首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kanapina  A. S.  Marchenkov  V. V.  Surin  A. K.  Ivashina  T. V. 《Microbiology》2020,89(5):520-531
Microbiology - The structures of exo-oligosaccharides produced by a symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum bv. viciae VF39 were determined using the methods of mass...  相似文献   

2.
Genes of Rhizobium leguminosarum bv. viciae VF39 coding for the regulatory elements NifA, FixL and FixK were isolated, sequenced and genetically analysed. The fixK–fixL region is located upstream of the fixNOQP operon on the non-nodulation plasmid pRleVF39c. The deduced amino acid sequence of FixL revealed an unusual structure in that it contains a receiver module (homologous to the N-terminal domain of response regulators) fused to its transmitter domain. An oxygen-sensing haem-binding domain, found in other FixL proteins, is conserved in R. leguminosarum bv. viciae FixL. R. leguminosarum bv. viciae possesses a second fnr -like gene, designated fixK , whose encoded gene product is very similar to Rhizobium meliloti and Azorhizobium caulinodans FixK. Individual R. leguminosarum bv. viciae fixK and fixL insertion mutants displayed a Fix+ phenotype. A reduced nitrogen-fixation activity was found for a R. leguminosarum bv. viciae fnrN -deletion mutant, whereas no nitrogen-fixation activity was detectable for a fixK / fnrN double mutant. The R. leguminosarum bv. viciae nifA gene is expressed independently of FixL and FixK under aerobic and microaerobic conditions, whereas fixL gene expression is induced under microaerobiosis. Another orf was identified downstream of fixK–fixL and encodes a product which has homology to pseudoazurins from different species. Mutation of this azu gene showed that it is dispensable for nitrogen fixation.  相似文献   

3.
Following treatment with nitrosoguanidine, mutant derivatives of Rhizobium leguminosarum strain 3841 were isolated which failed to react with AFRC MAC 203. This monoclonal antibody normally recognizes a strain-specific lipopolysaccharide epitope which is developmentally regulated during legume nodule differentiation. Structural modification of lipopolysaccharide (LPS) was analysed by examining reactivity with a range of monoclonal antibodies with different epitope specificities, and also by analysis of LPS mobility changes after electrophoresis on polyacrylamide gels. One class of these LPS-defective mutants induced normal nitrogen-fixing (Fix+) nodules on peas (Pisum sativum), while another two classes of Fix- mutants were also identified, suggesting that a component of the LPS antigen that is part of the MAC 203 epitope is essential for normal nodule development leading to symbiotic nitrogen fixation. When grown under low-oxygen or low-pH culture conditions, one class of Fix- mutants completely lacked LPS-1 (the species that carries O antigen) and a second class showed a modified and truncated form of LPS-1. Mutants with defective LPS structure were also obtained after Tn5 mutagenesis of R. leguminosarum 3841 and all nine Fix- mutants were also found to lack the MAC 203 epitope. Three of these transposon-induced mutants synthesized a truncated form of LPS-1 that was structurally similar to that of the class of the NTG-induced mutants described above. These transposon-induced mutations, and the nitrosoguanidine-induced Fix- mutations, were closely linked and could be suppressed by the same cloned fragment of chromosomal DNA. The data presented here suggest that a precondition for normal nodule development of R. leguminosarum 3841 within pea nodules is the ability to synthesize relatively long-chain LPS-1 macromolecules under the physiological conditions encountered within the nodule. All mutants that lacked the ability to elongate LPS-1 macromolecules also failed to express the MAC 203 epitope.  相似文献   

4.
Eight symbiotic mutants defective in lipopolysaccharide (LPS) synthesis were isolated from Rhizobium leguminosarum biovar phaseoli CFN42. These eight strains elicited small white nodules lacking infected cells when inoculated onto bean plants. The mutants had undetectable or greatly diminished amounts of the complete LPS (LPS I), whereas amounts of an LPS lacking the O antigen (LPS II) greatly increased. Apparent LPS bands that migrated between LPS I and LPS II on sodium dodecyl sulfate-polyacrylamide gels were detected in extracts of some of the mutants. The mutant strains were complemented to wild-type LPS I content and antigenicity by DNA from a cosmid library of the wild-type genome. Most of the mutations were clustered in two genetic regions; one mutation was located in a third region. Strains complemented by DNA from two of these regions produced healthy nitrogen-fixing nodules. Strains complemented to wild-type LPS content by the other genetic region induced nodules that exhibited little or no nitrogenase activity, although nodule development was obviously enhanced by the presence of this DNA. The results support the idea that complete LPS structures, in normal amounts, are necessary for infection thread development in bean plants.  相似文献   

5.
To investigate the in situ expression of lipopolysaccharide (LPS) epitopes on nodule bacteria of Rhizobium leguminosarum, monoclonal antibodies recognizing LPS macromolecules were used for immunocytochemical staining of pea nodule tissue. Many LPS epitopes were constitutively expressed, and the corresponding antibodies reacted in nodule sections with bacteria at all stages of tissue infection and cell invasion. Some antibodies, however, recognized epitopes that were only expressed in particular regions of the nodule. Two general patterns of regulated LPS epitope expression could be distinguished on longitudinal sections of nodules. A radial pattern probably reflected the local physiological conditions experienced by endosymbiotic bacteria as a result of oxygen diffusion into the nodule tissue. The other pattern of expression, which followed a linear axis of symmetry along a longitudinal section of the pea nodule, was apparently associated with the differentiation of nodule bacteria and the development of the nitrogen-fixing capacity in bacteroids. Basically similar patterns of LPS epitope expression were observed for pea nodules harboring either of two immunologically distinct strains of R. leguminosarum bv. viciae, although these epitopes were recognized by different sets of strain-specific monoclonal antibodies. Furthermore, LPS epitope expression of rhizobia in pea nodules was compared with that of equivalent strains in nodules of French bean (Phaseolus vulgaris). From these observations, it is suggested that structural modifications of Rhizobium LPS may play an important role in the adaptation of endosymbiotic rhizobia to the surrounding microenvironment.  相似文献   

6.
Two mutant derivatives of Rhizobium leguminosarum ANU843 defective in lipopolysaccharide (LPS) were isolated. The LPS of both mutants lacked O antigen and some sugar residues of the LPS core oligosaccharides. Genetic regions previously cloned from another Rhizobium leguminosarum wild-type isolate, strain CFN42, were used to complement these mutants. One mutant was complemented to give LPS that was apparently identical to the LPS of strain ANU843 in antigenicity, electrophoretic mobility, and sugar composition. The other mutant was complemented by a second CFN42 lps genetic region. In this case the resulting LPS contained O-antigen sugars characteristic of donor strain CFN42 and reacted weakly with antiserum against CFN42 cells, but did not react detectably with antiserum against ANU843 cells. Therefore, one of the CFN42 lps genetic regions specifies a function that is conserved between the two R. leguminosarum wild-type isolates, whereas the other region, at least in part, specifies a strain-specific LPS structure. Transfer of these two genetic regions into wild-type strains derived from R. leguminosarum ANU843 and 128C53 gave results consistent with this conclusion. The mutants derived from strain ANU843 elicited incompletely developed clover nodules that exhibited low bacterial populations and very low nitrogenase activity. Both mutants elicited normally developed, nitrogen-fixing clover nodules when they carried CFN42 lps DNA that permitted synthesis of O-antigen-containing LPS, regardless of whether the O antigen was the one originally made by strain ANU843.  相似文献   

7.
Monoclonal antibody AFRC MAC 203 recognizes a developmentally regulated lipopolysaccharide antigen in Rhizobium leguminosarum bv. viciae 3841. Transposon-induced mutants that constitutively expressed MAC 203 antigen were isolated. These strains were morphologically normal, showed no gross abnormalities in lipopolysaccharide size distribution on sodium dodecyl sulfate-polyacrylamide gels, and induced normal nitrogen-fixing nodules. However, the mutants lacked lipopolysaccharide epitopes recognized by another rat monoclonal antibody, AFRC MAC 281, suggesting that the corresponding epitopes may be interconverted or share a common precursor. In conjugational crosses, the transposon insertion associated with both the loss of MAC 281 antigen and the constitutive expression of MAC 203 antigen showed linkage to the chromosomal rif allele. A derivative of strain 3841 with a deletion spanning the nod-fix region of the symbiotic plasmid showed no altered expression pattern for MAC 203 antigen, suggesting that the relevant genetic determinants map to genomic sites that are not associated with nifA or any known genes on the symbiotic plasmid.  相似文献   

8.
The nodulation genes of rhizobia are involved in the production of the lipo-chitin oligosaccharides (LCO), which are signal molecules required for nodule formation. A mutation in nodZ of Bradyrhizobium japonicum results in the synthesis of nodulation signals lacking the wild-type 2- O -methylfucose residue at the reducing-terminal N -acetylglucosamine. This phenotype is correlated with a defective nodulation of siratro ( Macroptilium atropurpureum ). Here we show that transfer of nodZ to Rhizobium leguminosarum biovar (bv) viciae , which produces LCOs that are not modified at the reducing-terminal N -acetylglucosamine, results in production of LCOs with a fucosyl residue on C-6 of the reducing-terminal N -acetylglucosamine. This finding, together with in vitro enzymatic assays, indicates that the product of nodZ functions as a fucosyltransferase. The transconjugant R. leguminosarum strain producing fucosylated LCOs acquires the capacity to nodulate M. atropurpureum Glycine soja Vigna unguiculata and Leucaena leucocephala . Therefore, nodZ extends the narrow host range of R. leguminosarum bv. viciae to include various tropical legumes. However, microscopic analysis of nodules induced on siratro shows that these nodules do not contain bacteroids, showing that transfer of nodZ does not allow R. leguminosarum to engage in a nitrogen-fixing symbiosis with this plant.  相似文献   

9.
Ten independently generated mutants of Rhizobium leguminosarum biovar phaseoli CFN42 isolated after Tn5 mutagenesis formed nonmucoid colonies on all agar media tested and lacked detectable production of the normal acidic exopolysaccharide in liquid culture. The mutants were classified into three groups. Three mutants harbored Tn5 insertions on a 3.6-kilobase-pair EcoRI fragment and were complemented to have normal exopolysaccharide production by cosmids that shared an EcoRI fragment of this size from the CFN42 genome. The Tn5 inserts of five other mutants appeared to be located on a second, slightly smaller EcoRI fragment. Attempts to complement mutants of this second group with cloned DNA were unsuccessful. The mutations of the other two mutants were located in apparently adjacent EcoRI fragments carried on two cosmids that complemented those two mutants. The latter two mutants also lacked O-antigen-containing lipopolysaccharides and induced underdeveloped nodules that lacked nitrogenase activity on bean plants. The other eight mutants had normal lipopolysaccharides and wild-type symbiotic proficiencies on bean plants. Mutants in each of these groups were mated with R. leguminosarum strains that nodulated peas (R. leguminosarum biovar viciae) or clovers (R. leguminosarum biovar trifolii). Transfer of the Tn5 mutations resulted in exopolysaccharide-deficient R. leguminosarum biovar viciae or R. leguminosarum biovar trifolii transconjugants that were symbiotically deficient in all cases. These results support earlier suggestions that successful symbiosis with peas or clovers requires that rhizobia be capable of acidic exopolysaccharide production, whereas symbiosis with beans does not have this requirement.  相似文献   

10.
A system which allows direct selection for curing of plasmids in Gram-negative bacteria was used to generate derivatives of Rhizobium leguminosarum VF39 cured of each of six plasmids present in this strain. Phenotypes could be correlated with the absence of five of the six plasmids. The smallest plasmid, pRleVF39a, carries genes for the production of a melanin-like pigment as has been previously reported. Plasmid pRleVF39d carries nodulation and nitrogen fixation genes. Curing of the plasmids pRleVF39c and pRleVF39e gave rise to strains which formed Fix- nodules on peas, lentils, and faba beans. The nodules formed by the strains cured of pRleVF39c contained few, if any, bacteria. Analysis of washed cells by SDS-PAGE showed that this strain is defective in lipopolysaccharide (LPS) production; the defect could be complemented by introducing plasmids from several other R. leguminosarum strains, and by the R. leguminosarum biovar phaseoli LPS gene clones pCos126 and pDel27. The nodules formed by the strain cured of pRleVF39e had a reduced symbiotic zone, an enlarged senescence zone, and an abundance of starch granules. This strain grew at a much slower rate than the wild type, was unable to grow on minimal medium, and no longer produced melanin. These defects could be complemented by at least one other Rhizobium plasmid, pRle336e, a plasmid of strain 336 which is distinct from the nodulation plasmid (pRle336c) and the plasmid (pRle336d) which could complement the LPS defect associated with the loss of pRleVF39c. This demonstrates that genes necessary for symbiosis can be carried on at least three different plasmids in R. leguminosarum.  相似文献   

11.
Lipopolysaccharides from pea-nodulating strain Rhizobium leguminosarum by. viciae 3841, as all other members of the family Rhizobiaceae with the possible exception of Azorhizobium caulinodans, contains a very long chain fatty acid; 27-hydroxyoctacosanoic acid (27OHC28:0) in its lipid A region. The exact function and importance of this residue, however, is not known. In this work, a previously constructed mutant, Rhizobium leguminosarum by. viciae 22, deficient in the fatty acid residue, was analyzed for its symbiotic phenotype. While the mutant was able to form nitrogen-fixing nodules, a detailed study of the timing and efficiency of nodulation using light and electron microscopy showed that there was a delay in the onset of nodulation and nodule tissue invasion. Further, microscopy showed that the mutant was unable to differentiate normally forming numerous irregularly shaped bacteroids, that the resultant mature bacteroids were unusually large, and that several bacteroids were frequently enclosed in a single symbiosome membrane, a feature not observed with parent bacteroids. In addition, the mutant nodules were delayed in the onset of nitrogenase production and showed reduced nitrogenase throughout the testing period. These results imply that the lack of 27OHC28:0 in the lipid A in mutant bacteroids results in altered membrane properties that are essential for the development of normal bacteroids.  相似文献   

12.
The protein expression profiles of Rhizobium leguminosarum strains in response to specific genetic perturbations in exopolysaccharide (EPS) biosynthesis genes were examined using two-dimensional gel electrophoresis. Lesions in either pssA, pssD, or pssE of R. leguminosarum bv. viciae VF39 or in pssA of R. leguminosarum bv. trifolii ANU794 not only abolished the capacity of these strains to synthesize EPS but also had a pleiotropic effect on protein synthesis levels. A minimum of 22 protein differences were observed for the two pssA mutant strains. The differences identified in the pssD and pssE mutants of strain VF39 were a distinct subset of the same protein synthesis changes that occurred in the pssA mutant. The pssD and pssE mutant strains shared identical alterations in the proteins synthesized, suggesting that they share a common function in the biosynthesis of EPS. In contrast, a pssC mutant that produces 38% of the EPS level of the parental strain showed no differences in its protein synthesis patterns, suggesting that the absence of EPS itself was contributing to the changes in protein synthesis and that there may be a complex interconnection of the EPS biosynthetic pathway with other metabolic pathways. Genetic complementation of pssA can restore wild-type protein synthesis levels, indicating that many of the observed differences in protein synthesis are also a specific response to a dysfunctional PssA. The relevance of these proteins, which are grouped as members of the pssA mutant stimulon, remains unclear, as the majority lacked a homologue in the current sequence databases and therefore possibly represent a novel functional network(s). These findings have illustrated the potential of proteomics to reveal unexpected higher-order processes of protein function and regulation that arise from mutation. In addition, it is evident that enzymatic pathways and regulatory networks are more interconnected and more sensitive to structural changes in the cell than is often appreciated. In these cases, linking the observed phenotype directly to the mutated gene can be misleading, as the phenotype could be attributable to downstream effects of the mutation.  相似文献   

13.
Effects of alterations in lipopolysaccharide (LPS) structure of Rhizobium leguminosarum bv. viciae on effective symbiosis and on a number of cell surface characteristics were studied. Tn5 mutants with altered LPSs were screened for their inability to bind monoclonal antibody 3, one of three monoclonal antibodies to the tentative O-antigenic part of the wild-type LPS of strain 248. Ten class I LPS mutants completely lacked the O-antigen-containing LPS species. The class II LPS mutant had a severely diminished amount of an antigenically altered O-antigen-containing LPS. The class III LPS mutant had normal amounts of an altered, O-antigen-containing LPS. Class I and II mutants, but not the class III mutant, showed abnormal nodule development (i.e., blocked in the stage of bacterial release from the infection thread) resulting in nodules in which very few, at the most, plant cells contained bacteroids and which were unable to fix nitrogen. Class I and II mutants were nonmotile and were more sensitive to hydrophobic compounds than the parent strain. The most striking difference between the symbiotically defective class I and II LPS mutants on one hand and the wild-type strain and the class III mutant on the other hand was that the class I and II mutants have a more hydrophobic cell surface and a higher electrophoretic mobility. A role for an O-antigen-containing LPS in bacterial release from the infection thread, through its effects on general physicochemical cell surface characteristics, is proposed.  相似文献   

14.
A rearrangement between the symbiotic plasmid (pRleVF39d) and a nonsymbiotic plasmid (pRleVF39b) in Rhizobium leguminosarum bv. viciae VF39 was observed. The rearranged derivative showed the same plasmid profile as its parent strain, but hybridization to nod, fix, and nif genes indicated that most of the symbiotic genes were now present on a plasmid corresponding in size to pRleVF39b instead of pRleVF39d. On the other hand, some DNA fragments originating from pRleVF39b now hybridized to the plasmid band at the position of pRleVF39d. These results suggest that a reciprocal but unequal DNA exchange between the two plasmids had occurred.  相似文献   

15.
We describe a new Rhizobium meliloti gene, exoX, that regulates the synthesis of the exopolysaccharide, succinoglycan, exoX resembled the psi gene of R. leguminosarum bv. phaseoli and the exoX gene of Rhizobium sp. strain NGR234 in its ability to inhibit exopolysaccharide synthesis when present in multiple copies, exoX did not appear to regulate the expression of exoP. The effect of exoX was counterbalanced by another R. meliloti gene, exoF. exoF is equivalent to Rhizobium sp. strain NGR234 exoY and resembles R. leguminosarum bv. phaseoli pss2 in its mutant phenotype and in portions of its deduced amino acid sequence. The effect of exoF on the succinoglycan-inhibiting activity of exoX depended on the relative copy numbers of the two genes. exoX-lacZ fusions manifested threefold-higher beta-galactosidase activities in exoF backgrounds than in the wild-type background. exoX mutants produced increased levels of succinoglycan. However, the exoF gene was required for succinoglycan synthesis even in an exoX mutant background. exoF did not affect the expression of exoP. Strains containing multicopy exoX formed non-nitrogen-fixing nodules on alfalfa that resembled nodules formed by exo mutants defective in succinoglycan synthesis. exoX mutants formed nitrogen-fixing nodules, indicating that, if the inhibition of succinoglycan synthesis within the nodule is necessary for nitrogen fixation, then exoX is not required for this inhibition. We present indirect evidence that succinoglycan synthesis within the nodule is not necessary for bacteroid function.  相似文献   

16.
Symbiotic nitrogen-fixing bacteria Rhizobium leguminosarum by. viciae VF39 secrete an acidic heteropolysaccharide, the biosynthesis of which involves the stage of polyprenyl diphosphate octasaccharide formation, with its carbohydrate fragment corresponding to the repeating polymer unit. The amino acid analysis of the product of the pssA gene, we have earlier identified, showed its homology to bacterial polyisoprenyl phosphate hexose 1-phosphate transferases catalyzing the formation of phosphodiester bonds between polyprenyl phosphates and hexose 1-phosphates, whose donors are nucleotide sugars. The immunoblotting demonstrated that Rhizobium cells synthesize a protein with a molecular mass of 25 kDa, which implies the translation of the open reading frame occurring from the second initiating codon followed by the protein processing. It was shown that PssA is an integral membrane-bound protein involved in glucose 1-phosphate transfer from UDP-glucose to polyprenyl phosphate to form polyprenyl diphosphate glucose. These results suggest that the pssA gene encodes UDP-glucose:polyprenyl phosphate-glucosyl phosphotransferase.  相似文献   

17.
Rhizobium leguminosarum bv. viciae Exo- mutant strains RBL5523,exo7::Tn5,RBL5523,exo8::Tn5 and RBL5523,exo52::Tn5 are affected in nodulation and in the syntheses of lipopolysaccharide, capsular polysaccharide, and exocellular polysaccharide. These mutants were complemented for nodulation and for the syntheses of these polysaccharides by plasmid pMP2603. The gene in which these mutants are defective is functionally homologous to the exoB gene of Rhizobium meliloti. The repeating unit of the residual amounts of EPS still made by the exoB mutants of R. leguminosarum bv. viciae lacks galactose and the substituents attached to it. The R. leguminosarum bv. viciae and R. meliloti exoB mutants fail to synthesize active UDP-glucose 4'-epimerase.  相似文献   

18.
Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. leguminosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutant, or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.  相似文献   

19.
A protein was identified which was made by wild-type strains of Rhizobium leguminosarum but not by nodulation-deficient derivatives which had deletions of their symbiotic plasmids. The protein, which had a subunit molecular weight of ca. 24,000 ( 24K ), was found to be present in large amounts within bacteria that had been reisolated from the surface of inoculated pea roots but was not detected in bacteroids isolated from nodules. The protein could also be induced during growth of R. leguminosarum on nutrient medium and was purified from the cytoplasmic fraction of broken cells. Antiserum raised against the purified protein was used to screen transposon-induced mutants of R. leguminosarum, and four independent mutants were isolated which lacked the protein. The sites of the Tn5 insertions were found to map between the nitrogenase and nodulation genes on symbiotic plasmid pRL1JI , ca. 5 kilobases from the nitrogenase genes and 13 kilobases from the nodulation genes. Genetic determinants for the 24K protein were found to be closely linked to plasmid-borne nodulation genes for all strains of R. leguminosarum tested. However, the mutants which lacked the 24K protein still formed normal nitrogen-fixing nodules on peas, and the function of the protein is unknown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号