首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The success of Mycobacterium as a pathogen hinges on its ability to modulate its intracellular environment. Mycobacterium avium reside in vacuoles with limited proteolytic activity, maintain cathepsin D in an immature form and remain accessible to internalized transferrin. Artificial acidification of isolated phagosomes facilitated processing of cathepsin D, demonstrating that pH alone limits proteolysis in these vacuoles. Moreover, analysis of IgG-bead phagosomes at early time points during their formation indicates that these phagosomes also acquire LAMP 1 and cathepsin D prior to the accumulation of proton-ATPases, and are transiently accessible to sorting endosomes. This suggests that the anomolous distribution of endosomal proteins in M. avium-containing vacuoles results from their arrested differentiation in an early transitional stage through which all phagosomes pass.  相似文献   

2.
Phagosomes containing live virulent mycobacteria undergo fusion with early endosomes, but they are unable to mature normally. Accordingly, they do not fuse with lysosomes. Although M. avium-containing phagosomes retain fusion and intermingling characteristics of early endosomes indefinitely, fusions with early endosomes are increasingly restricted as bacteria multiply. In addition, when endocytic tracers, such as horseradish peroxidase (HRP), are added to M. avium-infected macrophages at 1 or up to 15 days after infection, an atypical time course of acquisition of the tracer by the phagosomes is observed, i.e., a 10 to 20 min lag, instead of immediate acquisition as is typical for early endosomes (and phagosomes with early endosome characteristics). These events coincide with a marked disorganization of the actin filament network in M. avium-infected macrophages. In the present study, we have therefore addressed the following question: Do actin filaments play a role in fusion and intermingling of contents between early endosomes and immature phagosomes that undergo homotypic fusion with early endosomes? We examined the time course of acquisition of subsequently internalized endocytic marker (HRP) by early endosome-like preexisting phagosomes, i.e. 2 hour-old phagosomes with either hydrophobic latex particles, virulent or avirulent M. avium, after depolymerization of the actin filament network with cytochalasin D or after repolymerization of the actin filament network with jasplakinolide, in cases where the network had been depolymerized (macrophages infected with M. avium, at 1 or up to 7 days after infection). By direct morphological observation at the electron microscope level and by a kinetic approach, we show here that depolymerization of the actin filament network with cytochalasin D delays acquisition of HRP whereas repolymerization restores immediate acquisition of the marker. We conclude that the actin filament network is involved in fusion and intermingling of endocytic contents between early endosomes and early endosome-like phagosomes, and that disruption of this network by M. avium is the cause for the atypical acquisition of content marker by phagosomes containing these pathogenic mycobacteria.  相似文献   

3.
Coxiella burnetii, the agent of Q fever in man and of coxiellosis in other species, is a small, dimorphic, obligate intracellular bacterium, sheltered within large, acidified, and hydrolase-rich phagosomes. Although several primary and established cell lines, macrophage-like cells, and primary macrophages from other species have been infected with C. burnetii, the infection of mouse primary macrophages has not been sufficiently characterized. In this report quantification of DAPI (4', 6-diamino-2-phenylindole) fluorescence images acquired by confocal microscopy, and transmission electron microscopy were used to compare the infection of three mouse-derived cells, L929 fibroblasts, J774 macrophage-like cells, and resident peritoneal macrophages, with a phase II clone of C. burnetii known to be non-virulent for mammals. Infected peritoneal phagocytes differed from L929 or J774 cells in that: (a) large vacuoles took longer to appear (3-5 d instead of 2), and were only found in a subset (20-30%) of macrophages, as opposed to in more than 70% of the other cells; (b) total and vacuole-associated relative bacterial loads in L929 and J774 cells were several-fold higher than in peritoneal macrophages; (c) estimated doubling times of the bacteria were about 68 h in the primary macrophages, 18 h in J774 and 22 h in L929 cells. Thus, mouse resident peritoneal macrophages control both the formation of the large vacuoles and the intracellular proliferation of C. burnetii phase II.  相似文献   

4.
We have studied the intracellular localization of annexins I,II, VI, VII, and XI in cells containing latex beads or Mycobacterium avium at different times after ingestion in order to establish whether a correlation existed between the association of annexins to phagosomes and phagolysosomal fusion, since the intracellular survival of mycobacteria is linked to an impairment of phagosome maturation. We demonstrate an important decrease in the levels of association of annexins I, VI, VII and XI, but not II to phagosomes containing either live or killed mycobacteria compared with phagosomes containing inert latex particles. The reduced association of annexins observed was detected only on M. avium-containing phagosomes and not in other cell membrane nor in cytosolic fractions from infected cells, and was apparent from 8 hours through to 4 days after phagocytosis. These findings add elements to the present knowledge of the phagosomal modifications that accompany the survival of intracellular pathogens, suggesting that annexins I, VI, VII, and XI play a secondary role in phagosomal fusion events while annexin II does not seem to be related to the mechanism of regulation of endolysosomal fusion.  相似文献   

5.
Phagosome maturation is characterized by the sequential acquisition and loss of proteins by the phagocytic vacuole during the formation of an acidic and hydrolytic compartment where degradation of the phagocytosed particle occurs. Transfer of proteins to the maturing phagosome occurs by fusion with a range of vesicles. Here we describe direct fusion of early phagosomes with vesicles that appear to be derived from the biosynthetic pathway. In mouse bone marrow macrophages, the 51 kDa proform of cathepsin D was found in vesicles of the ER/Golgi network that could be discriminated from endosomal vesicles which in turn contained the 46 and 30 kDa processed forms of the enzyme. Procathepsin D was acquired by phagosomes formed around inert particles such as IgG-coated beads and could be "protected" by blocking acidification with Bafilomycin A1. Mycobacterium avium-containing vacuoles from established infections possessed both pro- and processed cathepsin D similar to early bead-containing phagosomes. In contrast phagosomes harboring dead mycobacteria demonstrated markedly enhanced acquisition of the 46kDa form within 4 h post internalization and only low levels of procathepsin D.  相似文献   

6.
Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes--which were destroyed--differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation--a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs.  相似文献   

7.
Mycobacterium avium and Mycobacterium tuberculosis are human pathogens that infect and replicate within macrophages. Both organisms live in phagosomes that fail to fuse with lysosomes and have adapted their lifestyle to accommodate the changing environment within the endosomal system. Among the many environmental factors that could influence expression of bacterial genes are the concentrations of single elements within the phagosomes. We used a novel hard x-ray microprobe with suboptical spatial resolution to analyze characteristic x-ray fluorescence of 10 single elements inside phagosomes of macrophages infected with M. tuberculosis and M. avium or with avirulent M. smegmatis. The iron concentration decreased over time in phagosomes of macrophages infected with Mycobacterium smegmatis but increased in those infected with pathogenic mycobacteria. Autoradiography of infected macrophages incubated with (59)Fe-loaded transferrin demonstrated that the bacteria could acquire iron delivered via the endocytic route, confirming the results obtained in the x-ray microscopy. In addition, the concentrations of chlorine, calcium, potassium, manganese, copper, and zinc were shown to differ between the vacuole of pathogenic mycobacteria and M. smegmatis. Differences in the concentration of several elements between M. avium and M. tuberculosis vacuoles were also observed. Activation of macrophages with recombinant IFN-gamma or TNF-alpha before infection altered the concentrations of elements in the phagosome, which was not observed in cells activated following infection. Siderophore knockout M. tuberculosis vacuoles exhibited retarded acquisition of iron compared with phagosomes with wild-type M. tuberculosis. This is a unique approach to define the environmental conditions within the pathogen-containing compartment.  相似文献   

8.
The etiologic agent of Q fever Coxiella burnetii, is an intracellular obligate parasite that develops large vacuoles with phagolysosomal characteristics, containing multiple replicating bacteria. We have previously shown that Phase II C. burnetii replicative vacuoles generated after 24-48 h post infection are decorated with the autophagic protein LC3. The aim of the present study was to examine, at earlier stages of infection, the distribution and roles of the small GTPases Rab5 and Rab7, markers of early and late endosomes respectively, as well as of the protein LC3 on C. burnetii trafficking. Our results indicate that: (i) Coxiella phagosomes (Cph) acquire the two Rab proteins sequentially during infection; (ii) overexpression of a dominant negative mutant form of Rab5, but not of Rab7, impaired Coxiella entry, whereas both Rab5 and Rab7 dominant negative mutants inhibited vacuole formation; (iii) Cph colocalized with the protein LC3 as early as 5 min after infection; acquisition of this protein appeared to be a bacterially driven process, because it was inhibited by the bacteriostatic antibiotic chloramphenicol and (iv) C. burnetii delayed the arrival of the typical lysosomal protease cathepsin D to the Cph, which delay is further increased by starvation-induced autophagy. Based on our results we propose that C. burnetii transits through the normal endo/phagocytic pathway but actively interacts with autophagosomes at early times after infection. This intersection with the autophagic pathway delays fusion with the lysosomal compartment possibly favouring the intracellular differentiation and survival of the bacteria.  相似文献   

9.
Coxiella burnetii, the etiological agent of Q fever, is an obligate intracellular bacterium that resides within acidified vacuoles with secondary lysosomal characteristics. Infective stages of Trypanosoma cruzi, the causative agent of Chagas' disease, actively invade a wide variety of cells, a process followed by lysosomal recruitment. Recently, we have investigated and characterized early events that occur in Vero cells persistently colonized with C. burnetii when doubly infected with T. cruzi trypomastigote forms. Kinetic studies of trypomastigote transfer indicated that parasitophorous vacuoles (PV) of metacyclic trypomastigotes are rapidly and efficiently fused to C. burnetii vacuoles. Based on these observations we have investigated the behavior of metacyclic trypomastigotes within C. burnetii vacuoles beyond 12 h of co-infection inside Vero cells. Using indirect immunofluorescence with MAb against different developmental stages, it was possible to follow the T. cruzi differentiation process within C. burnetii vacuoles after up to 96 h post-invasion. We observed that metacyclic trypomastigotes began to differentiate after 12 h of infection, and 24 h later amastigotes were the prevailing forms within C. burnetii vacuoles. T. cruzi amastigote replication within C. burnetii vacuoles was confirmed using video and time-lapse confocal microscopy and around 36 h of co-infection, cytokinesis took about 70 min to occur. After 72 h, we observed that amastigote forms seemed to escape from C. burnetii vacuoles. Labeling of amastigotes within C. burnetii vacuoles using a polyclonal antibody to C9 complement protein suggested that TcTOX (T. cruzi hemolysin) could play a role in parasite escape from C. burnetii. We concluded that T. cruzi has an outstanding adaptation capability and can survive within a hostile milieu such as C. burnetii vacuoles.  相似文献   

10.
The phagosomes containing viable pathogenic mycobacteria, such as Mycobacterium ( M .) tuberculosis and Mycobacterium avium ssp. avium ( M. avium ), are known to be limited in their ability to both acidify and fuse with late (but not early) endocytic organelles. Here, we analysed the pH and fusogenicity of phagosomes containing M. avium ssp. paratuberculosis ( M. ptb ), the causative agent of paratuberculosis in ruminants. Using the murine J774 macrophage cell line, we compared viable and heat-killed M. ptb and, in addition, viable or dead M. avium , as well as two non-pathogenic mycobacteria, Mycobacterium smegmatis and Mycobacterium gordonae . Electron microscopic analysis revealed that M. ptb persisted intracellularly in phagosomes for up to 15 days. The phagosomes containing live M. ptb and M. avium were significantly reduced in their ability to acquire some markers for the endocytic pathway, such as internalized calcein, BSA–gold or the membrane protein Lamp 2. However, they were almost completely accessible to 70 kDa fluorescein isothiocyanate (FITC)–dextran and Lamp 1. Overall, the phagosomes containing dead pathogenic mycobacteria behaved similarly to the ones containing live non-pathogenic mycobacteria in all experiments. Using FITC–dextran in a novel fluorescence-activated cell sorting (FACS)-based method, we could also show that the bulk of endocytic compartments, including phagosomes, were only very mildly acidified to ≈ pH 6.3 over at least 72 h in J774 cells infected with live M. ptb and M. avium . In contrast, J774 cells treated with heat-killed M. ptb or BSA-coated latex beads showed substantial acidification of the phagosome/endocytic compartments to a pH value of ≈ 5.2. After infection with M. smegmatis and M. gordonae , acidification was initially (1–5 h after infection) inhibited, but increased after longer infection to levels similar to those with dead mycobacteria.  相似文献   

11.
This study examined whether protein synthesis and replication are required for maturation and fusogenicity of the lysosomal-like, large and spacious parasitophorous vacuole (PV) of Coxiella burnetii, an obligate intracellular bacterium. Large and spacious PV with multiple non-replicating C. burnetii were observed by phase microscopy in Vero cells infected at a multiplicity of infection of ten and treated with a bacteriostatic concentration of nalidixic acid or carbenicillin, antimicrobics that inhibit DNA and cell wall biosynthesis respectively. Conversely, large and spacious PV were not observed in cells treated with a bacteriostatic concentration of the protein synthesis inhibitor chloramphenicol. Rather, fluorescence microscopy of individual cells revealed multiple, acidic PV harbouring a single organism tightly bounded by a LAMP-1 positive vacuolar membrane. These vacuoles homotypically fused to form a large and spacious PV upon removal of the drug. Chloramphenicol also inhibited trafficking of latex beads to large and spacious PV and caused mature PV to collapse. Collectively, these results demonstrate that C. burnetii protein synthesis, but not replication, is required for fusion between nascent C. burnetii PV and latex bead phagosomes, and also for formation and maintenance of large and spacious, replicative PV. However, transit of nascent PV through the endocytic pathway to ultimately acquire lysosomal markers appears to occur irrespective of Coxiella protein synthesis.  相似文献   

12.
Pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium avium facilitate disease by surviving intracellularly within a potentially hostile environment: the macrophage phagosome. They inhibit phagosome maturation processes, including fusion with lysosomes, acidification and, as shown here, membrane actin assembly. An in vitro assay developed for latex bead phagosomes (LBPs) provided insights into membrane signalling events that regulate phagosome actin assembly, a process linked to membrane fusion. Different lipids were found to stimulate or inhibit actin assembly by LBPs and mycobacterial phagosomes in vitro. In addition, selected lipids activated actin assembly and phagosome maturation in infected macrophages, resulting in a significant killing of M. tuberculosis and M. avium. In contrast, the polyunsaturated sigma-3 lipids behaved differently and stimulated pathogen growth. Thus, lipids can be involved in both stimulatory and inhibitory signalling networks in the phagosomal membrane.  相似文献   

13.
We studied the fate of different Trypanosoma cruzi trypomastigote forms after they invade Vero cells persistently colonised with Coxiella burnetii. When the invasion step was examined we found that persistent C. burnetii infection per se reduced only tissue-culture trypomastigote invasion, whereas raising vacuolar pH with Bafilomycin A1 and related drugs, increased invasion of both metacyclic and tissue-culture trypomastigotes when compared with control Vero cells. Kinetic studies of trypomastigote transfer indicated that metacyclic trypomastigotes parasitophorous vacuoles are more efficiently fused to C. burnetii vacuoles. The higher tissue-culture trypomastigote hemolysin and transialidase activities appear to facilitate their faster escape from the parasitophorous vacuole. Sialic acid deficient Lec-2 cells facilitate the escape of both forms. Endosomal-lysosomal sequential labelling with EEA1, LAMP-1, and Rab7 of the parasitophorous vacuoles formed during the entry of each infective form revealed that the phagosome maturation processes are also distinct. Measurements of C. burnetii vacuolar pH disclosed a marked preference for trypomastigote fusion with more acidic rickettsia vacuoles. Our results thus suggest that intravacuolar pH modulates the traffic of trypomastigote parasitophorous vacuoles in these doubly infected cells.  相似文献   

14.
Using a hard X-ray microprobe, we showed recently that in unstimulated peritoneal macrophages from C57BL/6 mice, the phagosome of pathogenic mycobacteria (Mycobacterium tuberculosis and Mycobacterium avium) can accumulate iron. We expanded our studies to the M. avium infection of peritoneal macrophages of Balb/c mice that show a similar degree of M. tuberculosis and M. avium-related chronic disease, but a higher susceptibility towards other intracellular pathogens such as Listeria monocytogenes, Leishmania major, or Brucella abortus as compared to C57BL/6 mice. Similar to C57BL/6 macrophages, the iron concentration in Balb/c macrophages increased significantly after 24 h of infection. A significant increase of the chlorine and potassium concentrations was observed in the Balb/c phagosomes between 1 and 24 h, in contrast with macrophages from C57BL/6 mice. The absolute elemental concentrations of calcium and zinc were higher in the mycobacterial phagosomes of Balb/c mice. We hypothesize that a potassium channel is abundant in the phagosome in macrophages that may be related to microbiocidal killing, similar to the requirement of potassium channels for microbiocidal function in neutrophils.  相似文献   

15.
Many mycobacteria are intramacrophage pathogens that reside within nonacidified phagosomes that fuse with early endosomes but do not mature to phagolysosomes. The mechanism by which mycobacteria block this maturation process remains elusive. To gain insight into whether fusion with early endosomes is required for mycobacteria-mediated inhibition of phagosome maturation, we investigated how perturbing the GTPase cycles of Rab5 and Rab7, GTPases that regulate early and late endosome fusion, respectively, would affect phagosome maturation. Retroviral transduction of the constitutively activated forms of both GTPases into primary murine macrophages had no effect on Mycobacterium avium retention in an early endosomal compartment. Interestingly, expression of dominant negative Rab5, Rab5(S34N), but not dominant negative Rab7, resulted in a significant increase in colocalization of M. avium with markers of late endosomes/lysosomes and increased mycobacterial killing. This colocalization was specific to mycobacteria since Rab5(S34N) expressing cells showed diminished trafficking of endocytic tracers to lysosomes. We further demonstrated that maturation of M. avium phagosomes was halted in Rab5(S34N) expressing macrophages supplemented with exogenous iron. These findings suggest that fusion with early endosomes is required for mycobacterial retention in early phagosomal compartments and that an inadequate supply of iron is one factor in mycobacteria's inability to prevent the normal maturation process in Rab5(S34N)-expressing macrophages.  相似文献   

16.
The subversion of microbicidal functions of macrophages by intracellular pathogens is critical for their survival and pathogenicity. The replication of Coxiella burnetii, the agent of Q fever, in acidic phagolysosomes of nonphagocytic cells has been considered as a paradigm of intracellular life of bacteria. We show in this study that C. burnetii survival in THP-1 monocytes was not related to phagosomal pH because bacterial vacuoles were acidic independently of C. burnetii virulence. In contrast, virulent C. burnetii escapes killing in resting THP-1 cells by preventing phagosome maturation. Indeed, C. burnetii vacuoles did not fuse with lysosomes because they were devoid of cathepsin D, and did not accumulate lysosomal trackers; the acquisition of markers of late endosomes and late endosomes-early lysosomes was conserved. In contrast, avirulent variants of C. burnetii were eliminated by monocytes and their vacuoles accumulated late endosomal and lysosomal markers. The fate of virulent C. burnetii in THP-1 monocytes depends on cell activation. Monocyte activation by IFN-gamma restored C. burnetii killing and phagosome maturation as assessed by colocalization of C. burnetii with active cathepsin D. In addition, when IFN-gamma was added before cell infection, it was able to stimulate C. burnetii killing but it also induced vacuolar alkalinization. These findings suggest that IFN-gamma mediates C. burnetii killing via two distinct mechanisms, phagosome maturation, and phagosome alkalinization. Thus, the tuning of vacuole biogenesis is likely a key part of C. burnetii survival and the pathophysiology of Q fever.  相似文献   

17.
In mammals, Rab5 and Rab7 play a specific and coordinated role in a sequential process during phagosome maturation. Here, we report that Rab5 and Rab7 in the enteric protozoan parasite Entamoeba histolytica, EhRab5 and EhRab7A, are involved in steps that are distinct from those known for mammals. EhRab5 and EhRab7A were localized to independent small vesicular structures at steady state. Priming with red blood cells induced the formation of large vacuoles associated with both EhRab5 and EhRab7A ("prephagosomal vacuoles (PPV)") in the amoeba within an incubation period of 5-10 min. PPV emerged de novo physically and distinct from phagosomes. PPV were gradually acidified and matured by fusion with lysosomes containing a digestive hydrolase, cysteine proteinase, and a membrane-permeabilizing peptide amoebapore. After EhRab5 dissociated from PPV, 5-10 min later, the EhRab7A-PPV fused with phagosomes, and EhRab7A finally dissociated from the phagosomes. Immunoelectron and light micrographs showed that PPV contained small vesicle-like structures containing fluid-phase markers and amoebapores, which were not evenly distributed within PPV, suggesting that the mechanism was similar to multivesicular body formation in PPV generation. In contrast to Rab5 from other organisms, EhRab5 was involved exclusively in phagocytosis, but not in endocytosis. Overexpression of wild-type EhRab5 enhanced phagocytosis and the transport of amoebapore to phagosomes. Conversely, expression of an EhRab5Q67L GTP form mutant impaired the formation of PPV and phagocytosis. Altogether, we propose that the amoebic Rab5 plays an important role in the formation of unique vacuoles, which is essential for engulfment of erythrocytes and important for packaging of lysosomal hydrolases, prior to the targeting to phagosomes.  相似文献   

18.
Phagocytic entry of mycobacteria into macrophages requires the presence of cholesterol in the plasma membrane. This suggests that pathogenic mycobacteria may require cholesterol for their subsequent intra-cellular survival in non-maturing phagosomes. Here we report on the effect of cholesterol depletion on pre-existing phagosomes in mouse bone marrow-derived macrophages infected with Mycobacterium avium. Cholesterol depletion with methyl-beta-cyclodextrin resulted in a loosening of the close apposition between the phagosome membrane and the mycobacterial surface, followed by fusion with lysosomes. The resulting phagolysosomes then autonomously executed autophagy, which did not involve the endoplasmic reticulum. After 5 h of depletion, intact mycobacteria had accumulated in large auto-phagolysosomes. Autophagy was specific for phagolysosomes that contained mycobacteria, as it did not involve latex bead-containing phagosomes in infected cells. Upon replenishment of cholesterol, mycobacteria became increasingly aligned to the lysosomal membrane, from where they were individually sequestered in phagosomes with an all-around closely apposed phagosome membrane and which no longer fused with lysosomes. These observations indicate that, cholesterol depletion (i) resulted in phagosome maturation and fusion with lysosomes and (ii) caused mycobacterium-containing phagolysosomes to autonomously undergo autophagy. Furthermore, (iii) mycobacteria were not killed in auto-phagolysosomes, and (iv) cholesterol replenishment enabled mycobacterium to rescue itself from autophagic phagolysosomes to again reside individually in phagosomes which no longer fused with lysosomes.  相似文献   

19.
Coxiella burnetii, the agent of Q fever in man and of coxiellosis in other species, is an intracellular pathogen not yet grown axenically. Confocal laser fluorescence microscopy and morphometry were used to measure relative C. burnetii phase II loads and their intracellular distribution in aldehyde fixed and DAPI stained Vero cell monolayers. The fluorescence of single horizontal optical sections provided useful information on relative loads of bacteria in cells and vacuoles. The relative density of the bacteria in the vacuoles was inferred from ratios of fluorescence to vacuolar section areas. Relative bacterial loads, bacterial densities and section areas of large vacuoles increased exponentially between days 2 and 4 of the infection of gamma-irradiated host cells, stabilized between days 4 and 6, and decreased thereafter. Estimated minimum doubling times were higher for the overall complement of the intracellular organisms (about 12 h) than for bacteria that were confined to larger vacuoles (about 10 h).  相似文献   

20.
The processing of phagosomes containing Legionella pneumophila and Escherichia coli were compared in Tetrahymena vorax, a hymenostome ciliated protozoan that prefers lower temperatures. L. pneumophila did not multiply in the ciliate when incubated at 20 to 22 degrees C, but vacuoles containing L. pneumophila were retained in the cells for a substantially longer time than vacuoles with E. coli. Electron micrographs showed no evidence of degradation of L. pneumophila cells through 12 h, while E. coli cells in the process of being digested were observed in vacuoles 75 min after the addition of the bacterium. T. vorax ingested L. pneumophila normally, but by 10 to 15 min, the vacuolar membrane appeared denser than that surrounding nascent or newly formed phagosomes. In older vacuoles, electron-dense particles lined portions of the membrane. Acidification of the phagosomes indicated by the accumulation of neutral red was similar in T. vorax containing L. pneumophila or E. coli. This ciliate could provide a model for the analysis of virulence-associated intracellular events independent of the replication of L. pneumophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号