首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kijac AZ  Li Y  Sligar SG  Rienstra CM 《Biochemistry》2007,46(48):13696-13703
Cytochrome P450 (CYP) 3A4 contributes to the metabolism of approximately 50% of commercial drugs by oxidizing a large number of structurally diverse substrates. Like other endoplasmic reticulum-localized P450s, CYP3A4 contains a membrane-anchoring N-terminal helix and a significant number of hydrophobic domains, important for the interaction between CYP3A4 and the membrane. Although the membrane affects specificity of CYP3A4 ligand binding, the structural details of the interaction have not been revealed so far because X-ray crystallography studies are available only for the soluble domain of CYP3A4. Here we report sample preparation and initial magic-angle spinning (MAS) solid-state NMR (SSNMR) of CYP3A4 (Delta3-12) embedded in a nanoscale membrane bilayer, or Nanodisc. The growth protocol yields approximately 2.5 mg of the enzymatically active, uniformly 13C,15N-enriched CYP3A4 from 1 L of growth medium. Polyethylene glycol 3350-precipitated CYP3A4 in Nanodiscs yields spectra of high resolution and sensitivity, consistent with a folded, homogeneous protein. CYP3A4 in Nanodiscs remains enzymatically active throughout the precipitation protocol as monitored by bromocriptine binding. The 13C line widths measured from 13C-13C 2D chemical shift correlation spectra are approximately 0.5 ppm. The secondary structure distribution within several amino acid types determined from 13C chemical shifts is consistent with the ligand-free X-ray structures. These results demonstrate that MAS SSNMR can be performed on Nanodisc-embedded membrane proteins in a folded, active state. The combination of SSNMR and Nanodisc methodologies opens up new possibilities for obtaining structural information on CYP3A4 and other integral membrane proteins with full retention of functionality.  相似文献   

2.
Lampe JN  Atkins WM 《Biochemistry》2006,45(40):12204-12215
Cytochrome P450 3A4 (CYP3A4) is a major enzymatic determinant of drug and xenobiotic metabolism that demonstrates remarkable substrate diversity and complex kinetic properties. The complex kinetics may result, in some cases, from multiple binding of ligands within the large active site or from an effector molecule acting at a distal allosteric site. Here, the fluorescent probe TNS (2-p-toluidinylnaphthalene-6-sulfonic acid) was characterized as an active site fluorescent ligand. UV-vis difference spectroscopy revealed a TNS-induced low-spin heme absorbance spectrum with an apparent K(d) of 25.4 +/- 2 microM. Catalytic turnover using 7-benzyloxyquinoline (7-BQ) as a substrate demonstrated TNS-dependent inhibition with an IC(50) of 9.9 +/- 0.1 microM. These results suggest that TNS binds in the CYP3A4 active site. The steady-state fluorescence of TNS increased upon binding to CYP3A4, and fluorescence titrations yielded a K(d) of 22.8 +/- 1 microM. Time-resolved frequency-domain measurement of TNS fluorescence lifetimes indicates a testosterone (TST)-dependent decrease in the excited-state lifetime of TNS, concomitant with a decrease in the steady-state fluorescence intensity. In contrast, the substrate erythromycin (ERY) had no effect on TNS lifetime, while it decreased the steady-state fluorescence intensity. Together, the results suggest that TNS binds in the active site of CYP3A4, while the first equivalent of TST binds at a distant allosteric effector site. Furthermore, the results are the first to indicate that TST bound to the effector site can modulate the environment of the heterotropic ligand.  相似文献   

3.
To explore the basis of apparent conformational heterogeneity of cytochrome P450 3A4 (CYP3A4), the kinetics of dithionite-dependent reduction was studied in solution, in proteoliposomes, and in Nanodiscs. In CYP3A4 oligomers in solution the kinetics obeys a three-exponential equation with similar amplitudes of each of the phases. Addition of substrate (bromocriptine) displaces the phase distribution toward the slow phase at the expense of the fast one, while the middle phase remains unaffected. The fraction reduced in the fast phase, either with or without substrate, is represented by the low-spin heme protein only, while the slow-reducible fraction is enriched in the high-spin CYP3A4. Upon monomerization by 0.15% Emulgen-913, or by incorporation into Nanodiscs or into large proteoliposomes with a high lipid-to-protein (L/P) ratio (726:1 mol/mol), the kinetics observed in the absence of substrate becomes very rapid and virtually monoexponential. In Nanodiscs and in lipid-rich liposomes bromocriptine decreases the rate of reduction via appearance of the second (slow) phase, the amplitude of which reaches 100% at saturating bromocriptine. In contrast, in P450-rich liposomes (L/P = 112 mol/mol), where the surface molar density of the enzyme is comparable to that observed in liver microsomes, CYP3A4 behaves similarly to that observed in solution. These results suggest that in CYP3A4 oligomers in solution and in the membrane the enzyme is distributed between two persistent conformers with different accessibility of the heme for the reductant (SO*-(2) anion monomer). One of the apparent conformers exists in a substrate-dependent equilibrium between two states with different rate constants of reduction by dithionite, while the second conformer shows no response to substrate binding.  相似文献   

4.
Traditional reconstitution of membrane cytochromes P450 monooxygenase system requires efficient solubilization of both P450 heme enzymes and redox partner NADPH dependent reductase, CPR, either in mixed micellar solution or by incorporation in liposomes. Here we describe a simple alternative approach to assembly of soluble complexes of monomeric human hepatic cytochrome P450 CYP3A4 with CPR by co-incorporation into nanoscale POPC bilayer Nanodiscs. Stable and fully functional complexes with different CPR:CYP3A4 stoichiometric ratios are formed within several minutes after addition of the full-length CPR to the solution of CYP3A4 preassembled into POPC Nanodiscs at 37 °C. We find that the steady state rates of NADPH oxidation and testosterone hydroxylation strongly depend on CPR:CYP3A4 ratio and reach maximum at tenfold molar access of CPR. The binding of CPR to CYP3A4 in Nanodiscs is tight, such that complexes with different stoichiometry can be separated by size-exclusion chromatography. Reconstitution systems based on the co-incorporation of CPR into preformed Nanodiscs with different human cytochromes P450 are suitable for high-throughput screening of substrates and inhibitors and for drug-drug interaction studies.  相似文献   

5.
Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of a majority of drugs. Heterotropic cooperativity of drug binding to CYP3A4 was examined with the flavanoid, alpha-naphthoflavone (ANF) and the steroid, testosterone (TST). UV-vis and EPR spectroscopy of CYP3A4 show that ANF binding to CYP3A4 occurs with apparent negative cooperativity and that there are at least two binding sites: (1) a relatively tight spin-state insensitive binding site (CYP.ANF) and (2) a relatively low affinity spin-state sensitive binding site (CYP.ANF.ANF). Since binding to the spin-state insensitive binding site is considerably tighter for ANF than TST, the spin-state insensitive binding site could be occupied by ANF, while titrating TST at the other site(s). The spin-state insensitive binding site of ANF appears to compete with the spin-state insensitive binding site of TST. The formation of the spin-state insensitive CYP.ANF complex is strongly temperature dependent, when compared to the formation of the CYP.TST complex, suggesting that the formation of the CYP3A4.ANF complex leads to long-range conformational changes within the protein. When the CYP.ANF complex is titrated with TST, the formation of CYP.ANF.TST is favored by 3:1 over the formation of CYP.TST.TST, suggesting that there is an allosteric interaction between ANF and TST. A model of heterotropic cooperativity of CYP3A4 is presented, where the spin-state insensitive binding of ANF occurs at the same peripheral binding site of CYP3A4 as TST.  相似文献   

6.
Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.  相似文献   

7.
Cytochrome P450 3A4 (CYP3A4) displays non-Michaelis-Menten kinetics for many of the substrates it metabolizes, including testosterone (TST) and α-naphthoflavone (ANF). Heterotropic effects between these two substrates can further complicate the metabolic profile of the enzyme. In this work, monomeric CYP3A4 solubilized in Nanodiscs has been studied for its ability to interact with varying molar ratios of ANF and TST. Comparison of the observed heme spin state, NADPH consumption, and product formation rates with a non-cooperative model calculated from a linear combination of the global analysis of each substrate reveals a detailed landscape of the heterotropic interactions and indicates negligible binding cooperativity between ANF and TST. The observed effect of ANF on the kinetics of TST metabolism is due to the additive action of the second substrate with no specific allosteric effects.  相似文献   

8.
Davydov DR  Baas BJ  Sligar SG  Halpert JR 《Biochemistry》2007,46(26):7852-7864
Allosteric mechanisms in human cytochrome P450 3A4 (CYP3A4) in oligomers in solution or monomeric enzyme incorporated into Nanodiscs (CYP3A4ND) were studied by high-pressure spectroscopy. The allosteric substrates 1-pyrenebutanol (1-PB) and testosterone were compared with bromocriptine (BCT), which shows no cooperativity. In both CYP3A4 in solution and CYP3A4ND, we observed a complete pressure-induced high-to-low spin shift at pressures of <3 kbar either in the substrate-free enzyme or in the presence of BCT. In addition, both substrate-free and BCT-bound enzyme revealed a pressure-dependent equilibrium between two states with different barotropic parameters designated R for relaxed and P for pressure-promoted conformations. This pressure-induced conformational transition was also observed in the studies with 1-PB and testosterone. In CYP3A4 oligomers, the transition was accompanied by an important increase in homotropic cooperativity with both substrates. Surprisingly, at high concentrations of allosteric substrates, the amplitude of the spin shift in both CYP3A4 in solution and Nanodiscs was very low, demonstrating that hydrostatic pressure induces neither substrate dissociation nor an increase in the heme pocket hydration in the complexes of the pressure-promoted conformation of CYP3A4 with 1-PB or testosterone. These findings suggest that the mechanisms of interactions of CYP3A4 with 1-PB and testosterone involve an effector-induced transition that displaces a system of conformational equilibria in the enzyme toward the state(s) with decreased solvent accessibility of the active site so that the flux of water into the heme pocket is impeded and the high-spin state of the heme iron is stabilized.  相似文献   

9.
Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into alpha-helix A. The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-(bromoacetyl)-2-(dimethylamino)naphthalene (BADAN), 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and alpha-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of the BADAN-modified enzyme is characterized by an S50 of 18.2 +/- 0.7, compared with the value of 2.2 +/- 0.3 for the ANF-induced spin transition, thus revealing an additional low-affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer.  相似文献   

10.
Domanski TL  He YA  Khan KK  Roussel F  Wang Q  Halpert JR 《Biochemistry》2001,40(34):10150-10160
Phenylalanine and/or tryptophan scanning mutagenesis was performed at 15 sites within CYP3A4 proposed to be involved in substrate specificity or cooperativity. The sites were chosen on the basis of previous studies or from a comparison with the structure of P450(eryF) containing two molecules of androstenedione. The function of the 25 mutants was assessed in a reconstituted system using progesterone, testosterone, 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC), and alpha-naphthoflavone (ANF) as substrates. CYP3A4 wild type displayed sigmoidal kinetics of ANF 5,6-oxide formation and 7-BFC debenzylation. Analysis of 12 mutants with significant steroid hydroxylase activity showed a lack of positive correlation between ANF oxidation and stimulation of progesterone 6beta-hydroxylation by ANF, indicating that ANF binds at two sites within CYP3A4. 7-BFC debenzylation was stimulated by progesterone and ANF, and 7-BFC did not inhibit testosterone or progesterone 6beta-hydroxylation. Correlational analysis showed no relationship between 7-BFC debenzylation and either progesterone or testosterone 6beta-hydroxylation. These data are difficult to explain with a two-site model of CYP3A4 but suggest that three subpockets exist within the active site. Interestingly, classification of the mutants according to their ability to oxidize the four substrates utilized in this study suggested that substrates do bind at preferred locations in the CYP3A4 binding pocket.  相似文献   

11.
Civjan NR  Bayburt TH  Schuler MA  Sligar SG 《BioTechniques》2003,35(3):556-60, 562-3
One of the biggest challenges in the field of proteomics is obtaining functional membrane proteins solubilized and dispersed into a physiologically relevant environment that maintains the spectrum of in vivo activities. Here we describe a system composed of nanoscale self-assembled particles, termed Nanodiscs, which contain a single phospholipid bilayer stabilized by an encircling membrane scaffold protein (MSP). Using microsomal membranes of baculovirus-infected Spodoptera frugiperda (Sf9) insect cells overexpressing an N-terminally anchored cytochrome P450 monoxygenase (P450), we demonstrate that target membrane proteins can be directly solubilized and incorporated into distinct populations of Nanodiscs, which can be separated by size chromatography. We show that formation of these Nanodiscs from insect cell membranes allows for the compartmentalization into soluble nanostructures that provide a natural membrane bilayer that avoids the aggregation of membrane proteins often encountered in other reconstitution procedures. Lipid composition analysis and substrate binding analysis of size-fractionated Nanodiscs arrayed in microtiter plates further demonstrates that the Nanodisc system effectively disperses the overexpressed membrane protein into monodispersed bilayers containing biochemically defined lipid components and the target protein in its native from suitable for sensitive high-throughput substrate binding analysis.  相似文献   

12.
Heterologous expression of CYP73A5, an Arabidopsis cytochrome P450 monooxygenase, in baculovirus-infected insect cells yields correctly configured P450 detectable by reduced CO spectral analysis in microsomes and cell lysates. Co-expression of a housefly NADPH P450 reductase substantially increases the ability of this P450 to hydroxylate trans-cinnamic acid, its natural phenylpropanoid substrate. For development of high-throughput P450 substrate profiling procedures, membrane proteins derived from cells overexpressing CYP73A5 and/or NADPH P450 reductase were incorporated into soluble His(6)-tagged nanoscale lipid bilayers (Nanodiscs) using a simple self-assembly process. Biochemical characterizations of nickel affinity-purified and size-fractionated Nanodiscs indicate that CYP73A5 protein assembled into Nanodiscs in the absence of NADPH P450 reductase maintains its ability to bind its t-cinnamic acid substrate. CYP73A5 protein co-assembled with P450 reductase into Nanodiscs hydroxylates t-cinnamic acid using reduced pyridine nucleotide as an electron source. These data indicate that baculovirus-expressed P450s assembled in Nanodiscs can be used to define the chemical binding profiles and enzymatic activities of these monooxygenases.  相似文献   

13.
Fernando H  Halpert JR  Davydov DR 《Biochemistry》2006,45(13):4199-4209
To explore the mechanism of homotropic cooperativity in human cytochrome P450 3A4 (CYP3A4) we studied the interactions of the enzyme with 1-pyrenebutanol (1-PB), 1-pyrenemethylamine (PMA), and bromocriptine by FRET from the substrate fluorophore to the heme, and by absorbance spectroscopy. These approaches combined with an innovative setup of titration-by-dilution and continuous variation (Job's titration) experiments allowed us to probe the relationship between substrate binding and the subsequent spin transition caused by 1-PB or bromocriptine or the type-II spectral changes caused by PMA. The 1-PB-induced spin shift in CYP3A4 reveals prominent homotropic cooperativity, which is characterized by a Hill coefficient of 1.8 +/- 0.3 (S50 = 8.0 +/- 1.1 microM). In contrast, the interactions of CYP3A4 with bromocriptine or PMA reveal no cooperativity, exhibiting KD values of 0.31 +/- 0.08 microM and 7.1 +/- 2.3 microM, respectively. The binding of all three substrates monitored by FRET in titration-by-dilution experiments at an enzyme:substrate ratio of 1 reveals a simple bimolecular interaction with KD values of 0.16 +/- 0.09, 4.8 +/- 1.4, and 0.18 +/- 0.09 microM for 1-PB, PMA, and bromocriptine, respectively. Correspondingly, Job's titration experiments showed that the 1-PB-induced spin shift reflects the formation of a complex of the enzyme with two substrate molecules, while bromocriptine and PMA exhibit 1:1 binding stoichiometry. Combining the results of Job's titrations with the value of KD obtained in our FRET experiments, we demonstrate that the interactions of CYP3A4 with 1-PB obey a sequential binding mechanism, where the spin transition is triggered by the binding of 1-PB to the low-affinity site, which becomes possible only upon saturation of the high-affinity site.  相似文献   

14.
Cytochrome P450 (P450) 3A4, the major catalyst involved in human drug oxidation, displays substrate- and reaction-dependent homotropic and heterotropic cooperative behavior. Although several models have been proposed, these mainly rely on steady-state kinetics and do not provide information on the contribution of the individual steps of P450 catalytic cycle to the observed cooperativity. In this work, we focused on the kinetics of substrate binding, and the fluorescent properties of bromocriptine and alpha-naphthoflavone allowed analysis of an initial ligand-P450 3A4 interaction that does not cause a perturbation of the heme spectrum. The binding stoichiometry for bromocriptine was determined to be unity using isothermal titration calorimetry and equilibrium dialysis methods, suggesting that the ligand bound to the peripheral site during the initial encounter dissociates subsequently. A three-step substrate binding model is proposed, based on absorbance and fluorescence stopped-flow kinetic data and equilibrium binding data obtained with bromocriptine, and evaluated using kinetic modeling. The results are consistent with the substrate molecule binding at a site peripheral to the active site and subsequently moving toward the active site to bind to the heme and resulting in a low to high spin iron shift. The last step is attributed to a conformational change in the enzyme active site. The later steps of binding were shown to have rate constants comparable with the subsequent steps of the catalytic cycle. The P450 3A4 binding process is more complex than a two-state system, and the overlap of rates of some of the events with subsequent steps is proposed to underlie the observed cooperativity.  相似文献   

15.
The crystal structure of a cytochrome P450 from the thermoacidophile Picrophilus torridus, CYP231A2 (PTO1399), has been solved. This structure reveals a wide open substrate access channel. To better understand ligand-induced structural transitions in CYP231A2, protein-ligand interactions were investigated using 4-phenylimidazole. Comparison of the ligand-free and -bound CYP231A2 structures shows conformational changes where the F and G helices swing as a single rigid body about a pivot point at the N-terminal end of the F helix, allowing the F helix region to dip toward the heme, resulting in closer contacts with the ligand. Thermal melting data illustrate that the melting temperature for CYP231A2 increases nearly 10 degrees C upon ligand binding, thus illustrating that the closed conformation is substantially more stable. Furthermore, spectroscopic data indicate that the active site is stable at pH 4.5, although, unusually, the thiolate ligand to the iron can be reversibly protonated. CYP231A2 does not exhibit structural features normally associated with thermophilic proteins such as an increase in salt bridge networks or extensive aromatic clustering. The increase in thermal stability instead is best correlated with the smaller size and shorter loops in CYP231A2 compared to other P450s.  相似文献   

16.
We used a rapid scanning stop-flow technique to study the kinetics of reduction of cytochrome P450 3A4 (CYP3A4) by the flavin domain of cytochrome P450-BM3 (BMR), which was shown to form a stoichiometric complex (KD = 0.48 μM) with CYP3A4. In the absence of substrates only about 50% of CYP3A4 was able to accept electrons from BMR. Whereas the high-spin fraction was completely reducible, the reducibility of the low-spin fraction did not exceed 42%. Among four substrates tested (testosterone, 1-pyrenebutanol, bromocriptine, or α-naphthoflavone (ANF)) only ANF is capable of increasing the reducibility of the low-spin fraction to 75%. Our results demonstrate that the pool of CYP3A4 is heterogeneous, and not all P450 is competent for electron transfer in the complex with reductase. The increase in the reducibility of the enzyme in the presence of ANF may represent an important element of the mechanism of action of this activator.  相似文献   

17.
Nath A  Atkins WM  Sligar SG 《Biochemistry》2007,46(8):2059-2069
Phospholipid bilayer Nanodiscs are novel model membranes derived from high-density lipoprotein particles and have proven to be useful in studies of membrane proteins. Membrane protein enzymology has been hampered by the inherent insolubility of membrane proteins in aqueous environments and has necessitated the use of model membranes such as liposomes and detergent-stabilized micelles. Current model membranes display a polydisperse particle size distribution and can suffer from problems of inconsistency and instability. It is also unclear how well they mimic biological lipid bilayers. In contrast, Nanodiscs, the particle size of which is constrained by a coat of scaffold proteins, are relatively monodisperse, stable model membranes with a "nativelike" lipid bilayer. Nanodiscs have already been used to study a variety of membrane proteins, including cytochrome P450s, seven-transmembrane proteins, and bacterial chemoreceptors. These proteins are simultaneously monomerized, solubilized, and incorporated into the well-defined membrane environment provided by Nanodiscs. Nanodiscs may also provide useful insights into the thermodynamics and biophysics of biological membranes and binding of small molecules to membranes.  相似文献   

18.
CYP2J2 epoxygenase is a membrane bound cytochrome P450 that converts omega‐3 and omega‐6 fatty acids into physiologically active epoxides. In this work, we present a comprehensive comparison of the effects of N‐terminal modifications on the properties of CYP2J2 with respect to the activity of the protein in model lipid bilayers using Nanodiscs. We demonstrate that the complete truncation of the N‐terminus changes the association of this protein with the E.coli membrane but does not disrupt incorporation in the lipid bilayers of Nanodiscs. Notably, the introduction of silent mutations at the N‐terminus was used to express full length CYP2J2 in E. coli while maintaining wild‐type functionality. We further show that lipid bilayers are essential for the productive use of NADPH for ebastine hydroxylation by CYP2J2. Taken together, it was determined that the presence of the N‐terminus is not as critical as the presence of a membrane environment for efficient electron transfer from cytochrome P450 reductase to CYP2J2 for ebastine hydroxylation in Nanodiscs. This suggests that adopting the native‐like conformation of CYP2J2 and cytochrome P450 reductase in lipid bilayers is essential for effective use of reducing equivalents from NADPH for ebastine hydroxylation.  相似文献   

19.
Shaw AW  McLean MA  Sligar SG 《FEBS letters》2004,556(1-3):260-264
Nanoscale protein supported phospholipid bilayer discs, or Nanodiscs, were produced for the purpose of studying the phase transition behavior of the incorporated lipids. Nanodiscs and vesicles were prepared with two phospholipids, dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine, and the phase transition of each was analyzed using laurdan fluorescence and differential scanning calorimetry. Laurdan is a fluorescent probe sensitive to the increase of hydration in the lipid bilayer that accompanies the gel to liquid crystalline phase transition. The emission intensity profile can be used to derive the generalized polarization, a measure of the relative amount of each phase present. Differential scanning calorimetry was used to further quantitate the phase transition of the phospholipids. Both methods revealed broader transitions for the lipids in Nanodiscs compared to those in vesicles. Also, the transition midpoint was shifted 3-4 degrees C higher for both lipids when incorporated into Nanodiscs. These findings are explained by a loss of cooperativity in the lipids of Nanodiscs which is attributable to the small size of the Nanodiscs as well as the interaction of boundary lipids with the protein encircling the discs. The broad transition of the Nanodisc lipid bilayer better mimics the phase behavior of cellular membranes than vesicles, making Nanodiscs a 'native-like' lipid environment in which to study membrane associated proteins.  相似文献   

20.
CYP7B1 mutations have been linked directly with the neurodegenerative disease hereditary spastic paraplegia (HSP), with mutations in the CYP7B1 gene identified as being directly responsible for autosomal recessive HSP type 5A (SPG5). To evaluate the potential impact of CYP7B1 mutations identified in SPG5 on binding and protein function, a comparative model of cytochrome P450 7B1 (CYP7B1) was constructed using human CYP7A1 as a template during model construction. The secondary structure was predicted using the PSIPRED and GOR4 prediction methods, the lowest energy CYP7B1 model was generated using MOE, and then this model was assessed in terms of stereochemical quality and the side chain environment using RAMPAGE, Verify3D and ProSA. Evaluation of the active site residues of the CYP7B1 model and validation of the active site architecture were performed via molecular docking experiments: the docking of the substrates 25-hydroxycholesterol and 27-hydroxycholesterol and the inhibitor 3α-Adiol identified structurally and functionally important residues. Mutational analysis of CYP7B1 amino acid mutations related to hereditary spastic paraplegia type 5 considered phosphorylation, ligand/substrate binding and the structural roles of mutated amino acid residues, with R112, T297 and S363 mutations expected to have a direct impact on ligand binding, while mutations involving R417 would indirectly affect ligand binding as a result of impairment in catalytic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号