs on five cytoplasmic tyrosines: Y484, Y670, Y674, Y675, and Y785. Using site directed mutagenesis, we have assessed the importance of TrkB tyrosines 484 and 785 in affecting TrkB-mediated signaling events leading to NIH 3T3 cell mitogenesis and survival. Mutation of TrkB tyrosine 484, while having no affect on BDNF-inducible PLCgamma and Cbl tyrosine phosphorylation, is essential for the phosphorylation of Shc, the complete activation of extracellular regulated kinase 1/2 (ERK1/2) and the induction of c-fos protein synthesis. In contrast, mutation of Y785 does not significantly affect BDNF-inducible Shc phosphorylation, ERK1/2 activation, or c-fos protein synthesis, but completely inhibits the tyrosine phosphorylation of PLCgamma and Cbl. These data indicate that both ERK-dependent and ERK-independent signaling pathways lead to BDNF-inducible mitogenesis and survival.  相似文献   

12.
Phospholipase Cgamma (PLCgamma) is a ubiquitous gatekeeper of calcium mobilization and diacylglycerol-mediated events induced by the activation of Ag and growth factor receptors. The activity of PLCgamma is regulated through its controlled membrane translocation and tyrosine (Y) phosphorylation. Four activation-induced tyrosine phosphorylation sites have been previously described (Y472, Y771, Y783, and Y1254), but their specific roles in Ag receptor-induced PLCgamma1 activation are not fully elucidated. Unexpectedly, we found that the phosphorylation of a PLCgamma1 construct with all four sites mutated to phenylalanine was comparable with that observed with wild-type PLCgamma1, suggesting the existence of an unidentified site(s). Sequence alignment with known phosphorylation sites in PLCgamma2 indicated homology of PLCgamma1 tyrosine residue 775 (Y775) with PLCgamma2 Y753, a characterized phosphorylation site. Tyrosine 775 was characterized as a phosphorylation site using phospho-specific anti-Y775 antiserum, and by mutational analysis. Phosphorylation of Y775 did not depend on the other tyrosines, and point mutation of PLCgamma1 Y775, or the previously described Y783, substantially reduced AgR-induced calcium, NF-AT, and AP-1 activation. Mutation of Y472, Y771, and Y1254 had no effect on overall PLCgamma1 phosphorylation or activation. Although the concomitant mutation of Y775 and Y783 abolished downstream PLCgamma1 signaling, these two tyrosines were sufficient to reconstitute the wild-type response in the absence of functional Y472, Y771, and Y1254. These data establish Y775 as a critical phosphorylation site for PLCgamma1 activation and confirm the functional importance of Y783.  相似文献   

13.
In this report we have studied the role of phosphatidylinositol 3'-kinase (PI3-K) and tyrosine phosphatase activation on platelet activation by Convulxin (Cvx). Wortmannin, a specific PI3-K inhibitor, and phenylarsine oxide (PAO), a sulfhydryl reagent that inhibits tyrosine phosphatase (PTPase), block Cvx-induced platelet aggregation, granule secretion, inositol phosphate production, and increase in [Ca2+]i. However, PAO does not inhibit Cvx-induced tyrosine phosphorylation of platelet proteins, including Syk and PLCgamma2, but blocked collagen-induced platelet aggregation as well as tyrosine phosphorylation of PLCgamma2. In contrast, Cvx-induced PLCgamma2 tyrosyl phosphorylation was partially inhibited by wortmannin. We conclude that (i) although Cvx and collagen activate platelets by a similar mechanism, different regulatory processes are specific to each agonist; (ii) mechanisms other than tyrosine phosphorylation regulate PLCgamma2 activity; and (iii) besides protein tyrosine kinases, PI3-K (and PTPase) positively modulate platelet activation by both Cvx and collagen, and this enzyme is required for effective transmission of GPVI-Fc receptor gamma chain signal to result in full activation and tyrosine phosphorylation of PLCgamma2 in Cvx-stimulated platelets.  相似文献   

14.
Cbl is phosphorylated by the insulin receptor and reportedly functions within the flotillin/CAP/Cbl/Crk/C3G/TC10 complex during insulin-stimulated glucose transport in 3T3/L1 adipocytes. Cbl, via pYXXM motifs at tyrosine-371 and tyrosine-731, also activates phosphatidylinositol (PI) 3-kinase, which is required to activate atypical protein kinase C (aPKC) and glucose transport during thiazolidinedione action in 3T3/L1 and human adipocytes [Miura et al. (2003) Biochemistry 42, 14335-14341]. Presently, we have examined the importance of Cbl in activating PI 3-kinase and aPKC during insulin action in 3T3/L1 adipocytes by expressing Y371F and Y731F Cbl mutants, which nullify pYXXM binding of Cbl to SH2 domains of downstream effectors. Interestingly, these mutants inhibited insulin-induced increases in (a) binding of Cbl to both Crk and the p85 subunit of PI 3-kinase, (b) activation of Cbl-dependent PI 3-kinase, (c) activation and translocation of aPKC to the plasma membrane, (d) translocation of Glut4 to the plasma membrane, (e) and glucose transport. Importantly, coexpression of wild-type Cbl reversed the inhibitory effects of Cbl mutants. In contrast to Cbl-dependent PI 3-kinase, Cbl mutants did not significantly inhibit the activation of PI 3-kinase by IRS-1, which is also required during insulin action. Our findings suggest that (a) Cbl uses pYXXM motifs to simultaneously activate PI 3-kinase and Crk/C3G/TC10 pathways and (b) Cbl, along with IRS-1, functions upstream of PI 3-kinase and aPKCs during insulin-stimulated glucose transport in 3T3/L1 adipocytes.  相似文献   

15.
Chiang J  Hodes RJ 《PloS one》2011,6(4):e18542
Extensive studies of pre-TCR- and TCR-dependent signaling have led to characterization of a pathway deemed essential for efficient T cell development, and comprised of a cascade of sequential events involving phosphorylation of Lck and ZAP-70, followed by phosphorylation of LAT and SLP-76, and subsequent additional downstream events. Of interest, however, reports from our lab as well as others have indicated that the requirements for ZAP-70, LAT, and SLP-76 are partially reversed by inactivation of c-Cbl (Cbl), an E3 ubiquitin ligase that targets multiple molecules for ubiquitination and degradation. Analysis of signaling events in these Cbl knockout models, including the recently reported analysis of SLP-76 transgenes defective in interaction with Vav1, suggested that activation of Vav1 might be a critical event in alternative pathways of T cell development. To extend the analysis of signaling requirements for thymic development, we have therefore assessed the effect of Cbl inactivation on the T cell developmental defects that occur in Vav1-deficient mice. The defects in Vav1-deficient thymic development, including a marked defect in DN3-DN4 transition, were completely reversed by Cbl inactivation, accompanied by enhanced phosphorylation of PLC-γ1 and ERKs in response to pre-TCR/TCR cross-linking of Vav1-/-Cbl-/- DP thymocytes. Taken together, these results suggest a substantially modified paradigm for pre-TCR/TCR signaling and T cell development. The observed consensus pathways of T cell development, including requirements for ZAP-70, LAT, SLP-76, and Vav1, appear to reflect the restriction by Cbl of an otherwise much broader set of molecular pathways capable of mediating T cell development.  相似文献   

16.
The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin alpha(v)beta(3) induces the [Ca(2+)](i)-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of alpha(v)beta(3) integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src(-/-) mice.  相似文献   

17.
Raf kinases are important intermediates in epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) mediated activation of the mitogen-activated protein kinase (MAPK) pathway. In this report, we show that the A-Raf kinase is associated with activated EGF receptor complexes and with PDGF receptor (PDGFR) complexes independent of prior PDGF treatment. The ability of A-Raf to associate with receptor tyrosine kinases could provide a Ras-GTP-independent mechanism for the membrane localization of A-Raf. Expression of a partially activated A-Raf mutant resulted in decreased tyrosine phosphorylation of the PDGFR, specifically on Y857 (autophosphorylation site) and Y1021 (phospholipase Cgamma1 (PLCgamma1) binding site), but not the binding sites for other signalling proteins (Nck, phosphatidylinositol 3'-kinase (PI3K), RasGAP, Grb2, SHP). Activated A-Raf expression also altered the activation of PLCgamma1, and p85-associated PI3K. Thus, A-Raf can regulate PLCgamma1 signalling via a PDGFR-dependent mechanism and may also regulate PI3K signalling via a PDGFR-independent mechanism.  相似文献   

18.
In intestinal cells, as in other target cells, 1alpha,25(OH)(2)D(3) elicits long-term and short-term responses which involve genomic and non-genomic mode of actions, respectively. There is evidence indicating that activation of tyrosine phosphorylation pathways may participate in the responses induced by 1alpha,25(OH)(2)D(3) through its non-genomic mechanism. In this study we have evaluated the involvement of 1alpha,25(OH)(2)D(3) in the tyrosine phosphorylation of PLCgamma and MAPK (ERK1/2) in enterocytes from young (3 months) and aged (24 months) rats. Immunochemical analysis revealed that the hormone stimulates PLCgamma tyrosine phosphorylation in young rat enterocytes. Hormone effect on PLCgamma is rapid, peaking at 2 min (+100%), is dose-dependent (10(-10) to 10(-8)M) and decreases with ageing. 1alpha,25(OH)(2)D(3) also induces the phosphorylation and activation of the mitogen-activated-protein kinases ERK1 and ERK2, effect which was evident at 1 min (three-fold) and reached a maximum at 2 min (six-fold). Hormone-dependent ERK1 and ERK2 phosphorylation and activity is greatly reduced in enterocytes from old rats. In both, young and aged animals, 1alpha,25(OH)(2)D(3)-induced PLCgamma and ERK1/2 phosphorylation was effectively suppressed by the tyrosine kinase inhibitor genistein (100 uM) and suppressed to a great extent by PP1, an inhibitor of c-Src kinases. LY294002, a specific inhibitor of PI3 kinase (PI3K), enzyme with an important role in mitogenesis, did not affect hormone-dependent ERK1/2 phosphorylation, indicating that PI3K is not involved in 1alpha,25(OH)(2)D(3)-induced MAPK activation. In agreement with this data, enzyme activity assays and tyrosine phosphorylation of the regulatory subunit (p85) of PI3K showed that the hormone has no effect on the enzyme activity in rat enterocytes.Taken together, the present study suggest that in intestinal cells, tyrosine phosphorylation is an important mechanism of 1alpha,25(OH)(2)D(3) involved in PLCgamma and MAPK regulation and that this mechanism is impair with ageing.  相似文献   

19.
The thiazolidinedione (TZD), rosiglitazone, has previously been found to tyrosine-phosphorylate Cbl and activate Cbl-dependent phosphatidylinositol (PI) 3-kinase and atypical protein kinase Cs (aPKCs) while stimulating glucose transport in 3T3/L1 adipocytes. Presently, the role of Cbl in rosiglitazone action was further assessed in both 3T3/L1 and human adipocytes by expressing Y371F and/or Y731F mutant forms of Cbl that nullified the functionality of canonical pYXXM motifs in Cbl. These mutants diminished the interaction of Cbl with the p85 subunit of PI 3-kinase and inhibited subsequent increases in Cbl-dependent PI 3-kinase activity, aPKC activity, and glucose transport. These mutants also inhibited the interaction of Cbl with Crk, which has been implicated in the activation of other PI 3-kinase-independent signaling factors that have been found to be required during activation of glucose transport by insulin and other agonists. We conclude that pYXXM motifs in Cbl serve to activate PI 3-kinase-dependent and possibly PI 3-kinase-independent pathways that are required for TZD-dependent glucose transport in adipocytes.  相似文献   

20.
Hematopoietic cell kinase (Hck) is a member of the Src-family of protein tyrosine kinases. We have found that upon enzymatic activation of Hck by the heavy metal mercuric chloride, there was a rapid increase in the levels of tyrosine phosphorylation of several proteins including the proto-oncogene p120(Cbl). Fibroblasts that are transformed with an activated allele of Hck exhibit constitutive Cbl phosphorylation. Upon Fcgamma receptor activation, a more physiologically relevant extracellular signal, Cbl is tyrosine phosphorylated and the Src-family selective inhibitor, PP1, can prevent this phosphorylation on Cbl. Hck phosphorylates Cbl in vitro and the interaction between Cbl and Hck is direct, requiring Hck's unique, SH3 and SH2 domains for optimal binding. Using a novel estrogen-regulated chimera of Hck we have shown a hormone-dependent association between Hck and Cbl in murine fibroblasts. This work suggests that Cbl serves as a key mediator of Hck induced signalling in hematopoietic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号