首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 977 毫秒
1.
We examined the transfer of cadmium (Cd), inorganic mercury [Hg(II)], methylmercury (MeHg), and zinc (Zn) in an intertidal rocky shore food chain, namely from marine phytoplankton to suspension-feeding rock oysters (Saccostrea cucullata) and finally to predatory whelks Thais clavigera. The uptake of metals from the dissolved phase was also concurrently quantified in the oysters and the whelks. Metal uptake by the oysters was not directly proportional, whereas metal uptake by the whelks was directly proportional to metal concentration in the water. The order of uptake was MeHg>Hg(II)>Zn>Cd, and was much higher in the oysters than in the whelks. The relative uptake of Zn and Cd was comparable between oysters and whelks, whereas MeHg and Hg(II) showed disproportionally higher uptake in oysters than in whelks as compared to Zn and Cd. The assimilation efficiencies (AEs) were in the order of MeHg>Zn>Cd=Hg(II) in oysters, whereas the AEs were highest for MeHg and comparable for Zn, Cd, and Hg(II) in the whelks. Pre-exposure of the oysters to different dissolved concentrations of Cd significantly elevated the AEs of Cd and Hg(II) but not of Zn, in association with the induction of metallothioneins in the oysters. The whelks significantly assimilated Cd and Zn from various prey (barnacles, oysters, mussels, and snails) with contrasting strageties of metal sequestration and storage. There was no significant relationship between the metal AE and the metal partitioning in the soluble fraction (including metallothionein-like proteins, heat stable protein, and organelles). The insoluble fraction of metals was also available for metal assimilation. Our calculations show that the dietary uptake of metals can be dominant in the overall bioaccumulation in the oysters and whelks, and the trophic transfer factor was >1 for all metals. Thus, the four metals have a high potential of being biomagnified in the intertidal rocky shore food chain. MeHg possessed the highest and Hg(II) and Cd the lowest potential of trophic transfer among the four metals considered.  相似文献   

2.
We test the hypothesis that accumulated metal in prey that is trophically available to one predator is not necessarily equally trophically available to another predator feeding on the same prey, given the variability between invertebrate digestive systems. We provided two predators, the neogastropod mollusc Hinia reticulata and the palaemonid decapod crustacean Palaemonetes varians, with the digestive glands and adductor muscles of four bivalves radiolabelled with Zn, Cd or Ag. The bivalves (the mussel Mytilus edulis, the clam Ruditapes philippinarum, the scallop Aequipecten opercularis, the oyster Crassostrea gigas) have different metal accumulation patterns with differential dependence on soluble and insoluble detoxification, as confirmed by fractionation of the prey tissues. We found no consistent significant difference between the AE of the two predators for the three trace metals accumulated in the same prey tissues. There were no significant correlations for either predator between percentages of metal in soluble form (or soluble form with organelle-associated metal) and percentage AE for any of the three metals, allowing the conclusion that both predators are assimilating each metal from more than the soluble and organelle-associated metal fractions. For neither predator did an increased percentage of Zn in the form of metal rich granules (MRG) affect its Zn AE, but increases in the percentages of both Cd and Ag bound to MRG decreased the AE of the relevant metal in P. varians but not H. reticulata. Thus the Cd and Ag in some Cd-rich and Ag-rich granules in the bivalve tissues are not as trophically available to P. varians as they are to H. reticulata. This interspecific difference confirms that the neogastropod has the stronger digestive and assimilative powers involving Cd and Ag bound in prey than the palaemonid decapod.  相似文献   

3.
The assimilation of trace metals from food can be the main route of metal uptake into aquatic invertebrates. The assimilation efficiencies of zinc and cadmium from muscle tissue of a cephalopod mollusc (40% to 70% Zn, 64% to 83% Cd) and from a macrophytic alga (50% to 69% Zn, 39% to 50% Cd) were measured in juvenile penaeid prawns Penaeus indicus. Assimilated Zn and Cd were retained mostly in the hepatopancreas of the prawns, some metal being excreted (Zn ke 0.10 and 0.11 and Cd ke 0.004 and 0.009, from cephalopod muscle and alga, respectively). There were no significant differences between kes (efflux rate constants) of one metal from either diet. Given the high trace metal assimilation efficiencies measured here, it is highly probable that metal assimilation from food plays an important role in Zn and Cd accumulation in the body of P. indicus, particularly in estuarine stages of the life cycle, for estuaries are particularly prone to metal pollution and are likely to offer the prawns abundant metal-rich diets such as detrital material derived from local macrophytes.  相似文献   

4.
Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularlyBalanus amphitrite) as trace metal biomonitors in coastal waters, identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the highest known in marine invertebrates.  相似文献   

5.
We examined the assimilation of Cd, Cr, and Zn by the green mussel Perna viridis under complicated food conditions, including combinations of different compositions and concentrations of food (diatom and sediment), and variable food quantity and quality during particle digestion. At different combinations of food composition and quantity (5 mg l−1 and 20 mg−1, below and above the pseudofeces production), the Cd assimilation was significantly dependent on the food composition. The Cd assimilation efficiency (AE) decreased with increasing proportions of sediments in the diets, but its assimilation was not significantly affected by food concentration. In contrast, the assimilation of Cr and Zn decreased significantly with increasing food concentrations, whereas food composition did not significantly affect their AEs. Variations in metal gut passage time accounted partially for the difference in AEs among different combinations of food composition and quantity. By changing the type of particles during metal digestion, their AEs were maintained comparably at a low particle load (1 mg l−1), suggesting that variation of food quality during digestion did not affect metal assimilation. At a higher particle load (5 mg l−1), variation of food type during digestion affected the AEs of Cr and Zn. An increase in food concentrations from 1 to 15 mg l−1 during digestion resulted in a significant decrease in the AEs of Cr and Zn bound with either sediments or diatoms. Conversely, decreasing the food concentrations from 15 to 1 mg l−1 did not affect the AEs of metals, except for Zn bound with diatoms. Overall, our results highlighted the metal-specificity in their assimilation as influenced by complicated food environments, probably caused by different metal geochemical and biological behavior in the mussels. Feeding selectivity may have a greater control on the influx rate into the mussels than metal assimilation.  相似文献   

6.
The interaction between Cd and Zn in aquatic organisms is known to be highly variable. The purpose of this study was to use a subcellular compartmentalization approach to examine Cd and Zn interactions in the deposit-feeding polychaete Capitella capitata (sp. I). Laboratory-reared C. capitata were co-exposed to Cd (background or 50 μg Cd l− 1) and Zn (background or 86 μg Zn l− 1) with 109Cd and 65Zn as radiotracers for 1 week. After the 1-week uptake period, subsets of worms were allowed to depurate accumulated metals for an additional 1 week. Worms from both phases (uptake and loss) were then subjected to subcellular fractionation to determine the compartmentalization of metals as metal-sensitive fractions [MSF — organelles and heat-denaturable proteins (HDP)] and biologically detoxified metals [BDM — heat-stable proteins (HSP) and metal-rich granules (MRG)]. Uptake and loss of Cd and Zn in C. capitata at the whole body level were similar at bkgd-Cd/bkgd-Zn, with worms depurating the majority of accumulated metal (∼ 75% Cd and ∼ 64% Zn). When exposure of Zn or Cd was increased (bkgd-Cd/86-Zn; bkgd-Zn/50-Cd), uptake of background levels of Cd or Zn, respectively, was suppressed by ∼ 50%. These accumulated metals, however, were retained during the loss phase resulting in ∼ 40-50% greater Cd and Zn whole body tissue burdens than those of bkgd-Cd/bkgd-Zn worms. Beyond exhibiting similar patterns of uptake and loss at the whole body level, Cd and Zn behaved similarly at the subcellular level. Under background levels (bkgd-Cd/bkgd-Zn), after uptake, worms partitioned a majority of Cd (∼ 65%) and Zn (∼ 55%) to the HSP and organelles fractions. The HDP and MRG fractions contained less than ∼ 6% of both metals. Following depuration, at bkgd-Cd/bkgd-Zn, Cd and Zn were lost from all subcellular fractions; loss from HSP was the greatest contributor to whole body loss. When exposed to elevated concentrations of Zn or Cd, the suppression in uptake of bkgd-Cd or bkgd-Zn observed in whole body uptake was largely due to suppressions in the storage of Cd and Zn to HSP. These results suggest that Cd-Zn interactions reduce partitioning of both Cd and Zn to HSP, indicating that metal-binding proteins such as metallothioneins play a key role in these interactions.  相似文献   

7.
We assessed the degree to which Cd, Cr and Zn bound with sediment were assimilated by the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. The influences of the metal concentration in the sediment, the presence of phytoplankton, and the oxidation condition of the sediment on metal assimilation were examined. No major difference was found for metal assimilation efficiency (AE) in sediment with different metal concentrations, except for Cd in the green mussels, in which the AE increased by 1.7x when the Cd concentration in sediment was elevated to 15x the natural background level. The higher assimilation of Cd with increasing Cd load in ingested sediment may be due to the higher desorption of Cd in the acidic gut of the bivalves. Both mussels and clams assimilated metals at a higher efficiency from the diatom diet (Thalassiosira pseudonana) than from inorganic sediment particles. The presence of algal particles had little influence on metal assimilation from ingested sediment, and conversely, the presence of sedimentary particles had little effect on metal assimilation from ingested diatom (except for Cd in the mussels). In the mussels, AEs were higher from oxic sediment than from anoxic sediment by 3.1x for Cd, 2.0x for Cr, and 1.4x for Zn, and in the clams AEs were higher from oxic sediment by 2.8x for Cd, 2.0x for Cr, and 2.0x for Zn. Our study suggested that metals associated with anoxic sediment can be potentially available to marine bivalves, and that metal AEs determined for a single diet were probably not affected by the presence of other food particles.  相似文献   

8.
Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularly Balanus amphitrite) as trace metal biomonitors in coastal waters, identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the  相似文献   

9.
Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularly Balanus amphitrite) as trace metal biomonitors in coastal waters,identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the highest known in marine invertebrates.  相似文献   

10.
重金属在海洋食物链中的传递   总被引:36,自引:0,他引:36  
王文雄  潘进芬 《生态学报》2004,24(3):599-604
近年来 ,金属在不同海洋食物链中摄食富集的定量研究得到越来越多的关注。自然环境中生物体内金属的浓度并不一定和生物在食物链中所处的营养级有相关关系 ,金属在生物体内的富集还受到生物的同化、排出等过程以及其它生理生化因子的影响。在经典的海洋浮游生物食物链中 (浮游植物→桡足类→鱼类 ) ,桡足类往往可以很有效地排出体内的金属 ,同时鱼类的金属同化率又很低 ,所以该食物链中金属的浓度随食物链水平增加而减少。目前研究发现只有甲基汞和铯 Cs会被食物链所放大。在以腹足动物为顶级捕食者的底栖食物链中 ,因为生物结合金属的效率很高 ,高同化率和低排出率导致金属浓度在生物体内得到放大。重金属在生物体内的可利用性可以通过测定同化率、排出率等参数、并结合考虑生物对该金属的消化行为 ,运用一个简易的动态模型来估算。已有的研究中人们多考虑金属的化学性质对食物链传递的影响。着重介绍了近年来国外对金属在不同海洋食物链 (底栖和浮游 )中的传递的研究成果 ,强调在金属的生物可利用性评估中 ,要充分考虑到动物的生理、生化过程的影响 ,同时也必须认识到不同的海洋生物有着复杂且不同的金属代谢机制  相似文献   

11.
Enhanced tolerance of aquatic organisms to metal toxicity is one of the important issues of environmental monitoring programs. Determination of dominant uptake route(s) of metals may help to better predict the toxic effects posed by metals. This study aimed to investigate the importance of Zn uptake routes on tolerance and energy reserves of Daphnia magna. Neonates of D. magna were exposed to water-borne zinc, dietary zinc (algae Pseudokichneriella subcapitata loaded with Zn) or to combination of both for 4 days. LC50 (48 h) values of Zn were considerably different from different zinc pre-exposures. Four-day pre-exposure of D. magna neonates produced enhanced tolerance to Zn toxicity. The lowest LC50 values were found in controls (48.2 microM) (no Zn added to their exposure medium and food) and after water-borne Zn pre-exposures (46.2 microM). The level of tolerance increased when dietary Zn was included in pre-exposures, reaching the highest level of LC50 value (70.8 microM) in the highest pre-exposure concentration of diet and water-borne combination experiment. The energy reserves of D. magna also varied significantly under different pre-exposure routes of zinc. In all cases, control animals contained lowest levels of protein, sugar and lipid. Likewise, they represented the lowest energy reserves. Protein levels were highest in the highest dietary Zn exposure, and lowest in the water-borne exposures. Highest and lowest sugar levels were measured in the lowest and highest water-borne Zn exposures, respectively. In contrast, lipid levels were higher in the higher Zn exposure of all exposure routes, the combination exposure resulting in highest lipid levels. The highest total energy reserve was measured in animals that lived in the highest Zn exposure of diet and water-borne combination experiment, mainly due to greater lipid reserves in algae reared in Zn containing media. Results suggest that the dietary exposure route should be considered carefully in natural monitoring studies, and be considered in regulatory assessments of zinc and population dynamics of cladocerans.  相似文献   

12.
The P1B-type heavy metal ATPases (HMAs) are diverse in terms of tissue distribution, subcellular localization, and metal specificity. Functional studies of HMAs have shown that these transporters can be divided into two subgroups based on their metal-substrate specificity: a copper (Cu)/silver (Ag) group and a zinc (Zn)/cobalt (Co)/cadmium (Cd)/lead (Pb) group. Studies on Arabidopsis thaliana and metal hyperaccumulator plants indicate that HMAs play an important role in the translocation or detoxification of Zn and Cd in plants. Rice possesses nine HMA genes, of which OsHMA1–OsHMA3 belong to the Zn/Co/Cd/Pb subgroup. OsHMA2 plays an important role in root-to-shoot translocation of Zn and Cd, and participates in Zn and Cd transport to developing seeds in rice. OsHMA3 transports Cd and plays a role in the sequestration of Cd into vacuoles in root cells. Modification of the expression of these genes might be an effective approach for reducing the Cd concentration in rice grains.  相似文献   

13.
The vent mussel Bathymodiolus azoricus, host thioautotrophic and methanotrophic bacteria, in their gills and complementary, is able to digest suspended organic matter. But the involvement of nutritional status in metal uptake and storage remains unclear. The influence of B. azoricus physiological condition on its response to the exposure of a mixture of metals in solution is addressed. Mussels from the Menez Gwen field were exposed to 50 μg L− 1 Cd, plus 25 μg L− 1 Cu and 100 μg L− 1 Zn for 24 days. Four conditions were tested: (i) mussels harboring both bacteria but not feed, (ii) harboring only methanotrophic bacteria, (iii) without bacteria but fed during exposure and (iv) without bacteria during starvation. Unexposed mussels under the same conditions were used as controls. Eventual seasonal variations were assessed. Metal levels were quantified in subcellular fractions in gills and digestive gland. Metallothionein levels and condition indices were also quantified. Gill sections were used for fluorescence in situ hybridization (FISH) to assess the temporal distribution of symbiotic associations. Starvation damages metal homeostasis mechanisms and increase the intracellular Zn and MT levels function. There is a clear metallic competition for soluble and insoluble intracellular ligands at each condition. Seasonal variations were observed at metal uptake and storage.  相似文献   

14.
This work aimed to validate the relationship between metallothioneins (MTs) and metals (Cd, Cu and Zn) in field conditions. Specimens of the marine bivalve Ruditapes decussatus (Linné, 1758) from Gargour were transferred in two sites: Gargour and Sidi Mansour, both situated along the south-eastern coast of Tunisia. The bivalves were removed from pairs of cages at day 0 (date of transplantation), day 62 and day 132. Metals (Cd, Cu and Zn) and MTs were determined in the subcellular fractions of the digestive gland. In Gargour, metal and MT levels increased significantly after 62 days of transplantation. However, they showed modest and non-significant variations in Sidi Mansour. Zn was mainly associated with the insoluble fraction, whereas Cd and Cu percentages in the soluble and the insoluble fractions were equivalent. Simple correlation analysis showed a positive and significant relationship between MTs and each metal. If all metals were taken together, multiple correlations showed that MTs were significantly correlated with Cd and Zn, with an important coefficient for Cd, but no significant relationship was observed for Cu. Gel filtration chromatography showed that in the heat stable fraction, the only cytosolic SH rich compounds have an apparent low molecular mass (about 15 kDa), which could correspond to metallothioneins. In the digestive gland of R. decussatus MTs responded to moderate increases of metal contamination, without interference with other factors, and could be a promising biochemical indicator of metal exposure.  相似文献   

15.
16.
Vacuolar compartmentalization or cell wall binding in leaves could play a major role in hyperaccumulation of heavy metals. However, little is known about the physiology of intracellular cadmium (Cd) sequestration in plants. We investigated the role of the leaf cells in allocating metal in hyperaccumulating plants by measuring short-term (109)Cd and (65)Zn uptake in mesophyll protoplasts of Thlaspi caerulescens "Ganges" and Arabidopsis halleri, both hyperaccumulators of zinc (Zn) and Cd, and T. caerulescens "Prayon," accumulating Cd at a lower degree. The effects of low temperature, several divalent cations, and pre-exposure of the plants to metals were investigated. There was no significant difference between the Michaelis-Menten kinetic constants of the three plants. It indicates that differences in metal uptake cannot be explained by different constitutive transport capacities at the leaf protoplast level and that plasma and vacuole membranes of mesophyll cells are not responsible for the differences observed in heavy metal allocation. This suggests the existence of regulation mechanisms before the plasma membrane of leaf mesophyll protoplasts. However, pre-exposure of the plants to Cd induced an increase in Cd accumulation in protoplasts of "Ganges," whereas it decreased Cd accumulation in A. halleri protoplasts, indicating that Cd-permeable transport proteins are differentially regulated. The experiment with competitors has shown that probably more than one single transport system is carrying Cd in parallel into the cell and that in T. caerulescens "Prayon," Cd could be transported by a Zn and Ca pathway, whereas in "Ganges," Cd could be transported mainly by other pathways.  相似文献   

17.
In Appreciation     
Marine animals can induce metallothioneins (MTs) in their responses to exposure to certain trace metals in the environment. MTs generally function as metal storage/detoxification or homeostatic regulation of both essential and non-essential metals. This review discusses the important roles of MTs in metal biokinetics other than metal detoxification and homeostasis in marine animals. Recent studies have revealed the complicated cellular and biochemical processes involving intracellular ligands (cytosolic proteins and insoluble deposits) during metal uptake and elimination. The responses of metal biokinetics to MT induction are metal- and organism-specific. Depending on the different marine animals and metals, all biokinetic parameters such as dissolved metal uptake rate, dietary assimilation efficiency and elimination (efflux) rate can be significantly impacted by MT induction. Among the different metal biokinetic parameters, dietary assimilation efficiency and elimination rate appear to be most impacted by MT induction. MT turnover kinetics can also significantly affect metal uptake kinetics, but again, such influence is also dependent on the organism, particularly its predominant pathway of metal detoxification. Even though the total MT pool in aquatic animals may remain constant, the turnover of MTs, involving MT synthesis and breakdown, can potentially lead to a major change of metal accumulation biokinetics. We propose several issues that need to be further addressed in studying the interaction between MT induction and metal accumulation biokinetics.  相似文献   

18.
Abstract

This paper evaluates the bioavailability of As, Cd, Cu, Mn, Hg, Ni and Zn in the coastal waters of the two most important bays in southern Spain (Cádiz and Algeciras). Concentrations of these metals were measured in the bodies of Balanus amphitrite barnacles in 2005 and 2006. Seawater samples were collected from the same sites as the barnacles to assess metal concentrations and to gain additional information on the environmental conditions. Analysis of variance (ANOVA) showed significant geographic differences in the local bioavailability of metals to the barnacles, as reflected in the concentrations of accumulated metals. Balanus amphitrite accumulates large amounts of metals, with high concentration factors for Zn, Cd, Cu and Mn, in relation to the concentrations in marine waters.  相似文献   

19.
Eleocharis acicularis was exposed to different concentrations of In, Ag, Pb, Cu, Cd, and Zn in the laboratory to assess its capability in accumulating these metals. After 15 days, 477 mg/kg dry wt. of In was accumulated by the roots; concentrations of Ag, Pb, Cu, Cd, and Zn in the shoots were 326, 1120, 575, 195, and 213 mg/kg dry wt., respectively. The results indicate that E. acicularis has the ability to accumulate these metals from water, making it a good candidate species for phytoremediation and phytomining.  相似文献   

20.
Bo Xu  Shen Yu 《Annals of botany》2013,111(6):1189-1195

Background and Aims

Anoxic conditions are seldom considered in root iron plaque induction of wetland plants in hydroponic experiments, but such conditions are essential for root iron plaque formation in the field. Although ferrous ion availability and root radial oxygen loss capacity are generally taken into account, neglect of anoxic conditions in root iron plaque formation might lead to an under- or over-estimate of their functional effects, such as blocking toxic metal uptake. This study hypothesized that anoxic conditions would influence root iron plaque formation characteristics and translocation of Zn and Cd by rice seedlings.

Methods

A hydroponic culture was used to grow rice seedlings and a non-disruptive approach for blocking air exchange between the atmosphere and the induction solution matrix was applied for root iron plaque formation, namely flushing the headspace of the induction solution with N2 during root iron plaque induction. Zn and Cd were spiked into the solution after root iron plaque formation, and translocation of both metals was determined.

Key Results

Blocking air exchange between the atmosphere and the nutrient solution by N2 flushing increased root plaque Fe content by between 11 and 77 % (average 31 %). The N2 flushing treatment generated root iron plaques with a smoother surface than the non-N2 flushing treatment, as observed by scanning electron microscopy, but Fe oxyhydroxides coating the rice seedling roots were amorphous. The root iron plaques sequestrated Zn and Cd and the N2 flushing enhanced this effect by approx. 17 % for Zn and 71 % for Cd, calculated by both single and combined additions of Zn and Cd.

Conclusions

Blocking of oxygen intrusion into the nutrient solution via N2 flushing enhanced root iron plaque formation and increased Cd and Zn sequestration in the iron plaques of rice seedlings. This study suggests that hydroponic studies that do not consider redox potential in the induction matrices might lead to an under-estimate of metal sequestration by root iron plaques of wetland plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号