首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Crosses between triploid and diploid genotypes are usually the best sources of trisomics in potato as well as in several other crop species. However, 3×× 2× crosses between triploid (2n=3×=36; 2EBN) Solanum commersonii-S. tuberosum hybrids and diploid (2n= 2×=24; 2EBN) genotypes gave progenies with a high number of extra chromosomes, 29–36, suggesting that only eggs with 17–24 chromosomes produced embryos that reached full development. Our hypothesis is that although triploids produce eggs with a range of chromosome numbers, 3×× 2× crosses involving a 2×(2EBN) parent favor eggs with a high chromosome number. These eggs have higher probabilities of possessing the same endosperm balance number (EBN) value (i.e. 1) of gametes produced by the 2EBN diploid parent to give the required 2:1 maternal to paternal EBN ratio in the hybrid endosperm. Under this model, trisomics are produced only if the diploid parent has an EBN of 1. Based on our results and those reported in the literature, it is proposed that in 3×(2EBN) × 2×(2EBN) crosses the endosperm balance number exercises negative selection for gametes with a low chromosome number, and a corresponding low EBN, and positive selection for gametes with a high chromosome number and EBN. Received: 2 April 1998 / Revision accepted: 27 October 1998  相似文献   

2.
S A Johnston  R E Hanneman 《Génome》1996,39(2):314-321
The genetic control of Endosperm Balance Number (EBN) was studied using trisomics and induced mutation. In order to induce and detect a change in a factor determining the EBN of the male, pollen from tetraploid Datura was irradiated and used to pollinate diploids. No triploids were produced in over 70 000 fertilizations. At least 70 would have been expected if the deletion of the function of a single gene could change the EBN. An attempt was made to find a particular chromosome that could alter the EBN of the female when it was present as the extra chromosome in 2x + 1 x 4x crosses. In tests of trisomics in both Datura and Solanum (potato) no chromosome could be found that changed the EBN. Therefore, it is concluded that more than one gene and more than one chromosome is involved in determining EBN. Key words : crossing barriers, endosperm, Datura, potato, speciation.  相似文献   

3.
Abstract. Theoretical models indicate that the evolution of tetraploids in diploid populations will depend on both the relative fitness of the tetraploid and that of the diploid-tetraploid hybrids. Hybrids are believed to have lower fitness due to imbalances in either the ploidy (endosperm imbalance) or the ratio of maternal to paternal genomes in their endosperm (genomic imprinting). In this study we created diploids, tetraploids, and hybrid triploids of Chamerion angustifolium from crosses between field-collected diploid and tetraploid plants and evaluated them at six life stages in a greenhouse comparison. Diploid offspring (from 2 x × 2 x crosses) had significantly higher seed production and lower biomass than tetraploid offspring (from 4 x × 4 x crosses). Relative to the diploid, the cumulative fitness of tetraploids was 0.67. In general, triploids (from 2 x × 4 x , 4 x × 2 x crosses) had significantly lower seed production, lower pollen viability, and higher biomass than diploid individuals. Triploid offspring derived from diploid maternal parents had lower germination rates, but higher pollen production than those with tetraploid mothers. Relative to diploids, the cumulative fitness of 2 x × 4 x triploids and 4 x × 2 x triploids was 0.12 and 0.06, respectively, providing some support for effect of differing maternal:paternal ratios and endosperm development as a mechanism of hybrid inviability. Collectively, the data show that tetraploids exhibit an inherent fitness disadvantage, although the partial viability and fertility of triploids may help to reduce the barrier to tetraploid establishment in sympatric populations.  相似文献   

4.
Summary A triploid hybrid (2n=3x=36) between a colchicine-induced 4x(2EBN) Solanum brevidens (a non-tuber-bearing species) and 2x(2EBN) S. chacoense (a tuber-bearing species) was used as a vehicle for germplasm transfer to S. tuberosum Group Tuberosum. The use of 2n gametes from the triploid allowed the unique opportunity for transferring exotic germplasm from Series Etuberosa to Gp. Tuberosum material. The triploid hybrid used had a pollen stainability of less than 0.1%. Observations of microsporogenesis revealed that metaphase I pairing configurations were primarily 12 bivalents and 12 univalents with occasional trivalents. Anaphase I separations were irregular, often with lagging univalents. Meiotic observations and pollen morphology suggest that the stainable pollen produced by the hybrid was 2n=3x=36. A single pentaploid hybrid (2n=5x=60) was produced by the fertilization of a rare 2n egg from the triploid with a normal male gamete from the clone Wis AG 231 (2n=4x=48). Limited crosses to other 1, 2 and 4EBN species and cultivars were unsuccessful. The pentaploid hybrid had a more regular meiosis than the triploid and dramatically improved pollen stainability (37% stainable pollen). Stylar blocks prevented estimates of male fertility in crosses. Female fertility in 47 crosses with nine cultivars averaged 19 seeds per fruit. Although S. brevidens is non-tuber-bearing, and the triploid produced only stolons, the pentaploid hybrid tuberized well under field conditions, despite being very late. Results suggest that the tuberization response is a dosage and/or threshold effect. This approach to the incorporation of 1EBN germplasm indicates the utility of the EBN concept coupled with 2n gametes. Further, it demonstrates a means for the introgression of 1EBN species genes into Gp. Tuberosum material.  相似文献   

5.
Summary Tetraploid (2n=4x=48) 2EBN Mexican wild species in the series Longipedicellata, which consists of Solanum fendleri, S. hjertingii, S. papita, S. polytrichon, and S. stoloniferum, were crossed with two 2EBN cultivated diploid (2n=2x=24) clones. The resulting triploid hybrids (2n=3x=36) produced 2n pollen (triplandroids) by the mechanism of parallel orientation of anaphase II spindles. The percentage of stainable pollen in 520 triploids ranged between 0 and 23.5%, with a mean of 2.7%. Triploids producing between 13.0 and 23.5% stainable pollen were crossed as staminate parents to the tetraploid cultivars, resulting in abundant pentaploid (2n=5x=60) and near-pentaploid hybrid progeny. Crosses of triploids with lower percentage of stainable pollen as pollen parent to the tetraploid cultivars did not yield fruit, unless rescue pollen from a tetraploid cultivar was added 2 days later. Pentaploid hybrids were selected among selfed tetraploid progenies using morphological and isoxyme markers transmitted from their cultivated diploid parents. These pentaploid hybrids were vigorous and had uniformly sterile pollen. They were female fertile and were crossed with tetraploid cultivars, yielding an average of 19 seeds per fruit. Triplandroids provide the opportunity of transferring 2EBN tetraploid Mexican wild species in the series Longipedicellata germ plasm into the 4EBN cultivated potatoes.Cooperative investigations of the ARS, USDA, and the Washington State University Agricultural Research Center, Prosser, WA 99350, USA. H/LA Paper No. 90-03, College of Agriculture and Home Economies Research Center, Washington State University, Pullman, WA 99164, USA  相似文献   

6.
Gong N  Yang H  Zhang G  Landau BJ  Guo X 《Heredity》2004,93(5):408-415
Reproduction and chromosome inheritance in triploid Pacific oyster (Crassostrea gigas Thunberg) were studied in diploid female x triploid male (DT) and reciprocal (TD) crosses. Relative fecundity of triploid females was 13.4% of normal diploids. Cumulative survival from fertilized eggs to spat stage was 0.007% for DT crosses and 0.314% for TD crosses. Chromosome number analysis was conducted on surviving progeny from DT and TD crosses at 1 and 4 years of age. At Year 1, oysters from DT crosses consisted of 15% diploids (2n=20) and 85% aneuploids. In contrast, oysters from TD crosses consisted of 57.2% diploids, 30.9% triploids (3n=30) and only 11.9% aneuploids, suggesting that triploid females produced more euploid gametes and viable progeny than triploid males. Viable aneuploid chromosome numbers included 2n+1, 2n+2, 2n+3, 3n-2 and 3n-1. There was little change over time in the overall frequency of diploids, triploids and aneuploids. Among aneuploids, oysters with 2n+3 and 3n-2 chromosomes were observed at Year 1, but absent at Year 4. Triploid progeny were significantly larger than diploids by 79% in whole body weight and 98% in meat weight at 4 years of age. Aneuploids were significantly smaller than normal diploids. This study suggests that triploid Pacific oyster is not completely sterile and cannot offer complete containment of cultured populations.  相似文献   

7.
Summary Regeneration of inter-EBN hybrids among potato species was achieved using embryo rescue techniques. Tetraploid hybrids between 4x(2EBN) Solanum stoloniferum x 4x(4EBN) S. tuberosum Gp. Andigena as well as diploid hybrids between 2x(1EBN) S. chancayense x 2x(2EBN) S. chacoense were obtained by culturing immature hybrid embryos in nutrient medium. Identification of appropriate embryo developmental stages was critical in developing a suitable protocol for rescuing viable hybrid embryos. The use of IVP clones as the second pollinator in 4x(2EBN) x 4x(4EBN) crosses reduced premature fruit drop and helped to identify triploid hybrids. Morphological and cytological examination confirmed true hybridity for a few of the regenerated plants. Male sterility and meiotic abnormalities were characteristic of the hybrids. Several S. stoloniferum-Andigena hybrids were successfully backcrossed to Gp. Andigena.Cooperative investigation of Vegetable Crops Research Unit, USDA, Agricultural Research Service, and the Wisconsin Agricultural Experiment Station Note: Reference to a specific brand or firm name does not constitute endorsement by the U.S. Department of Agriculture over others of similar nature not mentioned  相似文献   

8.
9.
Data on the production of offspring of 4×× 2× crosses in potato are presented. The ploidy composition of seedlings varied from year to year and parent to parent. Products of dihaploid induction crosses were chiefly 2× or 3× whereas crosses between S. tuberosum cultivars and unreduced gamete-producing S. phureja clones were mainly 3× or 4×. Substantial percentages of 3× seedlings were produced by some crosses in some years. It was concluded that the so-called ‘triploid block’ in potatoes is a variable phenomenon and that factors which increase seed production may suppress the proportion of triploids produced.  相似文献   

10.
Apomictic plants often produce pollen that can function in crosses with related sexuals. Moreover, facultative apomicts can produce some sexual offspring. In dandelions, Taraxacum, a sexual-asexual cycle between diploid sexuals and triploid apomicts, has been described, based on experimental crosses and population genetic studies. Little is known about the actual hybridization processes in nature. We therefore studied the sexual-asexual cycle in a mixed dandelion population in the Netherlands. In this population, the frequencies of sexual diploids and triploids were 0.31 and 0.68, respectively. In addition, less than 1% tetraploids were detected. Diploids were strict sexuals, triploids were obligate apomicts, but tetraploids were most often only partly apomictic, lacking certain elements of apomixis. Tetraploid seed fertility in the field was significantly lower than that of apomictic triploids. Field-pollinated sexual diploids produced on average less than 2% polyploid offspring, implying that the effect of hybridization in the 2x-3x cycle in Taraxacum will be low. Until now, 2x-3x crosses were assumed to be the main pathway of new formation of triploid apomicts in the sexual-asexual cycle in Taraxacum. However, tetraploid pollen donors produced 28 times more triploid offspring in experimental crosses with diploid sexuals than triploid pollen donors. Rare tetraploids may therefore act as an important bridge in the formation of new triploid apomicts.  相似文献   

11.
Experimental crosses between diploids, triploids and tetraploids ofHieracium echioides were made to examine mating interactions. Specifically, cytotype diversity in progeny from experimental crosses, intercytotype pollen competition as a reproductive barrier between diploids and tetraploids, and differences in seed set between intra- and intercytotype crosses were studied. Only diploids were found in progeny from 2x × 2x crosses. The other types of crosses yielded more than one cytotype in progeny, but one cytotype predominated in each cross type: diploids (92%) in 2x × 3x crosses, tetraploids (88%) in 3x × 2x crosses, triploids (96%) in 2x × 4x crosses, triploids (90%) in 4x × 2x crosses, tetraploids (60%) in 3x × 3x crosses, pentaploids (56%) in 3x × 4x crosses, triploids (80%) in 4x × 3x crosses and tetraploids (88%) in 4x × 4x crosses. No aneuploids have been detected among karyologically analyzed plants. Unreduced egg cell production was detected in triploids and tetraploids, but formation of unreduced pollen was recorded only in two cases in triploids. Triploid plants produced x, 2x and 3x gametes: in male gametes x (92%) gametes predominated whereas in female gametes 3x (88%) gametes predominated. Cytotype diversity in progeny from crosses where diploids and tetraploids were pollinated by mixture of pollen from diploid and tetraploid plants suggested intercytotype pollen competition to serve as a prezygotic reproductive barrier. No statistically significant difference in seed set obtained from intra- and intercytotype crosses between diploids and tetraploids was observed, suggesting the absence of postzygotic reproductive barriers among cytotypes.  相似文献   

12.
BACKGROUND AND AIMS: Gametophytic apomixis is regularly associated with polyploidy. It has been hypothesized that apomixis is not present in diploid plants because of a pleiotropic lethal effect associated with monoploid gametes. Rare apomictic triploid plants for Paspalum notatum and P. simplex, which usually have sexual diploid and apomictic tetraploid races, were acquired. These triploids normally produce male gametes through meiosis with a range of chromosome numbers from monoploid (n = 10) to diploid (n = 20). The patterns of apomixis transmission in Paspalum were investigated in relation to the ploidy levels of gametes. METHODS: Intraspecific crosses were made between sexual diploid, triploid and tetraploid plants as female parents and apomictic triploid plants as male parents. Apomictic progeny were identified by using molecular markers completely linked to apomixis and the analysis of mature embryo sacs. The chromosome number of the male gamete was inferred from chromosome counts of each progeny. KEY RESULTS: The chromosome numbers of the progeny indicated that the chromosome input of male gametes depended on the chromosome number of the female gamete. The apomictic trait was not transmitted through monoploid gametes, at least when the progeny was diploid. Diploid or near-diploid gametes transmitted apomixis at very low rates. CONCLUSIONS: Since male monoploid gametes usually failed to form polyploid progenies, for example triploids after 4x x 3x crosses, it was not possible to determine whether apomixis could segregate in polyploid progenies by means of monoploid gametes.  相似文献   

13.
P. E. Brandham 《Genetica》1982,59(1):29-42
In reciprocal crosses between diploid and triploid Aloineae the progeny are largely diploid or diploid plus one or two chromosomes, but in reciprocal crosses between triploids and tetraploids they are tetraploid or nearly so. Thus the triploids contribute circa haploid gametes to the progeny when crossed with diploids but circa diploid gametes when crossed with tetraploids. These results are compared with those of a number of earlier workers. It is concluded that the bias in the frequency of progeny types towards diploidy or tetraploidy, depending on the ploidy level of the plant which is crossed with the triploid, is caused by inter-embryo competition. Those embryos with an endosperm/embryo factor of 1.5, the value found in normal diploid/diploid crosses having triploid endosperms, are selected in preference to those with factors higher or lower than 1.5.Inter-gamete competition also occurs among the euploid and aneuploid gametes produced by the triploids. This is more pronounced on the male side, because the degree of survival of aneuploid pollen from the triploids into the next generation is much lower than that of aneuploid egg nuclei.Non-reduction in the triploids gives rise to occasional pentaploid progeny in crosses with tetraploids, but it is more probable that in diploid/triploid crosses tetraploid progeny are the products of non-reduction in the diploid.  相似文献   

14.

Background and Aims Dioscorea alata

is a polyploid species with a ploidy level ranging from diploid (2n = 2x = 40) to tetraploid (2n = 4x = 80). Ploidy increase is correlated with better agronomic performance. The lack of knowledge about the origin of D. alata spontaneous polyploids (triploids and tetraploids) limits the efficiency of polyploid breeding. The objective of the present study was to use flow cytometry and microsatellite markers to understand the origin of D. alata polyploids.

Methods

Different progeny generated by intracytotype crosses (2x × 2x) and intercytotype crosses (2x × 4x and 3x × 2x) were analysed in order to understand endosperm incompatibility phenomena and gamete origins via the heterozygosity rate transmitted to progeny.

Results

This work shows that in a 2x × 2x cross, triploids with viable seeds are obtained only via a phenomenon of diploid female non-gametic reduction. The study of the transmission of heterozygosity made it possible to exclude polyspermy and polyembryony as the mechanisms at the origin of triploids. The fact that no seedlings were obtained by a 3x × 2x cross made it possible to confirm the sterility of triploid females. Flow cytometry analyses carried out on the endosperm of seeds resulting from 2x × 4x crosses revealed endosperm incompatibility phenomena.

Conclusions

The major conclusion is that the polyploids of D. alata would have appeared through the formation of unreduced gametes. The triploid pool would have been built and diversified through the formation of 2n gametes in diploid females as the result of the non-viability of seeds resulting from the formation of 2n sperm and of the non-viability of intercytotype crosses. The tetraploids would have appeared through bilateral sexual polyploidization via the union of two unreduced gametes due to the sterility of triploids.  相似文献   

15.
Comparative cytological and histological studies during embryogenesis of seeds from 2x X 2x and 2x x 4x crosses indicate that the ratio of ploidy level between embryo and endosperm is the most important factor affecting the course of seed development. The crosses produced seeds with the expected ploidy relationships between embryo, endosperm, and maternal tissue of 2:3:2 and 3:4:2 as well as the anomalous relationships 3:5:2, 4:6:2, and 6:10:2. All but 3:4:2 resulted in normal, germinable seeds. The ploidy level of the maternal tissue in relation to that of the embryo or endosperm did not appear to have any effect on seed development. About 92–99 % of seeds from 2x x 4x crosses containing triploid embryos with tetraploid endosperm aborted at different stages of embryogenesis. The abortion in all cases was preceded by abnormalities in the tetraploid endosperm. It is postulated that the unbalance of chromosome number between embryo and endosperm disturbs physiological relationships between these two tissues, leading first to the abortion of the endosperm and then of the embryo.  相似文献   

16.
禾本科三倍体的形成途径包括2n配子融合、倍性间杂交、多精受精和胚乳培养。其中, 2n配子融合和倍性间杂交分别为自然界和人工合成三倍体的主要途径。该文介绍了形态学观测、染色体分析、流式细胞术和分子标记等倍性鉴定方法在禾本科三倍体中的应用及其优缺点。目前, 三倍体在禾谷类作物中无直接应用价值, 但可作为通往多倍体、非整倍体和转移异源基因的遗传桥梁。多年生禾本科三倍体(特别是异源三倍体)在饲草或能源作物中已得到广泛应用, 在该类型禾本科作物中均可直接尝试三倍体育种。多倍体的三倍体育种和无融合生殖三倍体育种可作为未来禾本科三倍体的研究方向。三倍性胚乳培养可以一步合成三倍体, 多精受精可以实现遗传上3个不同基因组的一步融合, 在三倍体研究中应予以重视。鉴于2n配子融合、多精受精的稀有特性和倍性间杂交、胚乳培养频繁的染色体变异, 高通量三倍体鉴定技术的发展将是三倍体研究实现突破的关键。  相似文献   

17.
An allotriploid (ALA, 2n=3 x=36) BC(1) plant was obtained by backcrossing a diploid F(1) interspecific hybrid (LA, 2n=2 x=24), derived from a Lilium longiflorum (L genome) and an Asiatic hybrid (A genome), to the latter parent. This allotriploid was backcrossed to a diploid Asiatic hybrid (2n=2 x=24) and to an allotetraploid (LLAA, 2n=4 x=48) LA hybrid. A total of 25 plants of these crosses were examined for ploidy level, and 12 individuals were analyzed for their genome constitution through genomic in situ hybridization (GISH). In most cases the progenies from the triploid-diploid (3 x-2 x) crosses consisted of aneuploids. Further more, there was evidence for the formation of near-haploid (x=12+2) to triploid (3 x=36) gametes in the allotriploid BC(1) plant. The progenies of triploid-tetraploid (3 x-4 x) cross also consisted of mostly aneuploids but in this case the triploid female parent had contributed predominantly near-triploid (2n) gametes for the origin of BC(2) progenies. The different ploidy levels observed between 3 x-2 x and 3 x-4 x crosses are possibly caused by preferential fertilization or survival resulting in a different ratio of chromosome numbers between the embryo and endosperm. Though Lilium has a tetrasporic, eight-nucleate type of embryo sac formation (Fritillaria type), the observed difference between the progeny types in 3 x-2 x and 3 x-4 x crosses is comparable to that of observed in monosporic eight nucleate types (Polygonum type) that predominate in most genera of Angiosperms. An important feature of the genome constitution of the progenies was that the homoeologous recombinant chromosomes were transmitted intact from BC(1) to BC(2) progenies in variable numbers. In addition, there was evidence for the occurrence of new homoeologous recombinations in the triploid BC(1). Of the two euploid BC(2) plants one had originated through the parthenogenetic development of a 2n egg and the other had originated through indeterminate meiotic restitution (IMR).  相似文献   

18.
Wild Mexican potato species are an important untapped source of useful variation for potato improvement. Introgression methods such as 2n gametes, chromosome doubling, and crossing with disomic 4x 2 endosperm balance number (EBN) bridge species have been used to overcome post-zygotic endosperm failure according to the EBN hypothesis. Stylar barriers can prevent zygote formation, bilaterally when zygote formation is blocked in both directions of the cross or unilaterally when zygote formation is blocked in self incompatible (SI) × self compatible (SC) crosses. In several Solanaceae species, the S-locus for SI has been implicated in interspecific incompatibility. The objectives of this research were to determine if: (1) disomic 4x 2EBN Solanum stoloniferum can be used as a bridge species for introgression of the Mexican 2x 1EBN species Solanum cardiophyllum and Solanum pinnatisectum, (2) pre- and/or post-zygotic barriers limit hybridization among EBN compatible Solanum inter-series crosses, and (3) reproductive barriers act unilaterally or bilaterally. Fruit formation and seed set was recorded for inter-pollinations of S. stoloniferum, 4x 2EBN chromosome doubled S. cardiophyllum and S. pinnatisectum, and 2x 2EBN S. tuberosum haploids (HAP) or haploid-species hybrids (H-S). In vivo pollen tube growth was analyzed for each cross combination with fluorescence microscopy. Attempts to create bridge hybrids between S. stoloniferum, and S. cardiophyllum or S. pinnatisectum were not successful. Pre- and post-zygotic barriers prevented seed formation in crosses involving S. cardiophyllum and S. pinnatisectum. Self compatibility in S. stoloniferum and S. pinnatisectum suggests that the S-locus does not contribute to the stylar barriers observed with these species. Alternatively, the presence of functional and nonfunctional (SC) S-alleles may explain interspecific incompatibility in intra- and inter-ploidy crosses. A non-stylar unilateral incongruity was discovered in H-S/HAP × S. stoloniferum crosses, indicating either a post-zygotic barrier, or a pre-zygotic barrier acting at or within the ovary. Furthermore, lack of S. stoloniferum pollen rejection may occur through absence of S. stoloniferum pollen-active genes needed to initiate pollen rejection, or through competitive interaction in S-locus heterozygous S. stoloniferum pollen. Introgression strategies using these species would benefit potato breeding by introducing genetic diversity for several traits simultaneously through co-current introgression.  相似文献   

19.
 The Endosperm Balance Number (EBN) hypothesis was developed in the early ’80s to explain the basis for normal seed development after intra- and inter-specific crosses, first in the potato and then in several other crop species. According to this hypothesis, each species has a genome-specific effective ploidy, the EBN, which must be in a 2 : 1 maternal to paternal ratio in the hybrid endosperm for normal development of the endosperm itself. This paper reviews how the EBN may act as a powerful isolating mechanism in sexual reproduction, maintaining the genome integrity of the species and playing an important role in the speciation of polyploids from diploids. We also provide further evidence that EBN is more important than chromosome ploidy in determining the success or failure of interspecific crosses. In fact, results from inter-ploidy and inter-EBN crosses to infuse 1EBN Solanum commersonii into 4EBN S. tuberosum demonstrated that the knowledge and manipulation of EBN is a useful tool in designing breeding schemes and in predicting the offspring ploidy and EBN. In this paper we also discuss the exceptions to the 2 : 1 EBN ratio, and report the evidence for endomitosis in the polar nuclei to explain exceptions to the EBN model in the potato. Received: 22 December 1997 / Accepted: 19 May 1998  相似文献   

20.
 The genetic control of Endosperm Balance Number (EBN), a mechanism of effective ploidy that controls seed development, was studied using aneuploidy. The Endosperm Balance Number hypothesis proposes that each species has an effective ploidy (EBN) in the endosperm and that it is the effective ploidies, rather than the numerical (actual) ploidies, that must be in a 2:1 maternal to paternal ratio for normal endosperm development. Experiments were conducted in Datura stramonium L. (2n=4x=48) to determine if more than one chromosome but less than the whole genome could change the EBN of the female. Triploids were crossed with tetraploids to produce aneuploids. Most plump seeds gave rise to 2n=4x=48 chromosome plants. Six plants had between 38 and 47 chromosomes. Karyotyping of these plants supported the conclusion that only two chromosomes (1.2 and 19.20), when extra, were necessary to change the EBN of the central cell. Received: 25 April 1998 / Revision accepted: 25 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号