首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the molecular mechanism of genetic recombination in RNA viruses have progressed at the time when experimental systems of efficient recombination crossovers were established. The system of brome mosaic virus (BMV) represents one of the most useful and most advanced tools for investigation of the molecular aspects of the mechanism of RNA-RNA recombination events. By using engineered BMV RNA components, the occurrence of both homologous and nonhomologous crosses were demonstrated among the segments of the BMV RNA genome. Studies show that the two types of crossovers require different RNA signal sequences and that both types depend upon the participation of BMV replicase proteins. Mutations in the two BMV-encoded replicase polypeptides (proteins 1a and 2a) reveal that their different regions participate in homologous and in nonhomologous crossovers. Based on all these data, it is most likely that homologous and nonhomologous recombinant crosses do occur via two different types of template switching events (copy-choice mechanism) where viral replicase complex changes RNA templates during viral RNA replication at distinct signal sequences. In this review we discuss various aspects of the mechanism of RNA recombination in BMV and we emphasize future projections of this research.  相似文献   

2.
Brome mosaic virus (BMV) is a tripartite genome, positive-sense RNA virus of plants. Previously it was demonstrated that local hybridization between BMV RNAs (RNA–RNA heteroduplex formation) efficiently promotes non-homologous RNA recombination. In addition, studies on the role of the BMV polymerase in RNA recombination suggested that the location of non-homologous crossovers depends mostly on RNA structure. As a result, a detailed analysis of a large number of non-homologous recombinants generated in the BMV-based system was undertaken. Recombination hot-spots as well as putative elements in RNA structure enhancing non-homologous crossovers and targeting them in a site-specific manner were identified. To verify these observations the recombinationally active sequence in BMV RNA3 derivative was modified. The results obtained with new RNA3 mutants suggest that the primary and secondary structure of the sequences involved in a heteroduplex formation rather than the length of heteroduplex plays the most important role in the recombination process. The presented data indicate that the sequences proximal to the heteroduplex may also affect template switching by BMV replicase. Moreover, it was shown that both short homologous sequences and a hairpin structure have to accompany a double-stranded region to target non-homologous crossovers in a site-specific manner.  相似文献   

3.
4.
Brome mosaic virus (BMV), a tripartite positive-stranded RNA virus of plants engineered to support intersegment RNA recombination, was used for the determination of sequence and structural requirements of homologous crossovers. A 60-nucleotide (nt) sequence, common between wild-type RNA2 and mutant RNA3, supported efficient repair (90%) of a modified 3' noncoding region in the RNA3 segment by homologous recombination with wild-type RNA2 3' noncoding sequences. Deletions within this sequence in RNA3 demonstrated that a nucleotide identity as short as 15 nt can support efficient homologous recombination events, while shorter (5-nt) sequence identity resulted in reduced recombination frequency (5%) within this region. Three or more mismatches within a downstream portion of the common 60-nt RNA3 sequence affected both the incidence of recombination and the distribution of crossover sites, suggesting that besides the length, the extent of sequence identity between two recombining BMV RNAs is an important factor in homologous recombination. Site-directed mutagenesis of the common sequence in RNA3 did not reveal a clear correlation between the stability of predicted secondary structures and recombination activity. This indicates that homologous recombination does not require similar secondary structures between two recombining RNAs at the sites of crossovers. Nearly 20% of homologous recombinants were imprecise (aberrant), containing either nucleotide mismatches, small deletions, or small insertions within the region of crossovers. This implies that homologous RNA recombination is not as accurate as proposed previously. Our results provide experimental evidence that the requirements and thus the mechanism of homologous recombination in BMV differ from those of previously described heteroduplex-mediated nonhomologous recombination (P. D. Nagy and J. J. Bujarski, Proc. Natl. Acad. Sci. USA 90:6390-6394, 1993).  相似文献   

5.
Brome mosaic bromovirus (BMV), a tripartite plus-sense RNA virus, has been used as a model system to study homologous RNA recombination among molecules of the same RNA component. Pairs of BMV RNA3 variants carrying marker mutations at different locations were coinoculated on a local lesion host, and the progeny RNA3 in a large number of lesions was analyzed. The majority of doubly infected lesions accumulated the RNA3 recombinants. The distribution of the recombinant types was relatively even, indicating that both RNA3 counterparts could serve as donor or as acceptor molecules. The frequency of crossovers between one pair of RNA3 variants, which possessed closely located markers, was similar to that of another pair of RNA3 variants with more distant markers, suggesting the existence of an internal recombination hot spot. The majority of crossovers were precise, but some recombinants had minor sequence modifications, possibly marking the sites of imprecise homologous crossovers. Our results suggest discontinuous RNA replication, with the replicase changing among the homologous RNA templates and generating RNA diversity. This approach can be easily extended to other RNA viruses for identification of homologous recombination hot spots.  相似文献   

6.
Previously we demonstrated frequent homologous crossovers among molecules of the RNA3 segment in the tripartite brome mosaic bromovirus (BMV) RNA genome (A. Bruyere, M. Wantroba, S. Flasinski, A. Dzianott, and J. J. Bujarski, J. Virol. 74:4214-4219, 2000). To further our knowledge about mechanisms of viral RNA genome variability, in this paper we have studied homologous recombination in BMV RNA1 and RNA2 components during infection. We have found that basal RNA-RNA crossovers could occur within coding regions of both RNAs, although recombination frequencies slightly varied at different RNA sections. In all cases, the frequencies were much lower than the rate observed for the intercistronic recombination hot spot in BMV RNA3. Probability calculations accounted for at least one homologous crossover per RNA molecule per replication cycle. In addition, we have demonstrated an efficient repair of mutations within the conserved 3' and 5' noncoding regions, most likely due to error-prone BMV RNA replication. Overall, our data verify that homologous crossovers are common events a during virus life cycle, and we discuss their importance for viral RNA genetics.  相似文献   

7.
Previously, we observed that crossovers sites of RNA recombinants clustered within or close to AU-rich regions during genetic recombination in brome mosaic bromovirus (BMV) (P. D. Nagy and J. J. Bujarski. J. Virol. 70:415-426, 1996). To test whether AU-rich sequences can facilitate homologous recombination, AU-rich sequences were introduced into parental BMV RNAs (RNA2 and RNA3). These insertions created a homologous RNA2-RNA3 recombination hotspot. Two other AU-rich sequences also supported high-frequency homologous recombination if a common sequence with high or average G/C content was present immediately upstream of the AU-rich element. Homologous RNA recombination did not require any additional sequence motifs or RNA structures and was position nonspecific within the 3' noncoding region. These results suggest that nucleotide content (i.e., the presence of common 5' GC-rich or moderately AU-rich and 3' AU-rich regions) is the important factor that determines the sites of homologous recombination. A mechanism that involves replicase switching during synthesis of positive-sense RNA strands is presented to explain the observed results.  相似文献   

8.
All three single-stranded RNAs of the brome mosaic virus (BMV) genome contain a highly conserved, 193-base 3' noncoding region. To study the recombination between individual BMV RNA components, barley plants were infected with a mixture of in vitro-transcribed wild-type BMV RNAs 1 and 2 and an RNA3 mutant that carried a deletion near the 3' end. This generated a population of both homologous and nonhomologous 3' recombinant BMV RNA3 variants. Sequencing revealed that these recombinants were derived by either single or double crossovers with BMV RNA1 or RNA2. The primary sequences at recombinant junctions did not show any similarity. However, they could be aligned to form double-stranded heteroduplexes. This suggested that local hybridizations among BMV RNAs may support intermolecular exchanges.  相似文献   

9.
A system that uses engineered heteroduplexes to efficiently direct in vivo crossovers between brome mosaic virus (BMV) RNA1 and RNA3 (P. Nagy and J. Bujarski, Proc. Natl. Acad. Sci. USA 90:6390-6394, 1993) has been used to explore the possible involvement of BMV 1a protein, an essential RNA replication factor, in RNA recombination. Relative to wild-type 1a, several viable amino acid insertion mutations in the helicase-like domain of BMV 1a protein affected the nature and distribution of crossover sites in RNA3-RNA1 recombinants. At 24 degrees C, mutants PK19 and PK21 each increased the percentage of asymmetric crossovers, in which the RNA1 and RNA3 sites joined by recombination were not directly opposite each other on the engineered RNA3-RNA1 heteroduplex used to target recombination but rather were separated by 4 to 85 nucleotides. PK21 and another 1a mutant, PK14, also showed increases in the fraction of recombinants containing nontemplated U residues at the recombination junction. At 33 degrees C, the highest temperature that permitted infections with PK19, which is temperature sensitive for RNA replication, the mean location of RNA1-RNA3 crossovers in recombinants recovered from PK19 infections was shifted by nearly 25 bp into the energetically less stable side of the RNA1-RNA3 heteroduplex. Thus, mutations in the putative helicase domain of the 1a protein can influence BMV RNA recombination. The results are discussed in relation to models for recombination by template switching during pausing of RNA replication at a heteroduplexed region in the template.  相似文献   

10.
Recent in vivo studies have revealed that the subgenomic promoter (sgp) in brome mosaic bromovirus (BMV) RNA3 supports frequent homologous recombination events (R. Wierzchoslawski, A. Dzianott, and J. Bujarski, J. Virol. 78:8552-8564, 2004). In this paper, we describe an sgp-driven in vitro system that supports efficient RNA3 crossovers. A 1:1 mixture of two (-)-sense RNA3 templates was copied with either a BMV replicase (RdRp) preparation or recombinant BMV protein 2a. The BMV replicase enzyme supported a lower recombination frequency than 2a, demonstrating a role of other viral and/or host factors. The described in vitro system will allow us to study the mechanism of homologous RNA recombination.  相似文献   

11.
《Seminars in Virology》1996,7(6):363-372
Brome mosaic bromovirus, a tripartite, positive-stranded RNA virus of plants, can generate both homologous and nonhomologous recombinantsin vivo. Recombination signals in the RNAs were different for these two recombination types. Nonhomologous recombination requires the formation of local double-stranded regions between the RNA templates. In contrast, homologous recombination is facilitated by AU-rich sequences and upstream GC-rich regions common in the recombining RNAs. Mutations within the replicase proteins affect homologous and nonhomologous recombination in different ways, confirming the involvement of BMV replicase proteins in both types of events as well as the differences in their pathways. Replicase-driven template-switching models are discussed in relation to supporting evidences.  相似文献   

12.
RNA interference (RNAi) mechanism targets viral RNA for degradation. To test whether RNAi gene products contributed to viral RNA recombination, a series of Arabidopsis thaliana RNAi-defective mutants were infected with Brome mosaic virus (BMV) RNAs that have been engineered to support crossovers within the RNA3 segment. Single-cross RNA3-RNA1, RNA3-RNA2, and RNA3-RNA3 recombinants accumulated in both the wild-type (wt) and all knock-out lines at comparable frequencies. However, a reduced accumulation of novel 3' mosaic RNA3 recombinants was observed in ago1, dcl2, dcl4, and rdr6 lines but not in wt Col-0 or the dcl3 line. A BMV replicase mutant accumulated a low level of RNA3-RNA1 single-cross recombinants in Col-0 plants while, in a dcl2 dcl4 double mutant, the formation of both RNA3-RNA1 and mosaic recombinants was at a low level. A control infection in the cpr5-2 mutant, a more susceptible BMV Arabidopsis host, generated similar-to-Col-0 profiles of both single-cross and mosaic recombinants, indicating that recombinant profiles were, to some extent, independent of a viral replication rate. Also, the relative growth experiments revealed similar selection pressure for recombinants among the host lines. Thus, the altered recombinant RNA profiles have originated at the level of recombinant formation rather than because of altered selection. In conclusion, the viral replicase and the host RNAi gene products contribute in distinct ways to BMV RNA recombination. Our studies reveal that the antiviral RNAi mechanisms are utilized by plant RNA viruses to increase their variability, reminiscent of phenomena previously demonstrated in fungi.  相似文献   

13.
14.
Previously, we have observed that mutations in proteins 1a and 2a, the two virally encoded components of the brome mosaic virus (BMV) replicase, can affect the frequency of recombination and the locations of RNA recombination sites (P. D. Nagy, A. Dzianott, P. Ahlquist, and J. J. Bujarski, J. Virol. 69:2547–2556, 1995; M. Figlerowicz, P. D. Nagy, and J. J. Bujarski, Proc. Natl. Acad. Sci. USA 94:2073–2078, 1997). Also, it was found before that the N-terminal domain of 2a, the putative RNA polymerase protein, participates in the interactions between 1a and 2a (C. C. Kao, R. Quadt, R. P. Hershberger, and P. Ahlquist, J. Virol. 66:6322–6329, 1992; E. O’Reilly, J. Paul, and C. C. Kao, J. Virol. 71:7526–7532, 1997). In this work, we examine how mutations within the N terminus of 2a influence RNA recombination in BMV. Because of the likely electrostatic character of 1a-2a interactions, five 2a mutants, MF1 to MF5, were generated by replacing clusters of acidic amino acids with their neutral counterparts. MF2 and MF5 retained nearly wild-type levels of 1a-2a interaction and were infectious in Chenopodium quinoa. However, compared to that in wild-type virus, the frequency of nonhomologous recombination in both MF2 and MF5 was markedly decreased. Only in MF2 was the frequency of homologous recombination reduced and the occurrence of imprecise homologous recombination increased. In MF5 there was also a 3′ shift in the positions of homologous crossovers. The observed effects of MF2 and MF5 reveal that the 2a N-terminal domain participates in different ways in homologous and in nonhomologous BMV RNA recombination. This work maps specific locations within the N terminus involved in 1a-2a interaction and in recombination and further suggests that the mechanisms of the two types of crossovers in BMV are different.  相似文献   

15.
One of the most unusual features of RNA viruses is their enormous genetic variability. Among the different processes contributing to the continuous generation of new viral variants RNA recombination is of special importance. This process has been observed for human, animal, plant and bacterial viruses. The collected data reveal a great susceptibility of RNA viruses to recombination. They also indicate that genetic RNA recombination (especially the nonhomologous one) is a major factor responsible for the emergence of new viral strains or species. Although the formation and accumulation of viral recombinants was observed in numerous RNA viruses, the molecular basis of this phenomenon was studied in only a few viral species. Among them, brome mosaic virus (BMV), a model (+)RNA virus offers the best opportunities to investigate various aspects of genetic RNA recombination in vivo. Unlike any other, the BMV-based system enables homologous and nonhomologous recombination studies at both the protein and RNA levels. As a consequence, BMV is the virus for which the structural requirements for genetic RNA recombination have been most precisely established. Nevertheless, the previously proposed model of genetic recombination in BMV still had one weakness: it could not really explain the role of RNA structure in nonhomologous recombination. Recent discoveries concerning the latter problem give us a chance to fill this gap. That is why in this review we present and thoroughly discuss all results concerning nonhomologous recombination in BMV that have been obtained until now.  相似文献   

16.
Homology Requirements for Unequal Crossing over in Humans   总被引:15,自引:2,他引:13       下载免费PDF全文
To gain insight into mechanisms of unequal homologous recombination in vivo, genes generated by homologous unequal crossovers in the human beta-globin gene cluster were examined by nucleotide sequencing and hybridization experiments. The naturally occurring genes studied included one delta-beta Lepore-Baltimore fusion gene, one delta-beta Lepore-Hollandia fusion gene, 12 delta-beta Lepore-Boston genes, one A gamma-beta fusion Kenya gene, one A gamma-G gamma fusion (the central gene of a triplication) and one G gamma-A gamma fusion. A comparison of the nucleotide sequences of three Lepore-Boston genes indicates that they were derived from at least two independent homologous but unequal crossover events, although the crossovers occurred within the same 58-bp region. Nine additional Lepore-Boston genes from individuals of various ethnic origins were shown, by hybridization to specific oligonucleotide probes, to have been generated by a crossover in the same region as the sequenced genes. Evidence for gene conversion accompanying a homologous unequal crossover event was found in only one case (although some of the single nucleotide differences observed in other genes in this study may be related to the crossover events in ways that we do not presently understand). Thus, as judged by this limited sample, concurrent gene conversions are not commonly associated with homologous but unequal exchange in humans in vivo. Classification of the recombinant chromosomes by their polymorphic restriction sites in the beta-globin gene cluster indicated that the Lepore-Boston genes are found in at least six different haplotype backgrounds. Therefore the total number of independent examples in this study is at least 6, and at most 12. We have shown that in at least six cases of genes that have arisen by homologous but unequal crossing over in vivo, each event occurred in a relatively extensive region of uninterrupted identity between the parental genes. This preference cannot be explained by a mechanism whereby crossovers occur at random within misaligned related but not identical genes. In general, crossovers occur in regions that are among the largest available stretches of identity for a particular pair of mismatched genes. Our data are in agreement with those of other types of studies of homologous recombination, and support the idea that sequence identity, rather than general homology, is a critical factor in homologous recombination.  相似文献   

17.
Shapka N  Nagy PD 《Journal of virology》2004,78(5):2288-2300
RNA recombination can be facilitated by recombination signals present in viral RNAs. Among such signals are short sequences with high AU contents that constitute recombination hot spots in Brome mosaic virus (BMV) and retroviruses. In this paper, we demonstrate that a defective interfering (DI) RNA, a model template associated with Tomato bushy stunt virus (TBSV), a tombusvirus, undergoes frequent recombination in plants and protoplast cells when it carries the AU-rich hot spot sequence from BMV. Similar to the situation with BMV, most of the recombination junction sites in the DI RNA recombinants were found within the AU-rich region. However, unlike BMV or retroviruses, where recombination usually occurred with precision between duplicated AU-rich sequences, the majority of TBSV DI RNA recombinants were imprecise. In addition, only one copy of the AU-rich sequence was essential to promote recombination in the DI RNA. The selection of junction sites was also influenced by a putative cis-acting element present in the DI RNA. We found that this RNA sequence bound to the TBSV replicase proteins more efficiently than did control nonviral sequences, suggesting that it might be involved in replicase "landing" during the template switching events. In summary, evidence is presented that a tombusvirus can use the recombination signal of BMV. This supports the idea that common AU-rich recombination signals might promote interviral recombination between unrelated viruses.  相似文献   

18.
A model system of a single-stranded trisegment Brome mosaic bromovirus (BMV) was used to analyze the mechanism of homologous RNA recombination. Elements capable of forming strand-specific stem-loop structures were inserted at the modified 3' noncoding regions of BMV RNA3 and RNA2 in either positive or negative orientations, and various combinations of parental RNAs were tested for patterns of the accumulating recombinant RNA3 components. The structured negative-strand stem-loops that were inserted in both RNA3 and RNA2 reduced the accumulation of RNA3-RNA2 recombinants to a much higher extent than those in positive strands or the unstructured stem-loop inserts in either positive or negative strands. The use of only one parental RNA carrying the stem-loop insert reduced the accumulation of RNA3-RNA2 recombinants even further, but only when the stem-loops were in negative strands of RNA2. We assume that the presence of a stable stem-loop downstream of the landing site on the acceptor strand (negative RNA2) hampers the reattachment and reinitiation processes. Besides RNA3-RNA2 recombinants, the accumulation of nontargeted RNA3-RNA1 and RNA3-RNA3 recombinants were observed. Our results provide experimental evidence that homologous recombination between BMV RNAs more likely occurs during positive- rather than negative-strand synthesis.  相似文献   

19.
The mechanism of RNA recombination in poliovirus   总被引:61,自引:0,他引:61  
K Kirkegaard  D Baltimore 《Cell》1986,47(3):433-443
We have investigated RNA recombination among poliovirus genomes by analyzing both intratypic and intertypic recombinant crosses involving the same defined genetic markers. Sequence analysis of the recombinant junctions of 13 nonsibling intertypic recombinants showed that intertypic RNA recombination is not site-specific, nor does it require extensive homology between the recombining parents at the crossover site. To discriminate between breaking-rejoining and copy choice mechanisms of RNA recombination, we have inhibited the replication of the recombining parents independently and found opposite effects on the frequency of genetic recombination in intratypic crosses. The results strongly support a copy choice mechanism for RNA recombination, in which the viral RNA polymerase switches templates during negative strand synthesis.  相似文献   

20.
It has been observed that AU-rich sequences form homologous recombination hot spots in brome mosaic virus (BMV), a tripartite positive-stranded RNA virus of plants (P. D. Nagy and J. J. Bujarski, J. Virol. 71:3799–3810, 1997). To study the effect of GC-rich sequences on the recombination hot spots, we inserted 30-nucleotide-long GC-rich sequences downstream of AU-rich homologous recombination hot spot regions in parental BMV RNAs (RNA2 and RNA3). Although these insertions doubled the length of sequence identity in RNA2 and RNA3, the incidence of homologous RNA2 and RNA3 recombination was reduced markedly. Four different, both highly structured and nonstructured downstream GC-rich sequences had a similar “homologous recombination silencing” effect on the nearby hot spots. The GC-rich sequence-mediated recombination silencing mapped to RNA2, as it was observed when the GC-rich sequence was inserted at downstream locations in both RNA2 and RNA3 or only in the RNA2 component. On the contrary, when the downstream GC-rich sequence was present only in the RNA3 component, it increased the incidence of homologous recombination. In addition, upstream insertions of similar GC-rich sequences increased the incidence of homologous recombination within downstream hot spot regions. Overall, this study reveals the complex nature of homologous recombination in BMV, where sequences flanking the common hot spot regions affect recombination frequency. A replicase-driven template-switching model is presented to explain recombination silencing by GC-rich sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号