首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently described an apparatus for protein purification based on a segmented Immobiline gel, having one or more liquid interlayers in between. The principle is entirely new, as it is based on keeping the protein of interest isoelectric, in a flow chamber, and focusing the impurities in an Immobiline gel. For this, a hydraulic flow is coupled orthogonally to an electric flow, sweeping away the non-isoelectric impurities from the recycling chamber. We now demonstrate that the present apparatus can be efficiently used for protein desalting. Hemoglobin A samples, containing 50 mM NaCl or 50 mM ammonium acetate, could be efficiently desalted in 2 h of recycling, after which the total salt content had decreased to less than 0.005 mM (a salt decrement of more than 10,000 fold the initial input). However, with polyprotic buffers (sulphate, citrate, phosphate, oligoamines) the desalting process was much slower, typically of the order of 20 h, possibly due to interaction of these species with the surrounding Immobiline matrix. In this last case, outside pH control (e.g. with a pH-stat) is necessary during protein purification, as, due to the faster removal of the monovalent counterion, the solution in the recycling chamber can become rather acidic or alkaline. It is demonstrated that the 2 extremities of the Immobiline segments facing the sample recycling chamber act indeed as isoelectric membranes, having a good buffering capacity, preventing the protein macroion from leaving the chamber by continuously titrating it to its isoelectric point.  相似文献   

2.
A new method is described for preparative protein purification, based on isoelectric focusing on immobilized pH gradients. The principle is entirely new, as it is based on keeping the protein of interest isoelectric, in a flow-chamber, and focusing the impurities in the Immobiline gel. For this, a hydraulic flow is coupled orthogonally to an electric flow, sweeping away the non-isoelectric impurities from the recycling chamber. The sample flow-chamber is built in the centre of the apparatus, and is coupled to an upper and lower segment of an immobilized pH gradient. The protein to be purified is kept isoelectric in the flow-chamber and prevented from leaving it by arranging for the extremities of the immobilized pH gradient, forming the ceiling and the floor of this chamber, to have isoelectric points just higher (e.g. +0.05 pH units, on the cathodic side) and just lower (e.g. -0.05 pH units, on the anodic side) than the known pI of the species of interest. Macromolecules and small ions leave the flow chamber at a rate corresponding to a first order reaction kinetics (the plot of log C vs. time being linear). In general, for macromolecules, 12 h of recycling under current allow removal of 95% impurities. After 24 h of recycling, the protein of interest is more than 99.5% pure. The recoveries are very high (approaching 100%) as the sample under purification never enters the Immobiline gel and thus does not have to be extracted from a hydrophilic matrix, as typical of preparative gel electrophoresis.  相似文献   

3.
A new method for electrophoretic retrieval of protein zones from Immobiline matrices is described, based on elution directly in a free liquid phase, rather than in ion-exchange beads or molecular sieves, as previously described. The chopped Immobiline gel is loaded on top of a 5% T stacking gel, 6-10 mm in height, and forced to transverse it and collect into a chamber, filled with 20% sucrose solution, closed on its anodic side by a dialysis sac. The transfer is practically quantitative, for most proteins, after 30-60 min of zone electrophoresis at 10 W (300 V potential differential). Recovery of protein mass is in general better than 90%, while for enzyme activity is in the range of 60-80%. For preserving enzyme integrity, the following precautions are recommended: short electrophoretic times; avoidance of anodic oxidation; chilling of the buffer in the anodic chamber; and use of low levels (2-5 mM) of the specific enzyme substrate throughout the entire electrophoretic system (cathode, anode and gel plug).  相似文献   

4.
An effective preparative isoelectric focusing method has been developed using the LKB Immobiline system in a vertical slab gel apparatus. Advantages of this procedure are ease of sample application, excellent resolution, and the direct visualization of focused bands. Narrow pH gradients have been used to separate apolipoprotein E3 isoforms (pH gradient 4.9-5.9) and to resolve the apolipoprotein C mixture (pH gradient 4.0-5.0). Recoveries ranged from 40 to 70%. The method should be valuable for protein and isoform purification.  相似文献   

5.
Due to the high reproducibility of pH gradient slope and width, immobilized pH gradients (IPG) have been used as the first dimension of two-dimensional techniques in order to generate maps of constant spot position in the pMr. However, when coupling IPG to SDS (sodium dodecyl sulphate) gels two problems were encountered: vertical streaking, due to incomplete zone solubilization in SDS, and horizontal streaking, due to spot fusion along the pH axis caused by the electroendosmosis of the charged Immobiline gels. Two methodical modifications are herewith described to overcome these drawbacks: (a) the SDS equilibrium time of the first-dimension gel has been prolonged to at least 30 min; (b) the SDS electrophoresis gel has been cast together with a starting gel, containing 2.5 mM of each Immobiline species used in the first dimension, which serves as a transition from the charged to the uncharged gel.  相似文献   

6.
The performance of two-dimensional electrophoresis in conventional gels in Cartesian coordinates (2-DE) vs. polar coordinates (2-PE) is here evaluated. Although 2-DE is performed in much longer Immobiline gels in the first dimension (17 cm) vs. barely 7-cm in 2-PE, an equivalent resolving power is found. Moreover, due to the possibility of running up to seven Immobiline strips in the radial gel format, the reproducibility of spot position is seen to be higher, this resulting in a 20% higher matching efficiency. As an extra bonus, strings of "isobaric" spots (i.e. polypeptides of identical mass with different pI values) are more resolved in the radial gel format, especially in the 10 to 30 kDa region, where the gel area fans out leaving extra space for spot resolution. In conclusion, this novel gel format in the second dimension of 2D gels is seen as an important improvement of this technique, still one of the most popular in proteome analysis.  相似文献   

7.
An apparatus has been developed to reduce cathodic drift and migration into the anode chamber in vertical gel rod isoelectric focusing (IEF). In contrast to commercially available apparatuses, this apparatus can easily handle many more gels at one time, and the length, diameter and shape of its gel can be arbitrarily changed. In addition, high concentrations of detergent can be used to dissolve the protein samples, and removal of the gel cylinders from the glass tubes is easy.  相似文献   

8.
A vertical submarine electrophoresis apparatus for use with minislab polyacrylamide gels is described. The design allows polyacrylamide gels to be run with the same ease and convenience that agarose gels are run with horizontal submarine apparatuses. The vertical submarine features a single buffer chamber with a restriction between the upper and the lower portions of the chamber. Acrylamide gels, cast between 9 X 10-cm glass slides, are inserted into the restriction and are completely immersed in buffer. Thus, current flows primarily through the gel itself, but some current flows through the buffer in the restriction surrounding the gel. Because water-tight separation of buffer chambers is not necessary, time-consuming and/or expensive procedures such as sealing with agarose or using fragile notched glass plates are eliminated. The apparatus can be set up to run a gel in less than 30 s. It is versatile in that gels of varying thickness (0.5, 0.8, 1.5, and 3 mm) can be run on a single apparatus. The apparatus has been used for sodium dodecyl sulfate gels, low ionic strength native gels for nucleoprotein complexes, and composite acrylamide-agarose gels.  相似文献   

9.
With the synthesis of a new, strongly basic Immobiline (pK 10.3 at 10 degrees C) it has been possible to formulate a new pH 10-11 recipe for focusing very alkaline proteins, not amenable to fractionation with conventional isoelectric focusing in carrier ampholyte buffers. In this formulation, water is added as an acidic Immobiline having pK = 14 and a unit molar concentration (or with a pK = 15.74 and standard 55.56 molarity) since around pH 11 its buffering power becomes significant. The gel contains a 'conductivity quencher', i.e. a density gradient incorporated in the matrix, with the dense region located on the cathodic side (pH 11) for (a) smoothing the voltage gradient on the separation cell and (b) reducing the anodic electrosmotic flow due to the net positive charge acquired by the matrix at pH 11 (1 mM excess protonated amino groups to act as counterions to the 1 mm OH- groups in the bulk water solution generated by the local value of pH 11). Excellent focusing is obtained for such alkaline proteins as lysozyme (pI 10.55), So-6 (a leaf protein, pI 10.49), cytochrome c (pI 10.45) and ribonuclease (pI 10.12).  相似文献   

10.
A modified version of a preparative circular gel electrophoresis apparatus, first described by Edwin Southern (Medical Research Council, University of Edinburgh, Edinburgh, Scotland), has been constructed. The apparatus fractionates a large volume of sample into concentric bands which migrate toward a small circular collection chamber. Samples exiting the gel into the collection chamber are concentrated against a dialysis membrane which encloses the inner electrode and are pumped from this center chamber into a fraction collector at fixed time intervals. The apparatus has been employed to fractionate samples of DNA (10 mg) by electrophoresis through either agarose or acrylamide gels. Two examples of nucleic acids which have been successfully fractionated are given: restriction endonuclease cleavage fragments of total soybean DNA, and a heterogeneous mixture of covalently closed circular plasmid DNA from Bacillus megaterium. Franctionated DNA is suitable for molecular cloning directly from acrylamide and, after one additional treatment, from agarose. The run time for DNA treated with restriction endonuclease is from 24 to 48 h. Purification of 60- to 200-fold is common for a DNA restriction fragment from a total genome.  相似文献   

11.
The preparative aspects of isoelectric focusing (IEF) in immobilized pH gradients (IPG) have been investigated as a function of the following parameters: environmental ionic strength (I), gel geometry and shape of pH gradient. As model proteins, hemoglobin (Hb) A and a minor, glycosylated component (HbA1c), with a delta pI = 0.04 pH units, have been selected. The load capacity increases almost linearly, as a function of progressively higher I values, from 0.5 X up to 2 X molarity of buffering Immobiline (pK 7.0) to abruptly reach a plateau at 3 X concentration of buffering ion. The load capacity also increases almost linearly as a function of gel thickness from 1 to 5 mm, without apparently levelling off. When decreasing the pH interval from 1 pH unit (pH 6.8-7.8) to 1/2 pH unit (pH 7.05-7.55) the amount of protein loaded in the HbA zone could be increased by 40%. In 5 mm thick gels, at 2 X pK 7.0 Immobiline concentration, over a 1/2 pH unit span, up to 350 mg HbA (in a 12.5 X 11 cm gel) could be loaded in a single zone, the load limit of the system being around 45 mg protein/ml gel volume.  相似文献   

12.
A new technique for generating extended pH gradients (5 pH units) in Immobiline gels is reported. The previously described (J. Biochem. Biophys. Methods 7, 1983, 123-142) five-chamber gradient mixer has been replaced by a two-vessel device. A single mixture of the available Immobilines (pK 3.6, 4.6, 6.2, 7.0, 8.5 and 9.3) is made, with relative concentrations adjusted so as to produce the most uniform buffering power throughout the desired pH interval. This mixture is then divided into two portions, which are titrated to the extremes of the required pH span with an acidic titrant (Immobiline pK approximately 1) and a basic species (Immobiline pK 9.95). Highly reproducible pH gradients (pH 4-9) are thus generated, which appear extremely useful for the first dimensioned of 2-dimensional techniques. Our previously reported computer program has been implemented with an optimization algorithm which, given any cocktail of Immobilines, automatically adjusts the relative initial concentrations until the smoothest possible beta power is found. For the first time it is possible to perform IEF under controlled physico-chemical parameters: pH span and linearity, beta power, ionic strength and molarity of the buffering species.  相似文献   

13.
Modifications of the LKB Immobiline isoelectric focusing (IEF) technique are described for use under conditions that solubilize and denature most proteins (8 M urea and 2% Nonidet-P40). This procedure permits pH gradients that are four- to fivefold shallower than previously available with conventional ampholine-IEF procedures. It can also be used as a first dimension in two-dimensional gel electrophoresis. The advantage of the stable ultranarrow pH gradient is demonstrated by directly comparing the resolution of vertebrate brain tubulins using (i) denaturing conventional ampholine-IEF and (ii) denaturing Immobiline-IEF. Analysis of tubulin on the Immobiline-IEF gel increases the separation distance between the individual tubulins and distinguishes differences among tubulin samples that could not be resolved by conventional ampholine isoelectric focusing.  相似文献   

14.
A method is described for keeping a constant salt background during protein purification in a segmented immobilized pH gradient. It is based on an external hydraulic flow replenishing the salt loss due to combined electric and diffusional mass transport (similar to the concept of Ribes' steady-state rheoelectrolysis). Such a minimum of ionic strength might be needed for proteins which tend to precipitate and aggregate at or in vicinity of the isoelectric point. However, it is found that any salt level in the sample feed (already at 1 mM concentration) deteriorates transport of non-isoelectric proteins, because of the much larger current fraction carried by the ions themselves as opposed to proteins. In addition, high salt levels in the sample reservoir might form cathodic and anodic ion boundaries, alkaline and acidic, respectively, which might hamper protein migration and even induce denaturation. Thus, when high salt backgrounds are needed in the sample feed, external pH control should be exerted, e.g. with a pH-stat. Three parameters influence protein transport in the segmented IPG chamber: (a) cross-sectional area of the Immobiline membranes; (b) delta pI between the isoelectric protein and the contaminants and (c) salt molarity in the sample reservoir. The first 2 show a positive, the last a negative correlation.  相似文献   

15.
A new technique for generating pH gradients in isoelectric focusing is described, based on the principle that the buffering groups are covalently linked to the matrix used as anticonvective medium. For the generation of this type of pH gradient in polyacrylamide gels, a set of buffering monomers, called Immobiline (in analogy with Ampholine), is used. The pH gradient gels are cast in the same way as pore gradient gels, but instead of varying the acrylamide content, the light and heavy solutions are adjusted to different pH values with the aid of the Immobiline buffers. Available Immobiline species make it possible to generate any narrow linear pH gradient between pH 3 and 10. The behaviour of these types of gradients in isoelectric focusing is described.Immobilized pH gradients show a number of advantages compared with carrier ampholyte generated pH gradients. The most important are: (1) the cathodic drift is completely abolished; (2) they give higher resolution and higher loading capacitu; (3) they have uniform conductivity and buffering capacity; (4) they represent a milieu of known and controlled ionic strenght.  相似文献   

16.
The efficient use of preparative protein purification in a multicompartment electrolyzer with Immobiline membranes depends on the knowledge of membrane characteristics. For that purpose, an experimental investigation of the effects of ionic charges on the membrane characteristics has been carried out through the measurements of membrane swelling and conductance. We also investigated the effects on the electrolyzer behaviour of operating parameters such as the Immobiline concentration and the presence of ion-exchange membranes. Data show that polyacrylamide gel degree of swelling is strongly dependent upon the pH and the ionic strength of the bathing solution as well as on the type and molarity of charges incorporated in the gel. The conductance of supported Immobiline gels in contact with uni-univalent chloride solutions has been measured by means of a mercury cell. The membrane conductance is also influenced by the ionic strength of the equilibrium solution and the presence of weak ionizable groups in the gel matrix. This study has demonstrated the close link between electrochemical and electromechanical properties of Immobiline membranes.  相似文献   

17.
A straightforward method for concomitant separation and isolation of biomacromolecules from a mixture in solution was developed. Three gel layers that comprise a middle separation layer of 10% polyacrylamide gel were constructed. This gel system was formed in an electroconcentration apparatus above a collection chamber surrounded at the bottom by a dialysis membrane. The mixture is applied over the gel layers where biomacromolecules are caused to migrate by electrophoresis through the gel system, where they are separated into discrete bands and electroeluted into the collection chamber without dismantling the apparatus. The isolated biomacromolecules are removed from the chamber in a highly pure and concentrated form ready for further investigations. Cooling can be applied throughout the whole process, and the setup and conditions of run can be modified according to the characteristics of the biomacromolecules to be purified. The components of a mixture containing the glycoprotein ovalbumin and bovine serum albumin monomer, dimer, and tetramer were successfully isolated as concentrated and highly pure fractions with good recoveries ranging from 70 to 89%. Other proteins were successfully isolated under denaturing conditions in the presence of sodium dodecyl sulfate (SDS) or 6 M urea.  相似文献   

18.
The moving-air type of freeze-dry apparatus decreases the length of time needed to dehydrate plant material but is detrimental to easily oxidizable compounds. Changes are described in the apparatus that both improve and simplify the original design. They consist of: (1) using high purity nitrogen instead of air thus preventing the oxidizing of compounds and allowing for the removal of the condenser necessary to dry the incoming air; (2) modification of the top of the dehydration chamber so that die tissue can be drawn from the bottom and warmed to room temperature before being removed from the apparatus; and (3) a new design for the tissue containers permitting the tissue to be more securely held and easily manipulated. Various freezing mixtures and infiltration procedures and materials were tried and the results described. A theory is proposed to explain the effectiveness of the moving-gas type apparatus based on the ability of the gas to maintain material at the optimal temperature while sweeping the water molecules from the surface.  相似文献   

19.
Based upon the method we developed to measure ethylene in very low concentrations (as low as 0.01 ppb in the ambient atmosphere) an experimental chamber was constructed and integrated in the measuring system for plant physiological studies. Parameters influencing the accuracy of the technique are evaluated. The pressure in the plant chamber increased 0.05 atm at a flow rate of 10 1/h during ethylene trapping. At this flow rate the ethylene production per seedling is independent of the number of seedlings used. The ethylene measured per seedling is directly proportional to the length of trapping time. Under standard conditions of chamber configuration and volume very small changes in ethylene content can be detected accurately in a very short time range. Our experimental arrangement allows kinetic studies of ethylene evolution by biological objects in a qualitative and quantitative manner. All methods used heretofore are more complicated and less accurate compared to the measuring system presented here. Its versatility is demonstrated for both in vitro and in vivo studies of ethylene production by bean seedlings. The application fields of the apparatus are discussed.  相似文献   

20.
The evolution of isoelectric focusing is traced back over the years, from a somewhat shaky origin to present-day immobilized pH gradients. Four generations of methodology are classified and discussed: (A) Kolin's approach, consisting of a two-step technique, generation of a pH gradient by diffusion followed by a rapid electrokinetic protein separation; (B) Svensson-Rilbe's approach, consisting of creating a pH gradient in an electric field by utilizing as buffers a multitude of carrier ampholytes, i.e. of amphoteric species possessing good buffering capacity and conductivity at their pI; (C) immobilized pH gradients, by which non-amphoteric buffers and titrants (acrylamido weak acids and bases), titrated around their pK values, are grafted (insolubilized) onto a polyacrylamide gel matrix and (D) mixed-bed carrier ampholyte-Immobiline gel, by which a soluble, carrier ampholyte generated pH gradient coexists in the same matrix with an insoluble, Immobiline generated, pH gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号