首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of vegetation indices (VIs) to estimate the above-ground biomass of the seagrass species Zostera noltii Hornem. from remote sensing was tested experimentally on different substrata, since terrestrial vegetation studies have shown that VIs can be adversely influenced by the spectral properties of soils and background surfaces. Leaves placed on medium sand, fine sand and autoclaved fine sand were incrementally removed, and the spectral reflectance was measured in the 400–900 nm wavelength range. Several VIs were evaluated: ratios using visible and near infrared wavelengths, narrow-band indices, indices based on derivative analysis and continuum removal. Background spectral reflectance was clearly visible in the leaf reflectance spectra, showing marked brightness and spectral contrast variations for the same amount of vegetation. Paradoxically, indices used to minimize soil effects, such as the Soil-Adjusted Vegetation Index (SAVI) and the Modified second Soil-Adjusted Vegetation Index (MSAVI2) showed a high sensitivity to background effects. Similar results were found for the widely used Normalized Difference Vegetation Index (NDVI) and for Pigment Specific Simple Ratios (PSSRs). In fact, background effects were most reduced for VIs integrating a blue band correction, namely the modified specific ratio (mSR(705)), the modified Normalized Difference (mND(705)), and two modified NDVIs proposed in this study. However, these indices showed a faster saturation for high seagrass biomass. The background effects were also substantially reduced using Modified Gaussian Model indices at 620 and 675 nm. The blue band corrected VIs should now be tested for air-borne or satellite remote sensing applications, but some require sensors with a hyperspectral resolution. Nevertheless, this type of index can be applied to analyse broad band multispectral satellite images with a blue band.  相似文献   

2.
Changes in the photobiology and photosynthetic pigments of the seagrass Zostera marina from Chesapeake Bay (USA) were examined under a range of natural and manipulated irradiance regimes. Photosynthetic activity was assessed using chlorophyll-a fluorescence, and photosynthetic pigments were measured by HPLC. Large changes in the violaxanthin, zeaxanthin, and antheraxanthin content were concomitant with the modulation of non-photochemical quenching (NPQ). Photokinetics (Fv/Fm, rapid light curves (RLC), and non-photochemical quenching) varied as a result of oscillating irradiance and were highly correlated to xanthophyll pigment content. Zeaxanthin and antheraxanthin concentrations increased under elevated light conditions, while violaxanthin increased in darkened conditions. Unusually high concentrations of antheraxanthin were found in Z. marina under a wide range of light conditions, and this was associated with the partial conversion of violaxanthin to zeaxanthin. These results support the idea that xanthophyll intermediate pigments induce a photoprotective response during exposure to high irradiances in this seagrass.  相似文献   

3.
Seagrasses are considered important indicators of decline in water quality resulting in increased light attenuation that negatively influences their growth and survival. Chronic light-limitation interspersed with unpredictable acute attenuation events have had poorly understood effects on seagrass recovery dynamics. Zostera marina (eelgrass) and Halodule wrightii (shoalgrass) were subject to a matrix of light-deprivation events followed by recovery periods to mimic repeated acute shading events. Plant survival, morphology, biomass, chlorophyll content, and Fv/Fm were assessed over time to determine recovery. At the end of the experiment, all plants were harvested and species-specific treatment effects were determined. Significant differences due to treatments were noted in all parameters measured. In general, responses were similar for both life-stages and between species, suggesting similar physiological tolerance to repeated acute light-attenuation events. Only plants in treatments where light-deprivation was followed by a recovery interval of at least the same duration showed signs of long-term survival. Chlorophyll fluorescence (Fv/Fm) was an important metric for assessing recovery, but it failed to detect the onset of mortality in many plants. Other metrics of plant condition need to be assessed and coupled with chlorophyll fluorescence data to assess seagrass “health”. This is of particular importance in field studies, where the history of the plants is largely unknown.  相似文献   

4.
Lemnaceae are currently the only freshwater plants required for regulatory toxicity testing of pesticides and other chemicals. Toxicological protocols allow for the use of different Lemnaceae species in tests. However, few studies have compared the relative sensitivity of individual duckweed species. Zinc is an essential plant nutrient but is also a common pollutant in aquatic environments and elevated levels are phytotoxic. This study shows that four species of Lemnaceae differ in their relative sensitivities to zinc sulphate, a commonly used reference chemical. Comparative zinc sensitivity, in order, from most tolerant to most sensitive was: Landoltia punctata > Lemna minor > Wolffia brasiliensis > Lemna gibba. Zinc sensitivity was also endpoint dependant. EC50 values typically increased in order of: specific biomass growth rate < specific frond number growth rate < chlorophyll absorbance. However, specific frond number growth rate was the most sensitive endpoint for L. punctata. Unlike the other species, L. punctata displayed no significant colony disintegration. Lemna species and L. punctata appear to be employing distinct response strategies when exposed to zinc. L. gibba and L. minor produce and release young, single fronds which are severely affected by zinc. In contrast, L. punctata produces fewer fronds, which are not released and form large colonies of high biomass that are relatively zinc tolerant.  相似文献   

5.
Sulfur has been proposed as a useful element to employ in addition to carbon and nitrogen in stable isotope studies of marine food webs, but variability in δ34S of primary producers may prevent food web resolution. δ34S values in green leaves of the seagrass, Zostera capricorni, showed considerable variability (12.7-17.6‰) in a survey in Moreton Bay, Australia. We demonstrated that δ34S values were correlated with sediment organic matter (OM) content and height of seagrass on the tidal gradient, but these relationships were opposite to those expected from work elsewhere. In our survey, δ34S values were relatively depleted at sites higher on the shore and with lower OM content. We did find the expected relationship of depleted δ34S values where sediment porewater sulfide concentrations were higher. Any influence of OM content on δ34S values would have been confounded in the survey by the relationship between height on shore and OM content itself. We separated the effects of height and OM content by creating the following treatments at one height on the shore: (1) OM added, (2) procedural control, and (3) untouched control. δ34S values of seagrass in OM added plots were significantly depleted (5.6‰) relative to procedural (10.1‰) and untouched (11.0‰) controls 8 weeks after the manipulation. This demonstrated that OM content on its own does have the expected effect on δ34S values of seagrass, so in the initial survey another factor, probably related to height on shore, must have overridden the influence of OM content. Seagrass roots are able to exude excess oxygen produced during photosynthesis, reoxidising sulfides in surrounding porewater. We demonstrated that the above and below-ground biomass of seagrass was higher low on the shore, and contend that higher seagrass productivity low on the shore results in greater reoxidation of sulfides and leads to more enriched δ34S values of seagrass.  相似文献   

6.
Community respiration and primary production were measured in a dense intertidal Zostera noltii bed on the Banc d’Arguin, Mauritania (West Africa) under aerial and submerged conditions. Metabolism was studied in situ in dark and transparent benthic chambers. CO2 fluxes in the air were measured over a series of short-term incubations (3 min) using an infrared gas analyzer. Dissolved inorganic carbon fluxes were calculated from concentration changes during one-hour underwater incubations. Air and underwater irradiance levels were measured every minute throughout the experiments. Carbon respiration was lower in the air (2.2 mmol m−2 h−1) than underwater (5.0 mmol m−2 h−1); similarly, a production-irradiance model fitted to the data indicated that gross maximal photosynthetic rate was markedly lower during emergence (6.0 mmol C m−2 h−1) than under water (42.7 mmol C m−2 h−1). The δ13C values observed in shoots indicated a decrease in atmospheric CO2 contribution, compared to dissolved inorganic carbon, in Z. noltii metabolism along a depth gradient within a single location. As the seagrass bed remains under a thin layer of water at low tide at the studied site, the large difference in primary production can be mainly attributed to photosynthesis inhibition by high pH and oxygen concentration, as well as to the negative feedback of self-shading by seagrass leaves during emersion. The observed differences in respiration can be explained by the oxygen deficit at night during low tide near the sediment surface, a deficit that is consistent with the abundance of anoxia-tolerant species.  相似文献   

7.
8.
Halophila beccarii (Hydrocharitaceae), a small monoecious seagrass, has been listed as a threatened species. In this study, a total of 106 samples were collected from four Chinese populations located at the northern limit of its distribution range. Using six polymorphic microsatellites, we found low genetic variation in this species, in which the mean number of alleles per locus was 2.8, and 16 multi-locus genotypes were revealed. In the four populations, the mean number of alleles per locus ranged from 1.2 to 2, one to eight genotypes were found, and clonal diversity ranged from 0 to 0.23; observed and expected heterozygosity ranged from 0.17 to 0.40 and from 0.09 to 0.24, respectively. Strong genetic differentiation was found among the populations, and the standardized fixation index (FST) was 0.787. Species traits (i.e., clonal growth) and bottleneck effects due to drastic population fluctuation may contribute to the observed low genetic variation.  相似文献   

9.
Zostera marina L. (eelgrass) from Great Bay Estuary, New Hampshire and Maine (USA), was transplanted in outdoor mesocosms and subjected to four light treatments (100, 58, 34 and 11% surface irradiance, SI) between May and September 2003 to investigate the relationship between light availability and the growth and survival of eelgrass. Evaluating eelgrass seedlings and adult mature plants demonstrated no differences in photosynthetic response after 22 days of acclimation. During at least the first 19 days of shading, maximum electron transport rate (ETRmax) rate of eelgrass did not differ significantly between light treatments. After 40 days, a significant reduction in ETRmax and minimum saturating light was observed in plants growing at 34% SI and below. Morphological responses exhibited a linear increasing trend with greater light. 34% SI exhibited drastic reductions (to less than 25% of control) in rhizome growth, shoot density, shoot production, number of nodes per plant and plant weight at the end of the study (81 days). Shoot to root ratio at 34% SI increased by > 50%. Plants shaded to 58% SI showed no significant difference from the control in plant parameters except an increased rate of rhizome elongation. Our results link the lower shoot densities with shading to the slow growth rate of horizontal rhizomes and a total lack of lateral expansion at 11% SI. ETRmax declined over time in plants at 11% SI resulting in 81% mortality, no lateral branching and no morphological development, indicating that the minimum light required for long-term eelgrass growth and survival is greater than the previously suggested 11% SI. We demonstrate that eelgrass plants at these latitudes can persist at light levels of 58% SI and above, and are light-limited at 34% SI and below.  相似文献   

10.
Seagrass photosynthesis is usually measured in laboratory experiments, following oxygen evolution in closed chambers. Pulse amplitude modulated (PAM) fluorometry constitutes an alternative and non-intrusive method of measuring photosynthesis in the field. Validation of electron transport rate (ETR) measurements as reliable estimators of actual photosynthetic production requires that a significant linear relationship between oxygen production and ETR is demonstrated, and also that a 0.25 molar ratio between these two measures is verified. In this work, both parameters were measured simultaneously in laboratory experiments, over a range of light intensities, under well-defined and controlled conditions. A linear relationship was observed between the average rates of oxygen production and the electron transport rates for Zostera noltii (Hornemann) obtained at several irradiances. The molar ratio found between oxygen production and ETR was 0.15±0.02, lower than the theoretically expected value of 0.25. The use of PAM fluorescence as a valid proxy for photosynthetic production was validated for the range of 35-490 μmol photons m−2 s−1 (PAR), under the assumption that the electron sinks responsible for the molar ratio deviation remain constant in similar experimental conditions.  相似文献   

11.
Maximum nitrate reductase (NR) activity was measured in two intertidal morphotypes of Zostera noltii (Hornem.) in Ria Formosa tidal lagoon, southern Portugal. The two morphotypes develop in the upper and lower limits of the intertidal meadows. The NR activity was measured using an in vivo method, without cell disruption. NR activity was 30-40 fold higher in leaves than in roots, which indicates that nitrate reduction is essentially made through the aerial part of the plant. The effects of assay temperature (5 °C steps, from 5 to 45 °C), pH (7, 8 and 9) and elevation (upper and lower intertidal) on leaf NR activity were tested in a factorial design (n=5). Both elevation and assay temperature had a significant effect on NR activity, but not pH. NR activity was always higher in the upper intertidal plants, at all temperatures. Activity peaks for upper and lower plants were, respectively, 6.12 μmol NO2 g−1 DW 0.5 h−1 at 25 °C, and 3.30 μmol NO2 g−1 DW 0.5h−1 at 35 °C. Further investigation on environmental factors concerning the intertidal environment must be developed, as they are probably responsible for the significant differences found between the values of NR activity in the upper and lower morphotype.  相似文献   

12.
Megagametogenesis, the development of a megaspore into an embryo sac, has been identified in the seagrass Halophila johnsonii, a threatened species with no known sexual reproduction or seeds. Megagametogenesis in H. johnsonii was compared with megagametophyte development in Halophila decipiens, a related species known to readily produce viable seeds. In both species, ovules were structurally similar, megaspore mother cells were seen in premeiotic ovules, and linear tetrads and megagametophytes with two to eight nuclei were present in postmeiotic ovules. However, H. decipiens postmeiotic ovules had a chalazal pouch that was absent in the postmeiotic ovules of H. johnsonii. Late-stage H. decipiens ovules also contained embryos, indicating that they had been fertilized, whereas all late-stage H. johnsonii ovules were degrading and showed no signs of fertilization. These observations suggest that meiosis does occur in H. johnsonii megasporocytes, leading to the formation of viable megagametophytes and egg cells that could be fertilized if pollination occurred. Thus, the lack of seed set is due to a lack of pollination rather than any loss of capacity to produce seeds in this species.  相似文献   

13.
The timing and success of sexual reproduction of the seagrass Zostera noltii was investigated at the Ria Formosa lagoon, Portugal. Thirty plants were tagged and monitored individually through time to determine in situ the development time of each maturation stage, from the emergence of the flowers to the production of seeds. The overall process of flowering and fruiting lasted 47 ± 4 days, during which formation and maturation of the fruits was the most time-consuming stage (27 ± 2 days). Spathe success, i.e. the percentage of spathes that produced seeds, was 22 ± 4% while spathe mortality was 34 ± 6%. A considerable percentage of spathes (37 ± 7%) was lost through leaf detachment, but some of these may still add to the reproductive success of the species by contributing to the species recruitment within the source meadow or elsewhere. Meadow seed production (MSP) of Z. noltii was estimated to be 312 ± 66 seeds m−2, whereas the potential seed production of the studied meadow was 2623 seeds m−2. Under laboratory conditions, 70% of Z. noltii seeds germinated within 26 days, but only 10% reached the seedling stage due to the high mortality of germlings. Fertility, defined as the probability of a seed to originate a new plant, was estimated to be 14 × 10−4, which is higher than what is expected for most seagrasses.  相似文献   

14.
15.
Increasing recognition is being given to the concept of ‘ecosystem engineers’, which alter the physical nature of the environment and thereby influence other species by means that are neither competitive nor trophic. This paper examines a case study of such effects, in which negative correlations between the abundances of the sandprawn Callianassa kraussi and the eelgrass Zostera capensis imply mutual exclusion because Z. capensis stabilises sediment and inhibits burrowing by C. kraussi, whereas sandprawn bioturbation smothers eelgrass. To test this, we undertook manipulative experiments in which Z. capensis was transplanted into sandflats where C. kraussi was either left undisturbed or eliminated by defaunation. This demonstrated that (1) Z. capensis thrived and expanded in sandflats in the absence of bioturbation but deteriorated and disappeared if C. kraussi was present. (2) In the short term, introduction of Z. capensis reduced densities of C. kraussi, and in established beds of eelgrass, C. kraussi was rare. (3) The mudprawn Upogebia africana was largely restricted to treatments that contained Z. capensis, and its densities were greater in the absence of C. kraussi than in its presence. The presence of eelgrass and the exclusion of C. kraussi also diminished sediment penetrability, suspension of particles and surface burial rates compared to the situation in undisturbed Callianassa-dominated sandflats. These results confirm a mutually negative interaction between C. kraussi and Z. capensis and strengthen the belief that the underlying mechanisms are the antagonistic effects of bioturbation by C. kraussi versus sediment stabilisation by Z. capensis. U. africana seems to benefit directly from Z. capensis but possibly also benefits indirectly from the exclusion of C. kraussi by Z. capensis, since its filter-feeding mode of life requires sufficient sediment stability to maintain semi-permanent U-tubes.  相似文献   

16.
Ammonium uptake rates and the mechanism for ammonium transport into the cells have been analysed in Zostera marina L. In the cells of this species, a proton pump is present in the plasmalemma, which maintains the membrane potential. However, this seagrass shows a high-affinity transport mechanism both for nitrate and phosphate which is dependent on sodium and is unique among angiosperms. We have then analysed if the transport of another N form, ammonium, is also dependent of sodium. First, we have studied ammonium transport at the cellular level by measurements of membrane potentials, both in epidermal root cells and mesophyll cells. And second, we have monitored uptake rates in whole leaves and roots by depletion experiments. The results showed that ammonium is taken up by a high-affinity transport system both in root and leaf cells, although two different of kinetics could be discerned in mesophyll cells (with affinity constants of 2.2 ± 1.1 μM NH4+, in the range 0.01-10 μM NH4+, and 23.2 ± 7.1 μM NH4+, at concentrations between 10 and 500 μM NH4+). However, only one kinetic could be observed in epidermal root cells, which showed a Km = 11.2 ± 1.0 μM NH4+, considering the whole ammonium concentration range assayed (0.01-500 μM NH4+). The higher affinity of leaf cells for ammonium was consistent with the higher uptake rates observed in leaves, with respect to roots, in depletion experiments at 10 μM NH4+ initial concentration. However, when an initial concentration of 100 μM was assayed, the difference between uptake rates was reduced, but still being higher in leaves. Variations in proton or sodium-electrochemical gradient did not affect ammonium uptake, suggesting that the transport of this nutrient is not driven by these ions and that the ammonium transport mechanism could be different to the transport of nitrate and phosphate in this species.  相似文献   

17.
18.
Feeding pits dug by waterfowl in Zostera noltii meadows are thought to promote seedling recruitment by accumulating seeds and enhancing germination. We tested the latter hypothesis by creating a series of “treatment pits” (resembling natural feeding pits) in the center and at the edge of two meadows near the Island of Sylt (Germany). Seedling density was monitored from the autumn seed set until the following spring. Seedling density (mean, SE) in treatment pits was significantly higher (4.4, 5.3) than in manipulated (2.4, 1.9) and unmanipulated controls (1.4, 0.4), as well as significantly higher in center (2.8, 0.5) relative to edge (2.5, 1.1) locations. Results confirm a facilitating effect of waterfowl grazing on seedling recruitment in spring due to seed accumulation in feeding pits in autumn. The mechanism could provide a valuable tool for the conservation of intertidal Z. noltii meadows in the Wadden Sea.  相似文献   

19.
Patch dynamics of the Mediterranean slow-growing seagrass Posidonia oceanica was studied in two shallow sites (3–10 m) of the Balearic Archipelago (Spain) through repeated censuses (1–2 year−1). In the sheltered site of Es Port Bay (Cabrera Island), initial patch density (October 2001) was low: 0.05 patches m−2, and the patch size (number of shoots) distribution was bimodal: most of the patches had less than 6 shoots or between 20 and 50 shoots. Mean patch recruitment in Es Port Bay (0.006 ± 0.002 patches m−2 year−1) exceeded mean patch loss (0.001 ± 0.001 patches m−2 year−1), yielding positive net patch recruitment (0.004 ± 0.003 patches m−2 year−1) and a slightly increased patch density 3 years later (July 2004, 0.06 patches m−2). In the exposed site of S’Estanyol, the initial patch density was higher (1.38 patches m−2, August 2003), and patch size frequency decreased exponentially with size. Patch recruitment (0.26 patches m−2 year−1) and loss (0.24 patches m−2 year−1) were high, yielding a slightly increased patch density in the area 1 year later (October 2004, 1.40 patches m−2). Most recruited patches consisted of rooting vegetative fragments of 1–2 shoots. Seedling recruitment was observed in Summer 2004 at both sites. Episodic, seedling recruitment comprised 30% and 25% of total patch recruitment in Es Port Bay and S’Estanyol, respectively. Patch survival increased with patch size and no direct removal was observed among patches of 5 shoots or more. Most patches grew along the study, shifting patch distribution towards larger sizes. Within the size range studied (1–150 shoots), absolute shoot recruitment (shoots year−1) increased linearly with patch size (R2 = 0.64, p < 4 × 10−5, N = 125), while specific shoot recruitment was constant (about 0.25 ± 0.05 year−1), although its variance was large for small patches. Given the slow growth rate and the high survival of patches with 5 or more shoots, even the low patch recruitment rates reported here could play a significant role in the colonisation process of P. oceanica.  相似文献   

20.
The effect of filamentous algae invasion into Zostera marina meadows on water quality, sediment sulfur pools and sulfide invasion into plant tissues was studied experimentally. Sulfide invasion was assessed through analysis of sulfur isotopic composition (δ34S) and total sulfur (TS) concentrations in plant tissues. The algal mats (5 and 10 cm thickness) depleted oxygen in the mats and increased the pools of sulfides in the sediments. Plants exposed to algal mats had δ34S signals closer to the δ34S of sediment sulfide, whereas plants with no mats present had δ34S signals closer to the δ34S of seawater sulfate, indicating a higher sulfide invasion in plants exposed to algal mats. The δ34S varied between the plant tissues with the leaves having more positive δ34S signals than roots and rhizomes, indicating that sulfide was invading into the roots and moved to the other tissues through the lacunae. TS concentrations were higher in plants exposed to algal mats suggesting that sulfur derived from sediment sulfide accumulated in the plants. Fsulfide showed that up to 50% of the sulfides in the plants were derived from sedimentary sulfides. The combined effect of water column anoxia in the lower parts of the meadow and high sulfide invasion into the plants lead to significantly reduced growth rates after 3 weeks and the below-ground tissues showed signs of degradation suggesting that algal mats invasion in to Zostera marina meadows can result in seagrass decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号