首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Concentrations of Fe, Pb, Cu, Zn and Cd were determined during one season in the red alga Gracilaria verrucosa, sediment and seawater from the Thermaikos Gulf, Greece. This region has been subject to change due to increases in industrial and domestic activities. The relative abundance of metals in G. verrucosa and seawater decreased in the order: Fe>Zn>Pb>Cu>Cd and in the sediment: Pb>Fe>Zn>Cu>Cd. Cadmium concentration in the alga correlated positively with that in seawater. There was positive correlation between Fe concentrations in the alga and those of the Zn and Cu. The concentrations of metals in the alga showed no significant differences between the stations. Lead, Zn and Cu concentrations in the alga were slightly higher at Biamyl, whereas Cd was higher at Perea and Fe at Nea Krini. Seasonal variation of metal concentrations in the alga was significant for Cd and Fe. Copper and Fe increased from winter to summer, whereas Cd was the opposite. Zinc concentrations were minimum and Pb concentrations were maximum during spring. These variations are discussed in relation to tissue age, life cycle, ambient concentrations of metals and other environmental conditions. Cd and Pb concentrations inG. verrucosa in the Thermaikos Gulf were higher and those of Cu and Zn were lower than in other species of the genus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.

Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC10–IC30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.

  相似文献   

4.
The ability of hydrogenases isolated from Thiocapsa roseopersicina and Lamprobacter modestohalophilus to reduce metal ions and oxidize metals has been studied. Hydrogenases from both phototrophic bacteria oxidized metallic Fe, Cd, Zn and Ni into their ionic forms with simultaneous evolution of molecular hydrogen. The metal oxidation rate decreased in the series Zn>Fe>Cd>Ni and depended on the pH. The presence of methyl viologen in the reaction system accelerated this process. T. roseopersicina and L. modestohalophilus cells and their hydrogenases reduced Ni(II), Pt(IV), Pd(II) or Ru(III) to their metallic forms under H2 atmosphere. These results suggest that metals or metal ions can serve as electron donors or acceptors for hydrogenases from phototrophic bacteria.  相似文献   

5.
Trace heavy metals such as Cr(III), Ni(II), Cd(II), Zn(II), Pb(II), and Cu(II) are hazardous pollutants and are rich in areas with high anthropogenic activities. Their concentrations were analyzed using atomic absorption spectroscopy, and it was found that their concentrations were several fold higher in downstream Swan River water samples of the Kahuta Industrial Triangle as compared to upstream. Heavy metal soil concentrations taken from the downstream site were 149% for Cr, 131% for Ni, 176% for Cd, 139% for Zn, 224% for Pb, and 182% for Cu when compared to samples from the upstream site. Quantitative analysis concluded that these metals were higher in milk samples collected from downstream as compared to the samples from upstream water-irrigated sites. The order of metal in milk was as Zn > Cr > Cu > Cd > Pb = Ni. Heavy metal contaminations may affect the drinking water quality, food chain, and ecological environment. It was also suggested that the toxicity due to such polluted water, soil, and milk are seriously dangerous to human health in future.  相似文献   

6.
This research was conducted to assess the water quality and the contamination of heavy metals in water, sediment, fish, and frogs, as well as bioaccumulation factors (BAFs) in fish and frogs around the gold mine area. The water samples were analyzed for water quality (temperature, pH, and dissolved oxygen). The samples were analyzed for heavy metals by inductively coupled plasma optical emission spectrometry. The water quality was within the standard. The concentrations of heavy metals, including As, Cr, Cd, Pb, Ni, Zn, Fe, Mn, and Cu, in water and sediment samples were measured. Three species of fish were collected: Rasbora tornieri, Brachydanio albolineata, and Systomus rubripinnis. The mean heavy metal concentrations of fish were as follows: Fe>Zn>Mn>Cr>Ni>Cu>As>Pb>Cd. The As, Cr, and Pb concentrations in all the fish species exceeded the standard levels. Five species of frogs were collected: Kaloula pulchra, Microhyla heymonsi, Fejervarya limnocharis, Hoplobatrachus rugulosus, and Microhyla pulchra. The mean heavy metal concentrations of frog were as follows: Fe>Cu>Mn>Zn>Cr>Ni>Pb>Cd>As. The Cr, Cd, and Cu concentrations exceeded the standard levels. The BAFs in fish were in order of Cr>Zn>Ni>Cu>Pb>Fe>Cd>As. The BAFs in frogs were Cr>Zn>Ni>Cu>Fe>Pb>Cd>As. The accumulation of heavy metals was higher in the sediment than in the water. Many aquatic organisms take up heavy metals directly from the environment around the gold mine.  相似文献   

7.
The flagellate alga Pavlova viridis Tseng was investigated in the laboratory for accumulation of the heavy metals, silver, cadmium, cobalt, copper, mercury, nickel and lead. The cultures were grown in an artificial seawater medium mixed with the individual metals at different concentrations. Based on data from the controls, the baseline metal concentrations in P. viridis were shown to be in an order of Cu > Pb > Co > Cd > Ni > Ag > Hg. In the experimental groups, the seven metals displayed different isotherm equilibrium patterns and the metal uptake capacity of the alga was Ni > Pb > Co > Hg > Cu > Cd > Ag at equilibrium. When assessed using the bioconcentration factors, metal accumulation by P. viridis was demonstrated to be the most efficient at a concentration of 0.001 mg L-1 for Ag, Cd and Co, and at 0.01 mg L-1 for Cu, Hg, Ni and Pb. This study suggests that P. viridis can be a source of mineral supplements in mariculture. The alga is not, however, recognized as an effective agent for removing heavy metals from wastewater. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Abstract Increases in human population cause increased urbanization of most habitats, including the shoreline. This has many consequences for coastal environments, in particular the trend for artificial structures, such as seawalls, to replace natural habitats. Seawalls and natural shores support many of the common intertidal species, but others important on rocky shores are absent from or rare on many seawalls. The whelk Morula marginalba Blainville is an abundant and important predator on rocky shores of south‐eastern Australia, but is infrequently recorded on artificial substrata. In Sydney Harbour, where the Sydney rock oyster (Saccostrea glomerata Gould) was locally abundant, densities of M. marginalba on some seawalls appeared to be similar to those on rocky shores and to be larger than where there were few oysters. We sampled densities and sizes of whelks in four habitats, predicting and corroborating that: (i) on seawalls with many oysters, there would be more whelks than on seawalls with few oysters; (ii) where there are many oysters, densities of whelks would be similar on seawalls and rocky shores; and (iii) whelks would be larger where oysters were abundant. Growth and survival of whelks were measured to test hypotheses from the observed differences in size and density. Survival was greater in habitats with many oysters, which could explain differences in density, but size‐specific differences in survival could not explain differences in size among habitats. On seawalls but not on rocky shores, slower growth could explain the smaller size of whelks where there were few oysters. Seawalls provide important habitat for M. marginalba, but only via their indirect effects, mediated by oysters. These interactions cannot be predicted from those on natural rocky shores. Predicting how developed areas provide suitable habitat, either in management of conservation or in assessments of potential impacts clearly depends on understanding the roles of biogenic habitats.  相似文献   

9.
The in vitro affinity of metals for metallothionein (MT) is Zn less than Cd less than Cu less than Hg. In a previous study Cd(II) and Hg(II) displaced Zn(II) from rat hepatic Zn7-MT in vivo and ex vivo (Day et al., 1984, Chem. Biol. Interact. 50, 159-174). The ability of Cd(II) or Hg(II) to displace Zn(II) and/or Cu(II) from metallothionein in copper-preinduced rat liver (Zn, Cu-MT) was assessed. Cd(II) and Hg(II) can displace zinc from (Zn, Cu)-MT both in vivo and ex vivo. The in vitro displacement of copper from MT by Hg(II) was not confirmed in vivo and ex vivo. Cd(II) treatment did not alter copper levels in (Zn, Cu)-MT, as expected. Hg(II) treatment, however, did not decrease copper levels in MT, but rather increased them. The sum of the copper increase and mercury incorporation into MT matched the zinc decrease under in vivo conditions and actually exceeded the zinc decrease under ex vivo conditions. Short-term exposure of rat liver to exogenous metals can result in incorporation of these metals into MT by displacement of zinc from pre-existing MT. Displacement of copper from pre-existing MT by mercury, as predicted by in vitro experiments, was not confirmed under the conditions of our in vivo and ex vivo experiments. This result is explainable based on the differing affinities and/or preferences of the two metal clusters in MT.  相似文献   

10.
A pot experiment with an orthogonal experimental design L9(34) was conducted to study the combined effects of Cd, Zn, and Pb on the growth and metal content of celery grown in a ferric acrisol. The uptake of Cd, Zn, and Pb by celery was not only affected by the individual elements, but also by combinations of the elements. The effect of coexisting elements on plant uptake of the heavy metals depended on the concentration ratios of the elements. There is a given ratio where a maximum antagonism or synergism effect occurs. The combinations of elements clearly affected the dry weight of celery and the heavy metal concentration in celery. The removal rate (the ratio of plant total uptake to the total metal content in soil) was in the order of Cd > Zn > Pb, with no obvious difference between the removal rate under single pollution and that under compound pollution.  相似文献   

11.
Irrigation with untreated wastewater from several industrial, commercial, and domestic discharges for decades caused accumulation of various heavy metals and metalloids in soils along the Akaki River in Ethiopia. Assessment of environmental threats and the potential phytoremediation of the soils require understanding of the toxic elements’ uptake and distribution in plant parts. Hence, a greenhouse study was performed to examine the phytoavailability and distribution of Cr, Ni, Co, Cu, Zn, Cd, Pb, Hg, Se, V, and As in forage grasses: Oat (Avena sativa), Rhodes grass (Chloris gayana), Setaria (Setaria sphacelata), and the legumes Alfalfa (Medicago sativa) and Desmodium (Desmodium unicinatum). The average contents of Cr, Ni, Co, Cu, Zn, Pb, Hg, Se, and V in the plants were generally higher than the background levels for forage grasses/legumes, and some of these elements were in the phytotoxic range. Root bioconcentration factor (BCF = root to soil concentration ratio) > 1 was observed for Cu (Oat, Rhodes, Desmodium, and Setaria: Fluvisol), Zn (Setaria: Fluvisol), Cd (Rhodes: Fluvisol; Setaria from both soils) and Hg (Oat and Alfalfa: Fluvisol). Alfalfa and Desmodium displayed translocation factor > 1 (TF = shoot to root concentration ratio) for most heavy metals. Most heavy metals/metalloids may pose a health threat to humans and stock via introduction to the food chain. The plant factors (species and plant part), soil factors (soil type, soil fractions, pH, and CEC), and their interactions significantly (p < 0.05) influenced plant heavy metal and metalloid levels. However, the role of plant part and species emerged as the most important on heavy metal uptake, translocation, sequestration, and ultimately transfer to the food chain. Accordingly, the uptake and distribution of heavy metals/metalloids in the plants reflect the potential environmental and health hazards attributable to the use of fodder grasses, legumes, and cultivation of vegetables in soils with polymetallic and metalloid contamination.  相似文献   

12.
The present study was designed to assess the effects of three different metals (cadmium, lead, and zinc) at the same concentrations on Hibiscus rosa sinensis during metal uptake. The effects of different metals at the same concentrations were assessed on biomass, root-shoot length, and biochemical parameters like chlorophyll and antioxidant enzymes like SOD and CAT to establish the tolerance potential and toxic effects on plants in different metals. The accumulation of metals by plants was found to be in the following order: Zn > mixed metals > Cd > Pb, where Zn was accumulated approximately 79.6% in plant tissues. Plants removed from Cd showed more enzyme activities than the other two metals. DNA stability was investigated by a Random Amplified Polymorphic DNA (RAPD) technique, which demonstrated that the samples in Cd and mixed metal showed similar trends, whereas samples in Zn and Pb showed similar band intensity to the control. Results suggested that Cd and/or heavy metal stress influences antioxidant status and also induces DNA changes during remediation. Therefore, these studies could be a useful biomarker assay for better treatment for metals’ remediation from soil by means of phytoremediation.  相似文献   

13.
ABSTRACT Soil heavy metal contamination, a major threat due to industrialization, can be tackled by an efficient and economical process called bioremediation. Mushrooms are employed to accumulate heavy metals from soil due to their high metal accumulation potential and better adaptability. The bioaccumulation potential of Galerina vittiformis was already reported for individual metals. At natural conditions, since soil consists of more than one polluting metal, more focus has to be given to multimetal systems. In this study, multimetal accumulation potential was analyzed using central composite design, and the responses obtained were analyzed using response surface methodology. Heavy metals such as Cu(II), Cd(II), Cr(VI), Pb(II), and Zn(II) were subjected to biosorption at 10–250 mg/kg concentrations along with pH 5–8. The results showed that the preference of the organism for the five metals under study was in the order Pb(II) > Zn(II) > Cd(II) > Cu(II) > Cr(VI) at pH 6.5 under multimetal condition. The study also indicates that the metal interaction pattern in multimetal interaction is a property of their ionic radii. The response surface methodology clearly explains the effect of interaction of heavy metals on the accumulation potential of the organism using three-dimensional response plots. The present work suggests that the fungus Galerina vittiformis could be employed as a low-cost metal removal agent from heavy metal–polluted soil.  相似文献   

14.
15.
Abstract

Distribution of possible chemical forms of Al, Si, Sn, Pb, Zn, Fe, Hg, Cd and Cu in marine sediments of Cape Town harbour was investigated using a modified Tessier’s sequential extraction procedure and ICP-MS and ICP-AES for heavy metals determination. The mean fractions for all metals at all locations were: 1.5–7196 mg kg-1 for Si, 7.79–7266 mg kg-1 for Al, 161-639 mg kg-1 for Cu, 19–41978 mg kg-1 for Fe, 2.83–5864 mg kg-1 for Zn, 1.45–13.26 mg kg-1for Cd, 9.87–223 mg kg-1 for Sn, 11.98-979 mg kg-1 for Pb and 0.13–5.93 mg kg-1 for Hg. Si, Al and Zn were mostly associated with Fe–Mn oxides, whereas Sn and Hg were mainly bound to residual and organic matter. Pb existed mainly in the residual and iron/manganese oxide phases while Cd was evenly distributed in all the five phases. The loading plots of heavy metals bound to the various chemical forms, as well as Pearson correlation coefficients, enabled the determination binding relationship. Pb, Sn and Hg exhibited similar binding behaviour which indicated an anthropogenic point source from wastes from the ship maintenance workshop, and the presence of Sn in the organic phase can be identified with the use of anti-fouling paints at the harbour, whereas Al, Fe, Si, Cu and Zn would probably be of natural origin. Lastly Cd probably came from a diffuse pollution sources in the harbour due to its unique binding characteristic. The mobility of heavy metals varied depending on location and the heavy metal type. The mobility of metals followed the order: Si > Zn > Fe > Cu> Al> Cd> Pb > Sn > Hg. The high percentage of Cd and Pb in the bioavailable forms suggested the need to keep close surveillance on these metals because of their high toxicity.  相似文献   

16.
We assessed the degree to which Cd, Cr and Zn bound with sediment were assimilated by the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. The influences of the metal concentration in the sediment, the presence of phytoplankton, and the oxidation condition of the sediment on metal assimilation were examined. No major difference was found for metal assimilation efficiency (AE) in sediment with different metal concentrations, except for Cd in the green mussels, in which the AE increased by 1.7x when the Cd concentration in sediment was elevated to 15x the natural background level. The higher assimilation of Cd with increasing Cd load in ingested sediment may be due to the higher desorption of Cd in the acidic gut of the bivalves. Both mussels and clams assimilated metals at a higher efficiency from the diatom diet (Thalassiosira pseudonana) than from inorganic sediment particles. The presence of algal particles had little influence on metal assimilation from ingested sediment, and conversely, the presence of sedimentary particles had little effect on metal assimilation from ingested diatom (except for Cd in the mussels). In the mussels, AEs were higher from oxic sediment than from anoxic sediment by 3.1x for Cd, 2.0x for Cr, and 1.4x for Zn, and in the clams AEs were higher from oxic sediment by 2.8x for Cd, 2.0x for Cr, and 2.0x for Zn. Our study suggested that metals associated with anoxic sediment can be potentially available to marine bivalves, and that metal AEs determined for a single diet were probably not affected by the presence of other food particles.  相似文献   

17.
The effect of treated municipal wastewater on the roots and the leaves of turnip was studied to compare the 50% and 100% wastewater of 34 ml/d Sewage Treatment Plant (STP) with different doses of potassic fertilizers. Turnip (Brassica rapa) was used as a test plant. A pot experiment was conducted, using a factorial randomized block design to investigate the growth and translocation of heavy metals to the leaves and the roots of turnip. The concentration of heavy metal in wastewater used for irrigation was within the limits. However, the concentration in the plant parts showed a significant rise due to continuous use of wastewater. The concentration of heavy metals in leaves and roots was at excessive levels at 40 and 55 days after sowing (DAS), while at 70 DAS, metal concentration was comparatively low. The range of heavy metals in wastewater irrigated plants was Cd = 1–16.3, Ni = 0–136, Fe = 263–1197, Cu = 0–18, Mn = 37–125, and Zn = 42–141 mg/kg. Concentration of heavy metals in plants was found in the order of Fe>Zn>Ni>Mn>Cu>Cd.  相似文献   

18.
The technique of differential pulse polarography is shown here to be applicable to the monitoring directly the biosorption of metal ions from solution by live bacteria from mixed metal solutions. Biosorption of Cd(II), Zn(II) and Ni(II) by P. cepacia was followed using data obtained at the potential which is characteristic of the metal ion in the absence and presence of cells. Hepes buffer (pH 7.4, 50 mM) was used as a supporting electrolyte in the polarographic chamber and metal ion peaks in the presence of cells of lower amplitude were obtained due to metal-binding by the cells. Well defined polarographic peaks were obtained in experiments involving mixtures of metal ions of Cd(II)-Zn(II), Cu(II)-Zn(II), Cu(II)-Cd(II) and Cd(II)-Ni(II). Biosorption of Cd(II), Zn(II) increased with solution pH. The method was also tested as a rapid technique for assessing removal of metal ions by live bacteria and the ability of the polarographic technique in measuring biosorption of metal ions from mixed metal solutions is demonstrated. Cu(II) was preferentially bound and removal of metals was in the order Cu(II) > Ni(II) > Zn(II), Cd(II) by intact cells of P. cepacia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The present study investigated the water quality index (WQI) of the Kshipra river at Dewas, Madhya Pradesh, India, using native fish Labeo rohita, and plant Eichhornia crassipes. The temperature, pH, dissolved oxygen, alkalinity, turbidity, and dissolved solids were found to be within the prescribed limits. However, heavy metals concentration exceeded the limit except for Cu and Zn. Their occurrence in river water was as follows: Ni > Fe > Cd > Cr > Mn > Zn > Cu. Among these heavy metals, Cd was found to be highly bioavailable, whereas Zn was the least bioavailable metal. Based on WQI, the water was found to be unfit for drinking, and the high WQI value was due to the presence of Cr and Cd. In fish tissues (muscle, liver, gut, gills, and kidney), the highest and lowest metal pollution index was found in gills (45.03) and kidneys (12.21), respectively. Bioaccumulation of these metals resulted in significant depletion of energy reserves (protein, glucose, and glycogen) and also altered hematological parameters. Moreover, liver function tests showed hepatic damage in the exposed fish. In-plant, both the bioaccumulation and mobility factor exceeded 1 for all these metals. On the other hand, the translocation factor was found to be beyond 1 for Fe, Ni, and Zn. These high values make this plant fit for phytoextraction of Mn, Fe, Cu, Zn, and Cd and phytostabilization of Cr in water. Moreover, consumption of L. rohita from the Kshipra River does not pose a non-cancer risk as the target hazard quotient was below 1, but it may pose cancer risk because of the presence of Cr in the range of 1.402 × 10?3 to 1.599 × 10?3.  相似文献   

20.
Chen BY  Wu CH  Chang JS 《Bioresource technology》2006,97(15):1880-1886
The toxicity of Co(II), Mn(II), Cd(II), and Zn(II) for Pseudomonas aeruginosa PU21, a Hg(II)-hyperresistant strain containing the mercury resistance mer operon, was determined. The metal tolerance of PU21 was strongly influenced by environmental conditions (e.g., existing metal, medium composition). Dose-response analysis on chronic and acute toxicity (e.g., EC(20), median effective dose EC(50), and slope factor B) of divalent cobalt, manganese, cadmium, and zinc cations in LB medium amended with citric acid phosphate buffered saline (CAPBS) suggested a toxicity series of Co > Mn approximately Zn > Cd for EC(50). In contrast, excluding the likely precipitate of Zn(II), the toxicity ranking in phosphate-buffered saline (PBS)-amended LB medium was Co > Cd > Mn. The metal toxicity in PBS, irrespective of metals, was greater than that in CAPBS. This might be attributed to the presence of citric acid in CAPBS as a chelating ligand donating electrons to hold free metals (e.g., Cd(2+), Zn(2+) tetrahedral ML(4) complex). The toxicity assessment established viable operation ranges (ca. 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号