首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  • 1.1. The effects of seasonal variation on the carbohydrate and lipid metabolism of the Chasmagnathus granulata were investigated.
  • 2.2. Glycemia is high in winter and summer and low in spring and fall.
  • 3.3. The glycogen content in the hepatopancreas and muscle is higher in fall and winter, and decreases during spring and summer.
  • 4.4. The muscle lipids are higher in summer, and decrease during fall and winter whereas hepatopancreas lipids are higher except in the fall.
  • 5.5. The crabs show change in the metabolic pattern of lipids and carbohydrates during the seasons of the year.
  相似文献   

2.
3.
After metamorphosing from the last larval stage to the transitional megalopal stage in the marine plankton, the hermit crab Coenobita compressus moves ashore where it undergoes a second metamorphosis to the first juvenile instar on land. In two experiments using laboratory-reared crabs, I moved megalopae from water to land after different amounts of time at this stage and investigated the impact of this manipulation on the timing of and survival through the second metamorphosis. In the Involuntary Settlement experiment, megalopae were moved to land when they were 3, 6, 9, 12, or 15 days old. None of those moved between the ages of 3 and 6 days survived through metamorphosis, but the majority of 9-day-old megalopae survived, as did most 12- and 15-day-old megalopae. This suggests that developmental changes early in the megalopal stage prepare C. compressus for terrestrial life. Once on land, megalopae that had been moved to land at 9 days spent about nine additional days there before metamorphosing, while 12- and 15-day-old megalopae metamorphosed after spending about 5 and 4 days, respectively, on land. In the Voluntary Settlement experiment, megalopae were given access to land when they were 1, 5, 10, or 15 days old, but were not forced to make the transition. Those given access to land after 1 day voluntarily left their dishes for the first time after an average of 7 days in water. Those given access when they were 5 days old remained in water about 4 days longer, while those given access when they were 10 and 15 days old left after less than a day. In both experiments, the timing of metamorphosis relative to settlement (i.e., transition to land) showed that these events are dissociated to a degree and revealed the presence of a metamorphic clock. I discuss why the dissociation of settlement and metamorphosis may have been favored in the land hermit crab and in another anomuran crab.  相似文献   

4.
It has recently been shown that metamorphosis of Ucides cordatus megalopae is triggered by substrata from the mangrove forest habitat, and, in particular, adult conspecific odours. Here we demonstrate that the gender of the odour-emitting crabs is insignificant for the metamorphic response in this species. We further investigate whether other estuarine crabs (Goniopsis cruentata, Uca spp., and Callinectes danae) also induce settlement and metamorphosis of U. cordatus megalopae. This is of special interest for population recovery in areas hit by lethargic crab disease (LCD), a fungus that selectively kills U. cordatus but not co-occurring species. Ucides megalopae were reared in four treatments with interspecific-conditioned seawater and tested against the effects of conspecific-conditioned seawater (positive control) and pure seawater (negative control). All megalopae in the positive control metamorphosed successfully, while only one (2%) moulted in the negative control, with a delay of 10 days compared with the latest metamorphosis in the former treatment. In seawater conditioned with U. maracoani and C. danae, which occur on sediment banks and in tidal creeks respectively, all larvae died before reaching the juvenile stage. In the treatments with odours of species that share the same mangrove forest microhabitat as U. cordatus, i.e. G. cruentata and a group of five fiddler crab species (mixed-odour treatment), 20 and 10% respectively of the megalopae moulted with a delay of up to 11 days. No specimens metamorphosed after day 39, but megalopae lived up to 93 days. Since only the conspecific- and coexisting-species treatments stimulated development, we hypothesize that Ucides megalopae are able to precisely identify species-habitat-specific settlement cues. This will be investigated in more detail in future studies, which will also test the effects of the odours of the five forest fiddler crab species separately. The impact of the interspecific odour treatments was much smaller than that of the conspecific odours, nevertheless elevated moulting rates of up to 18% relative to seawater may still significantly accelerate the repopulation of U. cordatus in areas lacking conspecifics, e.g. after massive crab mortalities or at first colonization.  相似文献   

5.
The estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda, Brachyura) inhabits salt marshes along the South Atlantic coast from Rio de Janeiro (Brazil) to Patagonia (Argentina). In the present study, salinity tolerance (0-45‰; 16-1325 mOsm/kg H2O) and hemolymph osmotic and ionic (Na+, Cl, and K+) regulation in both female and male C. granulatus were analyzed in summer and winter. Results showed that both female and male C. granulatus are euryhaline. Mortality was only observed in extremely low salinity (0‰; 16 mOsm/kg H2O) for both sexes. For females, the LT50 at 0‰ salinity was similar in summer (20.1 h) and winter (17.4 h). Males were more tolerant to salinity than females in both seasons, and mortality was observed only in summer (LT50 = 50.9 h). Results from freshly collected crabs or long-term (16-day) osmotic and ionic regulation experiments in the laboratory showed that male C. granulatus is a better hyper-osmoregulator than female in summer and winter. However, a hypo-osmoregulatory ability was only observed in females experimentally subjected to salinity 40‰ (1176 ± 11 mOsm/kg H2O) in both seasons. In both sexes, hyper-osmotic regulation was achieved by hyper-regulating hemolymph Na+, Cl, and K+ concentration. In females, hypo-osmotic regulation was achieved by hypo-regulating hemolymph Na+ and Cl concentration. Long-term (16-day) osmotic and ionic regulations in different salinities were similar in males or females collected and tested in summer and winter. Despite this lack of a seasonal effect on hemolymph osmoregulatory and ionoregulatory patterns in males or females, a marked seasonal difference in the dynamics of these processes was observed for both sexes. In the first 2 days after hypo-osmotic shock (20‰→5‰; 636→185 mOsm/kg H2O), variations in female osmolality and ion (Na+ and Cl) concentration were larger and faster in winter than in summer, while in males the opposite was observed. Furthermore, a seasonal effect on the crab response to hyper-osmotic shock (20‰→40‰; 636→1176 mOsm/kg H2O) was only observed in males. A new osmolality and ion (Na+ and Cl) concentration steady state was faster achieved in winter than in summer. Regarding sexual differences, females showed a better capacity to hypo-regulate the hemolymph osmolality and Na+ concentration than males, even after a sudden increase in salinity (hyper-osmotic shock) in both seasons. On the other hand, males showed a better capacity to hyper-regulate the hemolymph osmolality and Na+ concentration than females, even after a sudden decrease in salinity (hypo-osmotic shock), especially in winter. Taken together, results reported in the present study suggest the need to consider both sex and collection season as important factors in future osmotic and ionic regulation studies in estuarine crabs.  相似文献   

6.
In order to study lethal and sublethal effects of ammonia to the estuarine crab Chasmagnathus granulata in the presence of an additional stress factor such as salinity, we determined the LC50 (96 h) of ammonia at 20‰ and in response to osmotic stress (5–40‰) and evaluated ammonia accumulation in the haemolymph of C. granulata and ammonia effects on osmo- and ion-regulation of this species through determinations of the haemolymph Na+, Ca2+, Cl and osmotic concentration. The LC50 values (96 h) of total ammonia (NH3+NH4+) were 10.10, 17.85 and 14.0 mM for crabs maintained at 5, 20 or 40‰ salinity, respectively, suggesting that this crab is fairly resistant to ammonia. The haemolymph ammonia concentration augmented with ambient ammonia during a 6-h exposure to sublethal ammonia concentrations which were not enough to reach equilibrium between external and haemolymph ammonia. At 20‰ salinity, following a 96-h exposure to sublethal concentrations, a significant decrease (P<0.05) of haemolymphatic chloride concentration was registered at 3.3 and 5.5 mM of total ammonia. At 40‰ salinity, a significant increase (P<0.05) of the haemolymph osmotic pressure was apparent at 5.5 mM total ammonia. We postulate that C. granulata gives priority to NH3 formation as a mechanism to eliminate it by simple diffusion. The differential Na+ and Cl regulation of crabs maintained at 20‰ salinity could modify the strong ion difference, augmenting pH, which in turn should lead the NH4+/NH3 equilibrium towards NH3.  相似文献   

7.
The Florida stone crab, Menippe mercenaria, is an economically and ecologically important species that ranges from North Carolina throughout the Caribbean and the southeastern Gulf of Mexico. However, there is little known about its early life history stages as compared to other commercially important species in the region. The goal of this research was to examine effects of putative cues on metamorphosis from the megalopa stage to the first juvenile stage. Our study investigated the effect of water-soluble exudates from four substrata, as well as natural biofilms, and exudates from adult stone crabs. In addition, the influence of natural substrata was compared to that of artificial substrata. Adult exudate had no significant effect on metamorphosis, despite a wide range of tested concentrations. In contrast, there was a significant effect on mean time to metamorphosis in experimental groups exposed to multiple cues associated with the brown alga Sargassum fluitans, rubble from stone crab habitat, the eastern oyster Crassostrea virginica, and biofilms associated with the oyster. Furthermore, we provide evidence for metamorphic responses to water-soluble chemical cues, as well as biochemical and physical cues associated with different substrata. Overall results were coherent with the relevant body of previous work on metamorphosis of brachyuran crab larvae and indicate that both physical and chemical cues are important factors in facilitating the settlement and metamorphosis of M. mercenaria larvae in juvenile nursery habitat.  相似文献   

8.
  • 1.1. The ventilatory mechanism, gill area, sites of oxygen uptake, oxygen consumption and activity of a crab from south Brazil, Chasmagnathus granulata, were investigated.
  • 2.2. The oxygen uptake seems to be restricted to the gill lamellae.
  • 3.3. The gill area varies with the wet body weight, being relatively higher in smaller animals. There is not a significative reduction of the gill area in relation to species of the infralittoral zone.
  • 4.4. C. granulata presents a mechanism for recirculating the water of its branchial chamber when exposed to atmospheric air.
  • 5.5. The oxygen consumption and activity are reduced when the animals are exposed to atmospheric air. The reduction in the oxygen consumption may be related to the poorly adapted respiratory system, while the decrease in activity may be a mechanism for saving energy during this hypoxic period.
  相似文献   

9.
Recruitment of crabs to nursery habitat requires settlement of the megalopal stage on suitable substratum followed by metamorphosis into the first juvenile stage. Reducing the time to metamorphosis may result in higher recruitment and survival. Previous work has shown that metamorphosis of the Asian shore crab is accelerated by cues from three different sources: (a) water-soluble exudate produced by conspecific adult crabs; (b) biofilm covering rocks in natural habitat for this species; and (c) abiotic rock from natural habitat. The objective of the present investigation was to characterize the metamorphic cue associated with biofilm from rocky intertidal habitat and to compare the three metamorphic cues (exudate from conspecific adults, biofilm from rocky intertidal, and texture of substratum) that have been identified for H. sanguineus. Results of our study show that megalopae of the Asian shore crab respond strongly to biofilm associated with rocky intertidal habitat that has developed for at least 8 days. We also found that megalopae respond to textured rock surfaces from natural habitat, even when those surfaces had been rendered abiotic. The cue remains active after the biofilm has been exposed to − 20 ºC for 12 h, but is de-activated by a few minutes exposure to 100 °C. Moreover, the biofilm cue appears to work in synergy with cues from other sources, but requires actual contact with the biofilm. Our findings show that addition of biofilm to an abiotic textured rock surface significantly decreases mean time to metamorphosis, and simultaneous exposure of megalopae to biofilm-covered rock and to exudate from adult H. sanguineus decreases mean time to metamorphosis even further. The response of this species to multiple cues—and particularly to biofilm in the absence of adult conspecifics—provides a clear advantage in the colonization of virgin habitat and helps explain the very rapid spread of this invasive species along the majority of the east coast of the United States in only two decades.  相似文献   

10.
The adaptation of Chasmagnathus granulata to air breathing depends on two types of physiological mechanisms: (1) Biochemical adjustments, comprising the achievement of new steady state values for partial pressure of carbon dioxide (PCO2) and total carbon dioxide concentration (CCO2). The initial increase in hemolymph bicarbonate is stabilized by dehydration to CO2 presumably catalyzed by carbonic anhydrase (CA) at the basolateral side of the gill epithelium. Thus, an adequate transbranchial gradient of PCO2 is restored. Inhibition of CA with acetazolamide (Az) reduces the rate of CO2 excretion and elevates PCO2. The respiratory acidosis caused by increased PCO2 is compensated by increase in the difference between Na+ and Cl concentrations. Az does not affect hemolymph ionic concentrations. (2) Ventilatory control: untreated animals show a significant decrease in scaphognathite frequency (FSC) during emersion, while Az treated crabs show a slight increase of this variable. FSC of Az crabs tends to decrease with hemolymphatic CO2, presumably by clearance of the CA inhibitor from hemolymph. These results suggest that C. granulata possess a ventilatory control based on a primary oxygen-dependent stimulus and a secondary one dependent on CO2.  相似文献   

11.
12.
The tube building polychaete Hydroides elegans Haswell was found living attached to colonies of the arborescent bryozoan Bugula neritina (L.) in Port Shelter, Hong Kong. Field data collected during the period of January through May 1996, showed that H. elegans density reached 77.6 individuals of H. elegans per g wet weight of B. neritina. Density of H. elegans on B. neritina at depths from the surface to 0.5 m was lower than that at depths below 1 m. In January–March, when there were no H. elegans settling on PVC plates or found on natural substrata, numbers on B. neritina were ca. 5 per g wet weight. H. elegans settled on B. neritina and grew rapidly as mean diameter of tubes increased from 605 μm in February to 936 μm in March. In laboratory experiments, larvae of H. elegans settled and metamorphosed on branches of B. neritina and on the bottom of dishes containing B. neritina leachate. Compounds extracted from the leachate of B. neritina induced 74% of H. elegans larvae to metamorphose at a concentration of 16 μg/ml seawater, compared to 5% in dishes containing only filtered seawater (controls). Metabolites from the leachate of B. neritina which were bound to amberlite XAD-2, indicating they are lipophilic in nature, induced over 70% metamorphosis in H. elegans larvae at 56 μg/ml seawater. A biofilm from one of four strains of bacterial isolates associated with the surface of B. neritina induced low levels of metamorphosis in H. elegans larvae, while other bacterial isolates were detrimental to the survival of juvenile H. elegans. Field experiments further demonstrated that H. elegans settled preferentially on Phytagel discs embedded with whole extracts of B. neritina over control Phytagel discs. Metabolites from B. neritina deterred feeding on alginate pellets by assemblages of local fishes in field assays. Metabolites originating from B. neritina, bacteria colonizing B. neritina, and the complex structure of B. neritina contributed to the recruitment of H. elegans to B. neritina surfaces. Hydroides elegans may gain a refuge from predation by associating with B. neritina colonies both from its structural and chemical attributes.  相似文献   

13.
The larvae of many marine invertebrate species are able to delay their settlement and metamorphosis in the absence of characteristic cues from the adult habitat. This phenomenon was experimentally studied in the megalopa stage of Sesarma curacaoense de Man, 1892, a semiterrestrial grapsid crab that lives in the shallow coastal mangrove habitats in the Caribbean region. Duration of the development and survival to metamorphosis to the first juvenile crab stage were compared between experimental treatments, where the water was conditioned with adult crabs (“adult-conditioned water,” ACW) and control groups reared in filtered seawater. In the experiments with larvae from two different females, development duration was significantly shorter and mortality lower in water conditioned with conspecific adults. In the two control groups, the effects of supply with an artificial substrate (nylon gauze) were tested. This comparison showed that the presence of substrate did not significantly influence the time to metamorphosis, but did reduce the mortality rate. In all later experiments, the megalopae were thus routinely provided with nylon gauze as a substrate. In each of the three subsequent replicate experiments conducted with larvae from different females, survival rate and development time to metamorphosis were compared between one control group and four treatments with ACW. The effectiveness of conspecific (S. curacaoense) adult odors as metamorphosis-stimulating cue was, in these experiments, compared with that of ACW from one congener (S. rectum) and two species belonging to different genera within the Grapsidae (Armases miersii, Chasmagnathus granulata). While the rate of survival showed inconsistent patterns among repeated experiments, the development was consistently fastest with conspecific ACW, followed by ACW from S. rectum, A. miersii and C. granulata. Only the conspecific and congeneric cues had statistically significant effects (i.e. shorter development than in the controls). These response patterns suggest that chemically similar factors (presumably pheromones) are produced by closely related species and, thus, their chemical structure may reflect phylogenetical relationships within a clade.  相似文献   

14.
The Asian shore crab, Hemigrapsus sanguineus, is one of the most abundant invasive crabs along the east coast of the United States. Larval stages are generally planktonic, but the megalopa stage settles to the substratum near the time of metamorphosis. Reducing the time to metamorphosis may result in higher recruitment and survival. Previous work has shown that a water-soluble cue produced by adult H. sanguineus can induce metamorphosis of conspecific megalopae. Here we report the results of experiments in which megalopae were exposed to cues produced by different life stages of H. sanguineus. We also provide data from experiments that investigated the temporal stability, detection threshold, and chemical classification of the cue. Our results indicate that an active cue is produced by juveniles as well as adults. The cue is proteinaceous and begins to degrade within 2 days of production. The threshold for detection of the cue by megalopae lies between 0.1 and 0.01 µg of protein per ml.  相似文献   

15.
The effects of individual larval biomass, and salinity experienced during embryogenesis (i.e., prehatching salinity) on starvation tolerance and growth of zoea 1 of the estuarine crab (Chasmagnathus granulata) were evaluated in laboratory experiments. Freshly hatched zoeae 1 were obtained from broods maintained at three salinities (15‰, 20‰ and 32‰), and cultured at 20‰ under different initial feeding periods and subsequent food deprivation (“point of reserve saturation” experiment: PRS) or under initial periods of food deprivation and subsequent feeding (point of no return experiment: PNR). Another group of larvae were used for determination of biomass (dry weight, carbon, and nitrogen) of zoea 1.Larval survival and duration of development depended on the length of feeding period: no larvae reached the second instar under complete starvation; survival was higher and duration of development shorter as the feeding period lengthened. After different initial feeding periods (PRS experiment), zoeae 1 that hatched from eggs incubated at the prehatching salinities of 15‰ and 20‰ showed higher survival and shorter duration of development than those at 32‰. Prehatching salinity also affected the amount of reserves accumulated during the first 2 days after hatching, with larvae from 15‰ and 20‰ showing the highest percentage of total accumulation of carbon and nitrogen. Initial larval biomass did not affect survival, but it had a slight effect on duration of development, with larger larvae (in terms of biomass) developing faster. After different initial starvation periods (PNR experiment), prehatching salinity did not affect survival, but it affected duration of development: larvae from 15‰ and 20‰ reached the second instar earlier. Variability in survival and duration of development was explained in part by among-brood variability in initial larval biomass: larvae with higher biomass showed higher survival and shorter duration of development. Thus, C. granulata, survival and duration of development under food stress depend on the interaction between environmental conditions experienced before and after hatching (pre- and posthatching factors, respectively).  相似文献   

16.
Brachyuran crabs are considered one of the most representative groups in mangroves, being recognised as mangrove engineers. However, species that present commercial interest may have their population structure and spatial distribution affected by human activities, such as crab capture. Therefore, monitoring populations over time is essential. We investigated the population biology, size-weight relationship, condition factor and spatial distribution of Ucides cordatus in a mangrove ecosystem from southern Brazil, providing information for population status assessment. Males and females differed in abundance and frequency, body size, size-weight relationship and condition factor. Nonetheless, they presented the same spatial distribution pattern. Abundance, sex ratio and body size also revealed a possible influence of anthropised areas in the configuration and distribution of the species. Our results indicate a possible increase in the exploitation of the species, mainly due to the decrease of the largest male size classes’ frequency. Interspecific competition seems to be a possible biotic factor influencing its condition factor. The spatial species distribution highlighted the importance of sites with less anthropogenic influence for the maintenance of the species that can be considered as key areas for the conservation of the Ucordatus in Babitonga Bay.  相似文献   

17.
It is known that the rhizocephalan barnacle Loxothylacus texanus infects the greater blue crab, Callinectes sapidus, in the Gulf of Mexico and adjacent waters, however, factors that affect the prevalence and distribution of this parasite, particularly the dispersive larval stages of this organism, are not well understood. In the current study, the effects of salinity on larval survival and the metamorphosis of L. texanus in response to postmolt host exoskeleton were examined. Acute and acclimated responses were similar. Larval survival was highest in the 20-35‰ range, with 100% mortality of nauplii at all salinities <20‰ and >50‰. L. texanus cyprids were able to metamorphose over a broad range of salinities (15-60‰). In several cases, metamorphosis was actually greatest at high salinities (40-50‰). These data predict that L. texanus larvae would be concentrated in portions of Gulf of Mexico waters with salinities >20‰ such as the mouths of estuaries and bays. Conversely, upper regions of estuaries may be inhospitable to the dispersive (naupliar) stage of the parasite and may serve as a refuge from infection for host crabs.  相似文献   

18.
The purpose of this investigation was to characterize a gastrin/cholecystokinin-like immunoreactant (G/CCK-LI) extractable from the crab, Cancer magister. G/CCK-LI was extracted best in boiling water and was found mainly in the stomach, hemolymph and carapace. A relatively large immunoreactive peptide in the stomach and apparently smaller forms in the hemolymph and carapace were separated by Sephadex G-50 fractionation. Anion-exchange chromatography further fractionated the stomach form into three major peaks. The crab material cross-reacted with three antisera specific for the common C-terminus of gastrin/CCK, but cross-reacted much less with three antisera directed against other portions of the gastrin molecule. Partially purified crab stomach G/CCK-LI inhibited the binding of labeled CCK to mouse brain G/CCK receptors but not to rat pancreatic CCK receptors. The crab peptide did not stimulate rat gastric acid or rat pancreatic amylase secretion. These results indicate that the crab peptides are structurally similar to, but distinguishable from, the bioactive C-terminal amino acid sequence common to gastrins and CCKs.  相似文献   

19.
Nonindigenous species are increasingly recognized as altering marine and estuarine communities, causing significant changes in abundance and distribution of native species. Such effects are of particular concern to coastal fisheries. We experimentally determined the effect of the nonindigenous European green crab, Carcinus maenas, upon the stepped venerid clam, Katelysia scalarina, the basis for a fledgling clam fishery in Tasmania, Australia. First, we observed a trend of decreased juvenile (<13-mm shell length or SL) abundance of K. scalarina at sites with C. maenas relative to those without this invasive predator. Additionally, relative predation intensity on these juveniles was significantly higher in invaded areas. To better understand the dynamics of predation by this invader, we conducted a number of manipulative experiments. In cage experiments testing per capita predation rates, we found that: (1) of the various sizes of C. maenas, large C. maenas were the most significant predators; (2) the smallest size class of K. scalarina tested (6-12-mm SL) was preferred by C. maenas; (3) C. maenas had much higher predation rates than any native predator tested; and (4) while the native shore crab, Paragrapsus gaimardii, was found to have a constant predation rate over an eightfold range of densities of juvenile K. scalarina (16-128 individuals·m−2), C. maenas significantly increased its per capita predation with increasing prey density. Notably, in open field plots at a site where C. maenas was abundant, predation was constant over the range of tested prey densities. We predict, therefore, that the invasion of C. maenas will have significant negative consequences for the Tasmanian K. scalarina fishery.  相似文献   

20.
Larval release patterns in brachyuran crabs are often synchronized with environmental cycles. While previous studies have focused extensively on supratidal and intertidal taxa, there have been relatively few investigations of subtidal species. This study examined patterns of larval release by the Florida stone crab, Menippe mercenaria, from three different tidal regimes. Ovigerous stone crabs were collected from Sebastian Inlet on the east coast of Florida, Tampa Bay on the west coast of Florida, and the Florida Keys. Patterns of larval release were monitored in the laboratory in relation to local tidal and diel cycles. Results showed a significant diel pattern in initiation of hatching by crabs from each of three study areas. Larval release consistently occurred during the diurnal phase despite the maintenance of females in constant laboratory conditions for up to 96 h prior to hatching. This implies that release may be controlled by a circadian clock. Patterns of release by stone crabs in relation to tidal cycle were more variable. Larval release by females from populations near Tampa Bay and Sebastian Inlet were not synchronized with the tides, whereas females collected from the Florida Keys exhibited a pattern that was strongly related to tidal cycle. These results may be explained by differences in tidal amplitude at the three sampling locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号