首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postnatal development of the mouse uterus involves differentiation and development of the endometrial glands as well as the myometrium. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in extracellular matrix breakdown and morphogenesis of many epitheliomesenchymal organs. As a first step to understanding their roles in postnatal mouse uterine development, MMPs and TIMPs found to be expressed in the neonatal mouse uterus by microarray analysis were localized by in situ hybridization. The MMP-2 mRNA was detected only in the uterine stroma, whereas the MMP-10 mRNA was present only in the uterine epithelium from Postnatal Day (PND) 3 to PND 9. All other MMPs (MMP-11, MMP-14, and MMP-23) as well as TIMP-1, TIMP-2, and TIMP-3 were detected in both epithelial and stromal cells of the endometrium, but not in the myometrium. Uterine extracts were then analyzed by gelatin and casein gel zymography to detect active gelatinases and stromelysins, respectively. Five major gelatinase bands of activity were detected and inhibited by the MMP inhibitors, EDTA or 1,10-phenanthroline, but not by PMSF, a serine protease inhibitor. Western blot analysis confirmed the presence of MMP-2 and MMP-9 proteins in the uterus. Immunoreactive MMP-9 protein was detected only in the endometrial stroma, whereas immunoreactive MMP-2 protein was detected in both the stroma and epithelium of the uterus. Casein zymography detected three major bands of activity ( approximately 54, 63, and 80 kDa) that were inhibited by the serine protease inhibitor, PMSF, but not by the MMP inhibitors, EDTA or 1,10-phenanthroline, suggesting that they were serine proteases. These results support the hypothesis that MMPs and TIMPs regulate postnatal development of the mouse uterus.  相似文献   

2.
3.
Several lines of evidence speak for an important role of matrix metalloproteinases (MMPs) in the development of progressive joint destruction. To better understand the role of MMPs and their tissue inhibitors (TIMPs) in this process, we have used the antigen-induced arthritis model to study the temporospatial expression of several MMPs and TIMPs during the progression of arthritis. Arthritis was induced by a single intra-articular injection of methylated bovine serum albumin (mBSA) into one or both knee joints of adult mice previously immunised against mBSA. Samples were collected at 3, 7, 21 and 42 days after induction of arthritis for histology and RNA extraction, and analysed by Northern hybridisation, histochemistry and immunohistochemistry for production of several MMPs and TIMPs −1, −2 and −3. A systematic analysis of MMP and TIMP mRNA levels in mouse knee joints demonstrated a general upregulation of both MMPs and TIMPs during progression of arthritis. Upregulation of MMP-9, −13 and −14 coincided with the advancement of cartilage degeneration, but the expression patterns of MMP-9 and −13 also followed the course of synovial inflammation. TIMPs were steadily upregulated throughout the examination period. Immunohistochemical localisation of MMPs and TIMPs suggested the synovium to be the major source of MMP and TIMP production in arthritis, although articular cartilage chondrocytes also showed an increased production of both MMPs and TIMPs.  相似文献   

4.
Luteal tissue contains matrix metalloproteinases (MMPs) that cleave specific components of the extracellular matrix (ECM) and are inhibited by tissue inhibitors of metalloproteinases (TIMPs). We previously reported a decrease in luteal TIMP-1 within 15 min of prostaglandin F(2 alpha) (PGF(2 alpha))-induced luteolysis. An increase in the MMP:TIMP ratio may promote ECM degradation and apoptosis, as observed in other tissues that undergo involution. The objectives of these experiments were to determine whether 1) PGF(2 alpha) affects expression of mRNA encoding fibrillar collagenases (MMP-1 and -13), gelatinases A and B (MMP-2 and -9), membrane type (mt)-1 MMP (MMP-14), stromelysin (MMP-3), and matrilysin (MMP-7), and 2) PGF(2 alpha) increases MMP activity during PGF(2 alpha)-induced luteolysis in sheep. Corpora lutea (n = 3-10/time point) were collected at 0, 15, and 30 min and 1, 2, 4, 6, 12, 24, and 48 h after PGF(2 alpha) administration. Northern blot analysis confirmed the presence of all MMPs except MMP-9. Expression of mRNA for the above MMPs (except MMP-2) increased significantly (P < 0.05) by 30 min, and all MMPs increased significantly (P < 0.05) by 6 h after PGF(2 alpha) administration. Expression of MMP-14 mRNA increased significantly (P < 0.05) by 15 min post-PGF(2 alpha) and remained elevated through 48 h. MMP activity in luteal homogenates (following proenzyme activation and inactivation of inhibitors) was increased significantly (P < 0.05) by 15 min and remained elevated through 48 h post-PGF(2 alpha). MMP activity was localized (in situ zymography) to the pericellular area of various cell types in the 0-h group and was markedly increased by 30 min post-PGF(2 alpha). MMP mRNA expression and activity were significantly increased following PGF(2 alpha) treatment. Increased MMP activity may promote ECM degradation during luteolysis.  相似文献   

5.
Extracellular matrix remodelling mediates many processes including cell migration and differentiation and is regulated through the enzymatic action of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). TIMPs are secreted proteins, consisting of structurally and functionally distinct N- and C-terminal domains. TIMP N-terminal domains inhibit MMP activity, whereas their C-terminal domains may have cell signalling activity. The in vivo role of TIMP N- and C-terminal domains in regulating developmental events has not previously been demonstrated. Here we investigated the roles of TIMP-2 and TIMP-3 N- and C-terminal domains in Xenopus laevis embryos. We show that overexpression of TIMP-2 N- and C-terminal domains results in severe developmental defects and death, as well as unique changes in MMP-2 and -9 expression, indicating that the individual domains may regulate MMPs through distinct mechanisms. In contrast, we show that only the N-terminal, but not the C-terminal domain of TIMP-3, results in developmental defects.  相似文献   

6.
The relative expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) is an important determinant in trophoblast invasion of the uterus and tumor invasion and metastasis. Our previous studies have shown that low oxygen levels increase the in vitro invasiveness of trophoblast and tumor cells. The present study examined whether changes in oxygen levels affect TIMP and MMP expression by cultured trophoblast and breast cancer cells. Reverse zymographic analysis demonstrated reduced TIMP-1 protein secretion by HTR-8/SVneo trophoblast cells as well as MDA-MB-231 and MCF-7 breast carcinoma cells cultured in 1% vs 20% oxygen for 24 h. While gelatin zymography revealed no changes in the levels of MMP-9 secreted by HTR-8/SVneo trophoblasts cultured under various oxygen concentrations for 24 h, human MDA-MB-231 breast carcinoma cells displayed increased MMP-9 secretion and human MCF-7 breast cancer cells exhibited reduced secretion of this enzyme when cultured under similar conditions. In contrast, MMP-2 levels remained unchanged in all cultures incubated under similar conditions. Western blot analysis of MMP-9 protein in cell extracts confirmed the results of zymography. To assess the contribution of enhanced MMP activity to hypoxia-induced invasion, the effect of an MMP inhibitor (llomastat) on the ability of MDA-MB-231 cells to penetrate reconstituted extracellular matrix (Matrigel) was examined. Results showed that MMP inhibition significantly decreased the hypoxic upregulation of invasion by these cells. These findings indicate that the increased cellular invasiveness observed under reduced oxygen conditions may be due in part to a shift in the balance between MMPs and their inhibitors favoring increased MMP activity.  相似文献   

7.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

8.
9.
We have reported that Sho-saiko-to (TJ-9) prevents liver fibrosis in vivo. To gain further insights into the effect of TJ-9, the matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) balance was examined. Hepatic stellate cells (HSCs) were isolated from male Wistar rats and cultured with TJ-9 (0-1000 microg/ml) on uncoated plastic dishes for 4 days. To elucidate the effects on the MMPs/TIMPs balance by TJ-9, quantitative analysis of type IV collagen-degrading activity, gelatin zymography and reverse zymography were carried out. Northern blot analysis was performed to determine the expression of MMP-2, 13 and TIMP-1 mRNAs. TJ-9 treatment resulted in dose-dependent upregulation of MMP-2, 13 mRNA and downregulation of TIMP-1 mRNA up to 500 microg/ml. Gelatin zymography, reverse zymography and quantitative analysis of type IV collagen-degrading activity confirmed that TJ-9 increased MMP-2 activity and prevented TIMP-1, 2 activities in a dose-dependent manner. SB203580 diminished the reduction of mRNA as well as the activity of TIMP-1 by TJ-9 and induction of mRNA as well as the activity of MMP-2. These results show that TJ-9 increased MMP-2, 13 activity with reduced TIMP-1, 2 activities on HSCs possibly via P38 pathway.  相似文献   

10.
A recent study has shown that increased activity of matrix metalloproteinases‐2 and metalloproteinases‐9 (MMP‐2 and MMP‐9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP‐2 and MMP‐9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP‐1 and TIMP‐2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP‐2 and MMP‐9 and the protein abundance of TIMP‐1 and TIMP‐2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP‐2 at day 0, and increased MMP‐9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP‐2, MMP‐9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   

11.
12.
The matrix metalloproteinase (MMP) system consists of a proteolytic component, the metalloproteinases, and an associated class of tissue inhibitors of metalloproteinases (TIMPs). We investigated the cellular localization of the TIMPs and the gelatinase family of MMPs throughout the latter stages of follicular growth and during the periovulatory period. Immature female rats were injected with eCG, and ovaries were collected at the time of eCG administration (0 h) and at 6, 12, 24, or 36 h after eCG injection (i.e., follicular development group). A second group of animals (periovulatory) was injected with eCG followed by hCG 48 h later, and ovaries were collected at 0, 12, and 24 h after hCG. Ovaries were processed for the cellular localization of gelatinase or TIMP mRNA or gelatinolytic activity. Gelatinase mRNA (MMP-2 and MMP-9) was localized to the theca of developing follicles and to the stroma. Following a hCG stimulus, MMP-2 mRNA increased as the granulosa cells of preovulatory follicles underwent luteinization during formation of the corpus luteum (CL). MMP-9 mRNA remained predominantly in the theca during this period. In situ zymography for gelatinolytic activity demonstrated a pattern of activity that corresponded with the localization of MMP-2 and MMP-9 mRNA around developing follicles. Gelatinolytic activity was observed at the apex of preovulatory follicles and throughout the forming CL. The mRNA for TIMP-1, -2, and -3 was localized to the stroma and theca of developing follicles. TIMP-3 mRNA was present in the granulosa cells of certain follicles but was absent in granulosa cells of adjacent follicles. At 12 h after hCG, luteinizing granulosa cells expressed TIMP-1 and TIMP-3 mRNA, but TIMP-2 mRNA was at levels equivalent to the background. In the newly forming CL at 24 h after hCG administration, the luteal cells expressed TIMP-1, -2, and -3 mRNA, although the pattern of cellular expression was unique for each of the TIMPs. These findings demonstrate that the MMPs and TIMPs are in the cellular compartments appropriate for impacting the remodeling of the extracellular matrix as the follicle grows, ovulates, and forms the CL.  相似文献   

13.
The unregulated activities of matrix metalloproteinases (MMPs) are implicated in disease processes including arthritis and tumor cell invasion and metastasis. MMP activities are controlled by four homologous endogenous protein inhibitors, tissue inhibitors of metalloproteinases (TIMPs), yet different TIMPs show little specificity for individual MMPs. The large interaction interface in the TIMP-1.MMP-3 complex includes a contiguous region of TIMP-1 around the disulfide bond between Cys1 and Cys70 that inserts into the active site of MMP-3. The effects of fifteen different substitutions for threonine 2 of this region reveal that this residue makes a large contribution to the stability of complexes with MMPs and has a dominant influence on the specificity for different MMPs. The size, charge, and hydrophobicity of residue 2 are key factors in the specificity of TIMP. Threonine 2 of TIMP-1 interacts with the S1' specificity pocket of MMP-3, which is a key to substrate specificity, but the structural requirements in TIMP-1 residue 2 for MMP binding differ greatly from those for the corresponding residue of a peptide substrate. These results demonstrate that TIMP variants with substitutions for Thr2 represent suitable starting points for generating more targeted TIMPs for investigation and for intervention in MMP-related diseases.  相似文献   

14.
15.
Matrix metalloproteinases (MMPs) play a central role in many biological processes such as development, morphogenesis and wound healing, but their unbalanced activities are implicated in numerous disease processes such as arthritis, cancer metastasis, atherosclerosis, nephritis and fibrosis. One of the key mechanisms to control MMP activities is inhibition by endogenous inhibitors called tissue inhibitors of metalloproteinases (TIMPs). This review highlights the structures and inhibition mechanism of TIMPs, the biological activities of TIMPs, the unique properties of TIMP-3, and the altered specificity towards MMPs achieved by mutagenesis. A potential therapeutic use of TIMP variants is discussed.  相似文献   

16.
The elucidation of the cellular and molecular mechanisms governing the maturation of the central nervous system (CNS) is rapidly emerging. Cell-cell and cell-matrix interactions play critical roles in all phases of developmental tissue remodeling. Throughout development, an intricate balance between extracellular matrix synthesis and degradation is preserved by the opposing actions of matrix metalloproteinases (MMPs) and their specific inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Although recent evidence suggests that TIMPs exert diverse cell biological functions distinct from their MMP-inhibitory activities, few studies have investigated MMP or TIMP expression during CNS development. The present report analyzes the mRNA expression of the four known TIMPs throughout the course of embryonic and postnatal rat CNS development. The results clearly demonstrate the unique spatial distribution and temporal regulation of TIMP expression and suggest a distinct role for each TIMP during CNS development.  相似文献   

17.
18.
19.
Cigarette smoke exposure causes vascular remodeling and pulmonary hypertension by poorly understood mechanisms. To ascertain whether cigarette smoke exposure affects production of matrix metalloproteinases (MMPs) in the pulmonary vessels, we exposed C57Bl/6 (C57) mice or mice lacking TNF-alpha receptors (TNFRKO) to smoke daily for 2 wk or 6 mo. Using laser capture microdissection and RT-PCR analysis, we examined gene expression of MMP-2, MMP-9, MMP-12, MMP-13, and tissue inhibitor of metalloproteinase (TIMP-1) and examined protein production by immunohistochemistry for MMP-2, MMP-9, and MMP-12 in small intrapulmonary arteries. At 2 wk, mRNA levels of TIMP-1 and all MMPs were increased in the C57, but not TNFRKO, mice, and immunoreactive protein for MMP-2, MMP-9, and MMP-12 was also increased in the C57 mice. Increased gelatinase activity was identified by in situ and bulk tissue zymography. At 6 mo, only MMP-12 mRNA levels remained increased in the C57 mice, but at a much lower level; however, MMP-2 mRNA levels increased in the TNFRKO mice. We conclude that smoke exposure increases MMP production in the small intrapulmonary arteries but that, with the exception of MMP-12, increased MMP production is transient. MMPs probably play a role in smoke-induced vascular remodeling, as they do in other forms of pulmonary hypertension, implying that MMP inhibitors might be beneficial. MMP production is largely TNF-alpha dependent, further supporting the importance of TNF-alpha in the pathogenesis of cigarette smoke-induced lung disease.  相似文献   

20.
Cell-extracellular matrix interaction and extracellular matrix remodeling are known to be important in fetal lung development. We investigated the localization of matrix metalloproteinases (MMPs) in fetal rabbit lungs. Immunohistochemistry for type IV collagen, MMP-1, MMP-2, MMP-9, membrane type (MT) 1 MMP, and tissue inhibitor of metalloproteinase (TIMP)-2 and in situ hybridization for MMP-9 mRNA were performed. Gelatin zymography and Western blotting for MT1-MMP in lung tissue homogenates were also studied. MMP-1 and MT1-MMP were detected in epithelial cells, and MMP-2 and TIMP-2 were detected in epithelial cells and some mesenchymal cells in each stage. MMP-9 was found in epithelial cells mainly in the late stage. Gelatin zymography revealed that the ratio of active MMP-2 to latent MMP-2 increased dramatically during the course of development. MT1-MMP was detected in tissue homogenates, especially predominant in the late stage. These findings suggest that MMPs and their inhibitors may contribute to the formation of airways and alveoli in fetal lung development and that activated MMP-2 of alveolar epithelial cells may function to provide an extremely wide alveolar surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号