首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work we demonstrated that promastigotes of Leishmania amazonensis exhibit an Mg-dependent ecto-ATPase activity, which is stimulated by heat shock. The Mg-dependent ATPase activity of cells grown at 22 and 28 degrees C was 41.0+/-5.2 nmol Pi/h x 10(7)cells and 184.2+/-21.0 nmol Pi/h x 10(7)cells, respectively. When both promastigotes were pre-incubated at 37 degrees C for 2h, the ATPase activity of cells grown at 22 degrees C was increased to 136.4+/-10.6 nmol Pi/h x 10(7) whereas that the ATPase activity of cells grown at 28 degrees C was not modified by the heat shock (189.8+/-10.3 nmol Pi/h x 10(7)cells). It was observed that Km of the enzyme from cells grown at 22 degrees C (Km=980.2+/-88.6 microM) was the same to the enzyme from cells grown at 28 degrees C (Km=901.4+/-91.9 microM). In addition, DIDS (4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid) and suramin, two inhibitors of ecto-ATPases, also inhibited similarly the ATPase activities from promastigotes grown at 22 and 28 degrees C. We also observed that cells grown at 22 degrees C exhibit the same ecto-phosphatase and ecto 3'- and 5'-nucleotidase activities than cells grown at 28 degrees C. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat-shock effect on ecto-ATPase activity of cells grown at 22 degrees C were exposed at 37 degrees C for 2h. A comparison between the stimulation of the Mg-dependent ecto-ATPase activity of virulent and avirulent promastigotes by the heat shock showed that avirulent promastigotes had a higher stimulation than virulent promastigotes after heat stress.  相似文献   

3.
The roles played by heat shock proteins in fungi have been subjected to intense scrutiny. Presuming they only played roles in tolerance to stress gave way to the realization that many of them were essential for maintenance of cell physiology under all conditions. Recent progress has revealed their action as multi-component machines, playing roles in signalling and expansion of phenotypic plasticity, as well as their well-established function as molecular chaperones.  相似文献   

4.
The response to high temperatures in adults of two cold stenothermal cave-dwelling leptodirins, Neobathyscia mancinii and Neobathyscia pasai (Coleoptera, Cholevidae) was evaluated by determinating levels of gene expression of two members of the family of heat shock proteins 70 kDa by qPCR. In both species, hsc70 mRNA level was constant with increasing temperature, whereas a significant increase in the inducible member (hsp70) mRNA was observed, higher in N. pasai. This difference could be due to their in-cave distribution: N. pasai colonizes the cave entrance where the temperature is more variable than the internal part where N. mancinii is confined. These results demonstrated for the first time the occurrence of a heat shock response in troglobite insects and suggest the correlation between the intensity of this response and the adaptation to the cave environment.  相似文献   

5.
Previous research on Antarctic notothenioids has demonstrated that cells of cold-adapted Antarctic notothenioids lack a common cellular defense mechanism called the heat shock response (HSR), the induction of a family of heat shock proteins (Hsps) in response to elevated temperatures. The goal of this study was to address how widespread the loss of the HSR is within the Notothenioidei suborder and, specifically, to ask whether cold temperate non-Antarctic notothenioids possess the HSR. In general, Antarctic fish have provided an important opportunity for physiologists to examine responses to selection in the environment and to ask whether traits of the notothenioids represent cold adaptation, or whether the traits are related to history and are characteristics of the notothenioid lineage. Using in vivo metabolic labeling, results indicate that one of the two New Zealand notothenioids possess an HSR. The thornfish, Bovichtus variegatus Richardson, 1846, expressed heat shock proteins (Hsp) in response to heat stress, whereas the black cod, Notothenia angustata Hutton, 1875, did not display robust stress-inducible Hsp synthesis at the protein-level. However, further analysis using Northern blotting clearly demonstrated that mRNA for a common Hsp gene, hsp70, was present in cells of both New Zealand species following exposure to elevated temperatures. Overall, combined evidence on the HSR in notothenioid fishes from temperate New Zealand waters indicate that the loss of the HSR in Antarctic notothenioid fishes occurred after the separation of Bovichtidae from the other Antarctic notothenioid families, and that the HSR was most likely lost during evolution at cold and constant environmental temperatures.  相似文献   

6.

Background

Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors.

Results

In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities.

Conclusions

Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-344) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
Small heat shock proteins (sHsps) are a widespread and diverse class of molecular chaperones. In vivo, sHsps contribute to thermotolerance. Recent evidence suggests that their function in the cellular chaperone network is to maintain protein homeostasis by complexing a variety of non-native proteins. One of the most characteristic features of sHsps is their organization into large, sphere-like structures commonly consisting of 12 or 24 subunits. Here, we investigated the functional and structural properties of Hsp20.2, an sHsp from Archaeoglobus fulgidus, in comparison to its relative, Hsp16.5 from Methanocaldococcus jannaschii. Hsp20.2 is active in suppressing the aggregation of different model substrates at physiological and heat-stress temperatures. Electron microscopy showed that Hsp20.2 forms two distinct types of octahedral oligomers of slightly different sizes, indicating certain structural flexibility of the oligomeric assembly. By three-dimensional analysis of electron microscopic images of negatively stained specimens, we were able to reconstitute 3D models of the assemblies at a resolution of 19 Å. Under conditions of heat stress, the distribution of the structurally different Hsp20.2 assemblies changed, and this change was correlated with an increased chaperone activity. In analogy to Hsp20.2, Hsp16.5 oligomers displayed structural dynamics and exhibited increased chaperone activity under conditions of heat stress. Thus, temperature-induced conformational regulation of the activity of sHsps may be a general phenomenon in thermophilic archaea.  相似文献   

9.
Stress or heat shock proteins (HSPs) are ubiquitous and highly conserved proteins whose expression is induced in response to a wide variety of physiological and environmental insults. They allow the cells to survive to otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. These proteins play an essential role in intracellular "house-keeping" by assisting the correct folding of nascent and stress-accumulated misfolded proteins and preventing their aggregation. Several HSPs have also demonstrated to directly interact with various components of the tightly regulated programmed cell death machinery, upstream, and downstream of the mitochondrial events. Finally, HSPs could play a role in the proteasome-mediated degradation of selected proteins under stress conditions. Altogether, these properties could make HSPs appropriate targets for modulating cell death pathways.  相似文献   

10.
Human cerebral malaria is caused by the protozoan parasite Plasmodium falciparum, which establishes itself within erythrocytes. The normal body temperature in the human host could constitute a possible source of heat stress to the parasite. Molecular chaperones belonging to the heat shock protein (Hsp) class are thought to be important for parasite subsistence in the host cell, as the expression of some members of this family has been reported to increase upon heat shock. In this paper we investigated the possible functions of the P. falciparum heat shock protein DnaJ homologue Pfj4, a type II Hsp40 protein. We analysed the ability of Pfj4 to functionally replace Escherichia coli Hsp40 proteins in a dnaJ cbpA mutant strain. Western analysis on cellular fractions of P. falciparum-infected erythrocytes revealed that Pfj4 expression increased upon heat shock. Localisation studies using immunofluorescence and immuno-electron microscopy suggested that Pfj4 and P. falciparum Hsp70, PfHsp70-1, were both localised to the parasites nucleus and cytoplasm. In some cases, Pfj4 was also detected in the erythrocyte cytoplasm of infected erythrocytes. Immunoprecipitation studies and size exclusion chromatography indicated that Pfj4 and PfHsp70-1 may directly or indirectly interact. Our results suggest a possible involvement of Pfj4 together with PfHsp70-1 in cytoprotection, and therefore, parasite survival inside the erythrocyte.  相似文献   

11.
Helicobacter pylori has been found to promote the malignant process leading to gastric cancer. Heat shock protein 60 of H. pylori (HpHSP60) was previously been identified as a potent immunogene. This study investigates the role of HpHSP60 in gastric cancer carcinogenesis. The effect of HpHSP60 on cell proliferation, anti-death activity, angiogenesis and cell migration were explored. The results showed that HpHSP60 enhanced migration by gastric cancer cells and promoted tube formation by umbilical vein endothelial cells (HUVECs); however, HpHSP60 did not increase cell proliferation nor was this protein able to rescue gastric cancer cells from death. Moreover, the results also indicated HpHSP60 had different effects on AGS gastric cancer cells or THP-1 monocytic cells in terms of their expression of pro-inflammatory cytokines, which are known to be important to cancer development. We propose that HpHSP60 may trigger the initiation of carcinogenesis by inducing pro-inflammatory cytokine release and by promoting angiogenesis and metastasis. Thus, this extracellular pathogen-derived HSP60 is potentially a vigorous virulence factor that can act as a carcinogen during gastric tumorigenesis.  相似文献   

12.
Previous studies from this laboratory have demonstrated that plasminogen and angiostatin bind to endothelial cell (EC) surface-associated actin via their kringles in a specific manner. Heat shock proteins (hsps) like hsp 27 are constitutively expressed by vascular ECs and regulate actin polymerization, cell growth, and migration. Since many hsps have also been found to be highly abundant on cell surfaces and there is evidence that bacterial surface hsps may interact with human plasminogen, the purpose of this study was to determine whether human plasminogen and angiostatin would interact with human hsps. ELISAs were developed in our laboratory to assess these interactions. It was observed that plasminogen bound to hsps 27, 60, and 70. In all cases, binding was inhibited (85–90%) by excess (50 mM) lysine indicating kringle involvement. Angiostatin predominantly bound to hsp 27 and to hsp 70 in a concentration- and kringle-dependent manner. As observed previously for actin, there was concentration-dependent inhibition of angiostatin’s interaction with hsp 27 by plasminogen. In addition, 30-fold molar excess actin inhibited (up to 50%), the interaction of plasminogen with all hsps. However, 30-fold molar excess actin could only inhibit the interaction of angiostatin with hsp 27 by 15–20%. Collectively, these data indicate that (i) while plasminogen interacts specifically with hsp 27, 60, and 70, angiostatin interacts predominantly with hsp 27 and to some extent with hsp 70; (ii) plasminogen only partially displaces angiostatin’s binding to hsp 27 and (iii) actin only partially displaces plasminogen/angiostatin binding to hsps. It is conceivable therefore that surface-associated hsps could mediate the binding of these ligands to cells like ECs.  相似文献   

13.
Helicobacter pylori heat shock protein 60 (HpHsp60) was first identified as an adhesion molecule associated with H. pylori infection. Here we have analyzed the structure of HpHsp60 via amino acid BLAST, circular dichroism, and electrophoresis and the results indicate that most recombinant HpHsp60 molecules exist as dimers or tetramers, which is quite different from Escherichia coli Hsp60. Treatment of human monocytic cells THP-1 with HpHsp60 was found to up-regulate a panel of cytokines including IL-1α, IL-8, IL-10, IFN-γ, TNF-α, TGF-β, GRO, and RANTES. Carboxymethylated HpHsp60 molecules with a switched oligomeric status were able to further enhance NF-κB-mediated IL-8 and TNF-α secretion in THP-1 cells compared to unmodified HpHsp60 molecules. These results indicated that the oligomeric status of HpHsp60s might have an important role in regulating host inflammation and thus help facilitate H. pylori persistent infection.  相似文献   

14.
15.
A genetic analysis of heat shock protein (HSP) synthesis was performed in seedling leaf tissue of two maize inbred lines, their F1 hybrid and F2 progeny. Protein synthesis following a high temperature treatment was visualized by [35S]-methionine in vivo labelling and two-dimensional gel electrophoresis. The parental lines' HSP synthesis patterns revealed both qualitative and quantitative polymorphisms implicative of differences in HSP structural genes and regulatory factors. The F1 hybrid HSP profile indicated that synthesis of all parental HSPs conformed to dominant inheritance patterns, including complete dominance, over-dominance and co-dominance. Alleles for six low-molecularweight HSPs in F2 progeny assorted according to typical 31 Mendelian ratios for dominant gene expression. There is evidence for unlinked gene loci of four different HSP gene pairs, but data for three other HSP gene pairs were inconclusive, perhaps reflecting linkage for one pair and complex regulatory factor interactions for the other two pairs of genes. These results clearly indicate the existence of genetic variability in HSP synthesis and emphasize the potential of partitioning their roles in thermal tolerance using genetic and molecular analyses.  相似文献   

16.
Proteomic analysis of small heat shock protein isoforms in barley shoots   总被引:6,自引:0,他引:6  
The analysis of stress-responsiveness in plants is an important route to the discovery of genes conferring stress tolerance and their use in breeding programs. High temperature is one of the environmental stress factors that can affect the growth and quality characteristics of barley (Hordeum vulgare). In this study a proteomic analysis (2D-PAGE, MS) was used to detect the effects of heat shock on the protein pattern of an abiotic stress-tolerant (Mandolina) and an abiotic stress-susceptible (Jubilant) barley cultivar. Evaluation of two-dimensional gels revealed several proteins to be differentially expressed as a result of heat stress in both cultivars. The protein spots of interest were, after an in-gel tryptic digestion, further investigated by mass spectrometry. For the analysis of the peptide mixture, we both used a matrix-assisted laser desorption/ionization (MALDI) tandem time of flight mass spectrometer (TOF/TOF) and an automated nano-HPLC system coupled to an electrospray ionization-quadrupole linear ion trap (Q-TRAP) instrument. The hyphenation of the latter techniques proved to be a powerful technique as shown by the identification of six isoforms of a 16.9 kDa sHSP in one single spot. We observed that S-adenosylmethionine synthetase (SAM-S) was differentially expressed between the two cultivars. Recent results refer to the role of SAM-S as being involved in abiotic stress tolerance. Furthermore, comparison of the heat shock treated samples also revealed several small heat shock proteins (sHSP), of which distinct isoforms could be characterised.  相似文献   

17.
Sunflower suspension cell cultures were subjected to different heat treatments and the electrophoretic patterns of heat-induced endocellular and secreted proteins were analyzed. In response to heat shock (3 h at 40°C), sunflower cells synthesized new polypeptides and secreted them into the medium, while the synthesis of other polypeptides was suppressed. Two major polypeptides of about 50 and 32 kDa were strongly induced. The two-dimensional electrophoretic analysis showed that the 32-kDa band is composed of at least four different polypeptides. Western blotting hybridizations of secreted proteins with various lectins were performed. The 32-kDa band gave a positive signal with concanavalin A. Received: 8 March 1996 / Revision received: 30 September 1996 / Accepted: 15 October 1996  相似文献   

18.
Summary The response of the common wheat line Chinese Spring to heat shocks of different time lengths was studied by the two-dimensional (2D) electrophoresis of denatured proteins. After a heat shock of 5 h, 33 heat shock proteins (HSPs) accumulated in an amount sufficient to be revealed by silver stain. Two other wheat lines (Moisson and Selkirk) were then submitted to a heat shock of 5 h, and the responses of the 3 lines were compared: of a total of 35 HSPs, 13 (37.1%) were quantitatively or qualitatively variable. This variability concerns low-molecular-weight and high-molecular-weight HSPs. The three genotypes showed thermal tolerance but Chinese Spring's response to heat treatments was slightly different from those of the other two lines The possibility of a relationship between HSP patterns and thermal sensitivity is discussed.  相似文献   

19.
Heat shock proteins (HSPs) are molecular chaperones and have an important role in the refolding and degradation of misfolded proteins, and these functions are related to aging. Rotifer is a useful model organism in aging research, owing to small body size (0.1–1 mm), short lifespan (6–14 days), and senescence phenotypes that can be measured relatively easily. Therefore, we used rotifer as a model to determine the role of four typical hsp genes on the aging process in order to provide a better understanding of rotifer aging. We cloned cDNA encoding hsp genes (hsp40, hsp60, hsp70, and hsp90) from the rotifer Brachionus calyciflorus Pallas, analyzed their molecular characteristics, determined its modulatory response under different temperatures and H2O2 concentrations and investigated the changes in expression of these genes during the aging process. We found that Bchsp70 mRNA expression significantly decreased with aging. In addition, we also studied the effects of dietary restriction (DR) and vitamin E on rotifer lifespan and reproduction and analyzed the changes in expression of these four Bchsp genes in rotifers treated with DR and vitamin E. The results showed that DR extended the lifespan of rotifers and reduced their fecundity, whereas vitamin E had no significant effect on rotifer lifespan or reproduction. Real-time PCR indicated that DR increased the expression of these four Bchsps. However, vitamin E only improved the expression of Bchsp60, and reduced the expression of Bchsp40, Bchsp70, and Bchsp90. DR pretreatment also increased rotifer survival rate under paraquat-induced oxidative stress. These results indicated that hsp genes had an important role in the anti-aging process.  相似文献   

20.
1.
Under natural conditions insects are occasionally subjected to thermal stresses. Data concerning the effects of these temperature extremes on tolerance and on life history parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) have been lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号