首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hermit crabs are critically dependent upon gastropod shells for their survival and reproductive fitness. While anecdotal reports have suggested that hermit crabs may be capable of removing live gastropods from their shells to access the essential shell resource, no systematic experiments have been conducted to investigate this possibility. This paper reports experiments on both marine (Pagurus bernhardus) and terrestrial (Coenobita compressus) hermit crabs in which crabs were paired in the laboratory with the gastropods whose shells they inhabit in the field. Pairings included both shelled and naked crabs and spanned the full range of the gastropod life cycle. Neither marine nor terrestrial hermit crabs were successful at removing live gastropods from their shells. Furthermore, only a small fraction of the crabs (5.7%) were capable of accessing shells in which the gastropod had been killed in advance, with its body left intact inside the shell. Finally, although hermit crabs readily entered empty shells positioned on the surface, few crabs (14.3%) were able to access empty shells that were buried just centimeters beneath them. These results suggest that hermit crabs are constrained consumers, with the shells they seek only being accessible during a narrow time window, which begins following natural gastropod death and bodily decomposition and which typically ends when the gastropod's remnant shell has been buried by tidal forces. Further experiments are needed on more species of hermit crabs as well as fine-grained measurements of (i) the mechanical force required to pull a gastropod body from its shell and (ii) the maximum corresponding force that can be generated by different hermit crab species' chelipeds.  相似文献   

2.
Empty gastropod shells are an important resource for many animals in shallow benthic marine communities. Shells provide shelter for hermit crabs, octopuses, and fishes, provide attachment substratum for hermit crab symbionts, and directly or indirectly modify hermit crab predation. Creation of an empty shell due to predation of one gastropod on another and acquisition of that shell by a hermit crab are two key events in the subsequent use of that shell. Shells of different gastropod species and the species of hermit crab acquiring them affect the symbiont complement that attaches to the shell, which in turn may affect future shell use by other symbionts. Certain shell types worn by the hermit crab, Pagurus pollicaris Say, are positively associated with the symbiotic sea anemone, Calliactis tricolor (Lesueur), which protects the hermit crab from predation by the crab, Calappa flammea (Herbst), and possibly from the octopus, Octopus joubini Robson. Shells of other species of gastropods are resistant to being crushed by the spiny lobster, Panulirusargus (Latreille). The inter-and intraspecific interactions centered on the gastropod shell are termed a “habitat web.” The potential of the shell to limit the size and distribution of animal populations demonstrates how this resource helps shape community structure.  相似文献   

3.
The symbiotic lifestyle is widespread among porcellanid crabs, which maintain ecological and co-evolutionary associations with annelid polychaetes, poriferans, cnidarians, echinoderms, gastropod mollusks, and other crustaceans such as shrimps and hermit crabs, among others. We investigated the ecological association between the hermit crab Dardanus insignis and the porcellanid Porcellana sayana, in southeastern Brazil. Porcellanid crabs, hermit crabs, and available shells were collected monthly from July 2001 to June 2003, with a shrimp boat equipped with two double-rig trawl nets. The majority of P. sayana specimens were collected in shells occupied by D. insignis (96.6%); a few were found in empty shells (3.4%). The catch of both symbionts and hosts increased with increasing depth, with the highest occurrence at 35 m. The P. sayana crabs of various sizes could be found solitary or forming aggregations of up to 14 individuals per host, showing no sex or size segregation. In spite of the high diversity of shell species occupied by the hermit crabs and also available in the field, only a few of them were also utilized by P. sayana. The majority (93%) of shells utilized by P. sayana also hosted other symbiont species, constituting the basis of extensive symbiotic complexes. Thus, the ecological relationship between D. insignis and P. sayana may be classified as a non-obligate and non-specific symbiosis that may also involve other facultative organisms such as sea anemones.  相似文献   

4.
Hermit crabs have two antipredator tactics: taking refuge in its shell and fleeing. We examined the following two hypotheses using the hermit crab Pagurus filholi : (1) hermit crabs change their preference for shell types that they take refuge in and/or change the timing of fleeing (i.e. the duration of refuge in the shell) when they perceive a predator threat; (2) the type of shell that a hermit crab occupies affects the fleeing tactic of the individual. Under the stimulus of a crushed conspecific, hermit crabs changed neither their preference for shell species nor their refuge duration. On the other hand, under the stimulus of the predatory crab Gaetice depressus , hermit crabs increased their preference for Batillaria cumingi shells, which provide superior protection against predators, and shortened their refuge duration in the shells even when they occupied those effective against predation. Refuge duration was longer in B. cumingi shells than in the more vulnerable shells of Homalopoma sangarense . These results suggest that both antipredator defences (changing shell and timing of fleeing) are induced by the stimulus of a predator, and the timing of fleeing is affected by the shell type occupied.  相似文献   

5.
The process of how the hermit crab,Pagurus geminus, acquires a new shell was investigated in the natural habitat at Ezura in Shirahama, Wakayama Prefecture, during the non-breeding season, and the following results were obtained. Hermit crabs acquired new shells most frequently by shell exchange between 2 individuals and occasionally by attacking snails. Acquisition through location of empty shells was not found. At the snail attacking site or the site of shell exchange attempts, sometimes many other individuals appeared and, frequently, confusing or complex shell changes were observed. The importance of introduction of fresh shells to a hermit crab population and the possibility for a certain individual to acquire a shell introduced by others through shell exchange attempts are discussed.  相似文献   

6.
Hermit crabs with poor fitting shells are chemically attracted to dying gastropods and conspecifics where a shell may become available. For land hermit crabs, the shell cue is a volatile compound found in the haemolymph. Based on this knowledge, we tested the hypothesis that shell investigation behavior in aquatic hermit crabs, the ancestral predecessors of terrestrial hermit crabs, is also triggered by volatile cues. Volatile compounds from haemolymph of Clibanarius vittatus and Pagurus pollicaris and brachyuran decapod crustaceans were purged from a water-haemolymph solution, trapped in seawater and tested for induction of shell investigation behavior with juvenile C. vittatus. Only volatiles from C. vittatus haemolymph stimulated shell investigation. Volatile compounds were isolated from haemolymph by headspace solid-phase microextraction (SPME) and analyzed by coupled gas chromatography-mass spectrometry (GC-MS). Two prominent compounds were identified, 3-decanol, which was unique to C. vittatus haemolymph, and 2-ethyl-1-hexanol, which was present in the haemolymph of all 4 crustacean species. In shell investigation bioassays, 3-decanol from C. vittatus haemolymph stimulated shell investigation behavior, while 2-ethyl-1-hexanol did not. In bioassays with synthetic 1-, 2-, 4-, and 5-decanol, shell investigation behavior was evoked by 1-decanol, 5-decanol and 3-undecanol. There was no response to 2- and 4-decanol. The response of C. vittatus to volatile shell cues supports the hypothesis that volatile cue detection evolved prior to the occupation of terrestrial niches by crustaceans.  相似文献   

7.
Modern hermit crabs form associations with many organisms which encrust, bore into, or cohabit the living chambers of gastropod shells occupied by the crabs. Among these hermit crab symbionts are bryozoan species which develop massive, commonly multilayered, colonies encrusting hermit crab shells. These colonies extend the living chamber of the crab through a characteristic process of helicospiral tubular growth originating from the shell aperture. The scant information available on the ecology of Recent bryozoan‐hermit crab symbioses is reviewed. Symbioses have been recorded from intertidal to upper slope environments, and from tropical to cold temperate zones. None of the hermit crab species are obligatory symbionts of bryozoans, and the majority of the modern bryozoan species involved are also not obligatory symbionts. Fossil examples always lack the hermit crabs, which have a poor fossilization potential; however, the distinctive tubular growth pattern and other features of the bryozoans enable recognition of ancient examples of the symbiosis. The earliest inferred associations between bryozoans and hermit crabs date from the Mid Jurassic, but associations remained uncommon until the Neogene. A remarkably wide taxonomic diversity of Recent and fossil bryozoans are known or inferred symbionts of hermit crabs. The broad evolutionary pattern of the association demonstrates multiple originations of the symbiosis by bryozoans belonging to at least 5 cyclostome and 12 cheilostome families. Only the Miocene‐Recent cheilostome family Hippoporidridae has an evolutionary history closely tied to symbiosis with hermit crabs. There is no evidence for coevolution.  相似文献   

8.
Most hermit crabs depend on empty gastropod shells for shelter; competition for appropriate shells is often severe. This study determined whether shells that have been drilled by naticid gastropods are suitable for occupancy by the hermit crab Pagurus longicarpus. Differences in the characteristics of empty shells and those occupied by hermit crabs were assessed at two adjacent field sites in Nahant, Massachusetts. Drilling damage was far more frequent in empty gastropod shells than in shells occupied by hermit crabs, suggesting that individuals of P. longicarpus avoid drilled shells. They did not appear to avoid shells with other forms of damage. Laboratory experiments confirmed that these hermit crabs preferentially chose intact shells over drilled shells, even when the intact shells offered were most suitable for crabs half the weight of those tested. Final shell choices were generally made within 1 h. The hermit crabs apparently discriminated between intact and drilled shells based on tactile cues, since crabs kept in the dark showed the same preference for intact shells. The hermit crabs strongly avoided, to nearly the same extent, artificially drilled shells, naturally drilled shells, and shells with holes artificially drilled on the opposite side of the shell from where they would normally be located. Possible selective forces causing P. longicarpus to show such strong behavioral avoidance of drilled shells include increased vulnerability of crabs in drilled shells to osmotic stress, predation, and eviction by conspecifics.  相似文献   

9.
Studies on the interaction between the hermit crab Pagurus longicarpus and its symbiotic hydroid Hydractinia symbiolongicarpus have focused on positive effects of hydroids on their host hermit crabs (e.g., protection from predators). Yet, these benefits may be balanced with reproductive costs, which are rarely studied. Results from field observations, laboratory trials, and a mesocosm experiment indicate that female hermit crabs in hydroid-colonized shells exhibit depressed ovigery, smaller clutch sizes, and increased clutch failure relative to females in bare shells. Frequent switching between bare and hydroid-colonized shells may alleviate negative effects when the density of hydroids in the environment is low, but at high densities Hydractinia may significantly impact hermit crab reproduction.  相似文献   

10.
Gastropod shells are vital for the majority of hermit crab species, being essential for their survival, growth, protection, and reproduction. Given their importance, shells are acquired and transferred between crabs through several modalities. We conducted observations and experiments at the Asinara Island (Sardinia, Italy) to investigate the efficacy of the different behavioral tactics adopted by the hermit crab Clibanarius erythropus to acquire shells, such as: (1) locomotion and activity at different tidal phases; (2) attendance at shell-supplying sites (simulated predation sites with five different odors: live and dead gastropods, live and dead crabs, predator); and (3) interactions with conspecifics in aggregations on simulated gastropod predation sites. In each tidal phase, locomotion was slow (0.7 cm min− 1) and, as a consequence, the probability of encountering empty shells and conspecifics was low. Simulated gastropod predation sites quickly attracted a larger number of hermit crabs than the other sites tested. Aggregations seemed to function as shell exchange markets, as previously suggested for other species: the first attendant took the experimental shell and a chain of shell exchanges among conspecifics followed. Our results show that, in C. erythropus, aggregation is the most efficient tactic for the acquisition of new shells, whereas in other species, such as Pagurus longicarpus, it is associated with exploitation ability due to the intense locomotion. The interspecific plasticity in hermit crabs' behavior is confirmed.  相似文献   

11.
12.
The influence of some symbionts on the shell-selection by the hermit crabs Pagurus pollicarus and P. longicarpus was examined by placing individual hermit crabs with two similar shells in a choice situation and recording the shell occupied after 12 hr. One shell contained a symbiont species and the other did not. The results indicated that organisms normally found on or in empty shells influence the shell-section by these species of hermit crab. P. pollicarus preferred shells occupied by the sea anemone Calliactis tricolor or by the hydroid Hydractina echinata as opposed to bare shells. P. longicarpus also preferred shells with H. echinata. Both crab species rejected shells with the barnacle Balanus amphitrite. Shells containing the molluscs Crepidula fornicata or C. plana were rejected by the smaller hermit crab P. longicarpus. These molluscs appeared to exert no influence on P. pollicarpus unless they were large or abundant, at which point their weight or occlusion of available space possibly has negative effects on the crab.  相似文献   

13.
Gastropod shells: A potentially limiting resource for hermit crabs   总被引:1,自引:0,他引:1  
The availability of gastropod shells to hermit crabs in the Newport River Estuary, Beaufort, N.C. has been assessed by determining the numbers of usuable shells occurring in characteristic subtidal habitats and by measuring shell size adequacy. The proportion of useable shells occupied by hermit crabs ranged from 58–99 % and many of the shells not used by hermit crabs were judged unavailable because they were occupied by sipunculids or only uncovered by the dredge. The shell adequacy index (shell size occupied/shell size preferred) was significantly below 1.0 for the largest species (Pagurus pollicaris Say) in the one location where sufficient numbers were collected and for the next largest species (P. longicarpus Say) in three of the four locations where it was collected. The shell size adequacy index for the smallest species (P. annulipes Stimpson) did not differ significantly from 1.0 in either of the two locations in which it was found. These observations suggest that the availability of gastropod shells plays a significant rôle in limiting the abundance of at least the larger hermit crabs.  相似文献   

14.
The epifauna on gastropod shells occupied by the hermit crabs Pagurus pollicaris (Say) and P. longicarpus (Say) was examined, as was the utilization of shells by these two hermit crabs. In the study area in Tampa Bay, Florida, shells were not a limiting factor to the hermit crab population, and there apparently was little competition for shells. Interspecific competition for shells was limited because the two hermit crab species differed in size and hence occupied shells of different sizes. The total number and density of most epifaunal species were higher on shells occupied by hermit crabs than on unoccupied shells, possibly because hermit crabs prevent their shells from being buried and hence lengthen the time the epifaunal community can grow and develop. The hermit crab species also appeared to affect the epifaunal community, for the total number and density of most epifaunal species were larger on shells occupied by P. pollicaris than P. longicarpus. With increasing shell size, the populations of most epifaunal species, also were larger but not their density. Least influential in affecting the epifaunal community was the species of shells.  相似文献   

15.
Ovigerous hermit crabs, Clibanarius vittatus (Bosc), were examined in the laboratory to (1) determine if the time of larval release is a synchronous event, (2) determine the influence of a damaged gastropod shell during the egg hatching process, and (3) describe larval release behaviors. Ovigerous hermit crabs from natural light:dark (LD) and tidal cycles were moved to constant conditions 2-3 days prior to the predicted time of larval release. Larval release was synchronous, occurring near the time of expected sunset. Females with early-stage embryos placed under constant conditions displayed a free-running circadian rhythm, suggesting that the rhythm is under endogenous control. Hermit crabs with early-stage embryos that were placed under a shifted LD cycle (advanced 12 h relative to the ambient photoperiod) before being placed under constant conditions advanced their larval release rhythm by 12 h, indicating the rhythm can be entrained by the LD cycle. Hermit crabs with an intact shell released larvae in bursts at sunset over several consecutive nights (period = 24.2 h). In contrast, hermit crabs with damaged shells released larvae at different times over the course of a single day. Ovigerous females with intact shells exhibit several stereotypical hatching behaviors. The female stands on her walking legs and thrusts her abdomen, moving the shell in an oscillating motion. This movement may assist in breaking the outer membrane of the egg case. The female generates a water current inside the shell with her scaphognathite and mouthparts, which transports the newly hatched larvae out of the shell. Females in damaged shells did not display these behaviors; instead, larval release was a prolonged event with little movement of the female, and often the newly hatched larvae were not viable. These results indicate that an intact shell plays an important role in the hatching process for this hermit crab.  相似文献   

16.
The survival and reproductive success of hermit crabs is intrinsically linked to the quality of their domicile shells. Because damaged or eroded shells can result in greater predation, evaluating shell structure may aid our understanding of population dynamics. We assessed the structural attributes of Cerithium atratum shells through assessments of (a) density using a novel approach involving computed tomography and (b) tolerance to compressive force. Our goal was to investigate factors that may influence decision making in hermit crabs, specifically those that balance the degree of protection afforded by a shell (i.e. density and strength) with the energetic costs of carrying such resources. We compared the density and relative strength (i.e. using compression tests) of shells inhabited by live gastropods, hermit crabs (Pagurus criniticornis) and those found empty in the environment. Results failed to show any relationship between density and shell size, but there was a notable effect of shell density among treatment groups (gastropod/empty/hermit crab). There was also a predictable effect of shell size on maximum compressive force, which was consistent among occupants. Our results suggest that hermit crabs integrate multiple sources of information, selecting homes that while less dense (i.e. reducing the energy costs of carrying these resources), still offer sufficient resistance to compressive forces (e.g. such as those inflicted by shell-breaking predators). Lastly, we show that shell size generally reflects shell strength, thus explaining the motivation of hermit crabs to search for and indeed fight over the larger homes.  相似文献   

17.
P. A. Abrams 《Oecologia》1987,72(2):233-247
Summary Competition for empty gastropod shells in a group of three sympatric hermit crabs (Pagurus hirsutiusculus, Pagurus granosimanus, and Pagurus beringanus) was studied in the San Juan Archipelago, Washington State. Estimates of the competitive effects of each species on the others' shell supplies were derived using field data on shell utilization and the results of laboratory experiments to determine rates of acquisition and exchange of shells and preferences for different shell species. Each species experienced approximately an order of magnitude more intraspecific competition than interspecific competition for empty shells. This resulted from differences in preference for shell shapes, shell size use, and habitat use between P. hirsutiusculus and P. granosimanus, and largely from differences in habitat use between P. beringanus and the other two species. Experiments involving the release and recensusing of marked empty shells were used to estimate competitive effects more directly for the interaction between P. hirsutiusculus and P. granosimanus. Results were consistent with the estimates derived from data on resource partitioning. Possible causes of the low levels of interspecific competition are discussed, and results are compared with studies of other organisms that estimated both inter- and intra-specific competition.  相似文献   

18.

Many studies have investigated shell‐related behaviour in hermit crabs. Few studies, however, have focused specifically on the intraspecies aggression associated with shell competition. We examined intraspecies aggression in hermit crab (Pagurus samuelis) pairs as it relates to competition for a limiting resource, gastropod shells. Pairs of hermit crabs were observed in the laboratory in four different treatments that varied the presence or absence of shells for one or both of the crabs. Measurements of the latency to respond, the number of bouts, and the fight durations were recorded. There was a significant difference among treatments for all three measurements, and naked hermit crabs were much more aggressive than housed hermit crabs. There was no significant difference in aggression between males and females in any of the three treatments. The heightened aggression observed in naked P. samuelis is likely in service of acquiring a protective shell.  相似文献   

19.
The shell utilization patterns of two intertidal populations of the hermit crab, Pagurus longicarpus Say, were studied. The populations differed with respect to the physical characteristics of their habitats and the availability of empty gastropod shells. The first population was in an estuary connected to Narragansett Bay. This population had few, if any. empty shells available in the area. The second population was in a rock-cobble area directly on Block Island Sound. There were large numbers of empty gastropod shells available for this population. The consistently high gastropod mortality on this shore appears to be caused by the animals being washed up on the beach, where they die due to desiccation.Data from samples collected from June to November of both 1974 and 1975 showed that there were distinct differences in the shell utilization patterns of the two populations. A greater proportion of the animals collected from the estuary population inhabited damaged shells and/or shells with symbionts compared to the individuals from the population with large numbers of empty shells available.The results of shell selection experiments indicated that individuals from both populations inhabited less than preferred shells. The population with large numbers of empty shells available was qualitatively shell-limited because of the effect of physical factors on the morphology of the gastropod species of that area. In addition, the shell selection experiments showed that individuals from the two areas had significantly different shell preferences. This result may be explained by the effects of the environment on the growth rates of the hermit crabs and/or as an indication that shell preferences may vary in response to the physical factors of a given habitat.  相似文献   

20.
Individuals of Pagurus criniticornis in a free-choice situation were experimentally tested under different laboratory conditions. In order to assess the effect of recently occupied shells on the size- and type-preference by hermit crabs, individuals were held for 30 days under one of the following two conditions: (1) excess of shells and (2) absence of shells. The crabs were then allowed to select shells from a wide array of empty gastropod shells of the two most-occupied species, as observed previously in the field: Cerithium atratum and Morula nodulosa. Preferred shell type (species) and size (shell aperture width and length) were correlated with hermit-crab size. The crabs showed a strong (100%) preference for C. atratum shells, demonstrating that recent and past experience did not influence either shell-type or shell-size preferences in this pagurid. Handling editor: K. Martens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号