首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Canopy-forming algae have been shown to play a fundamental role in the maintenance of understorey assemblages on rocky shores. In the Mediterranean, low-shore habitats are often monopolised by canopy algae of the genus Cystoseira and, in particular, by the species Cystoseira amentacea var. stricta. Alternatively, low-shore habitats are dominated by turf-forming algae and/or mussels. Previous studies showed that loss of Cystoseira, by natural or anthropogenic disturbances, resulted in the increase of turfing algae. Here, we propose that turf-forming algae may act as colonisers from nearby habitats, specifically from lower portions of the shore. The following hypotheses were tested to investigate this proposition: (1) in presence of Cystoseira, the assemblage living under its canopy will be distinct, in terms of composition and structure, from that found lower on the shore, (2) if the canopy of Cystoseira was removed, the differences between the two assemblages would decrease or disappear, (3) the effects of the canopy would be more important than other causes of variability at the spatial scale investigated (hundreds to thousands of metres), and (4) that effects of removal of the canopy would be consistent through time. These hypotheses were tested by means of a canopy removal experiment, involving several spatial and temporal repetitions of the manipulation.The assemblage underneath the canopy of Cystoseira was distinct from that found immediately lower on the shore, but when the canopy was removed there were no differences between the two. The effects of the canopy were consistent at the spatial and temporal scales investigated. Several species living under the canopy disappeared and were replaced by turf-forming species, resulting in a homogenisation of the two habitats and in a drastic loss of habitat diversity. This study shows that Cystoseira can be considered a habitat-forming species, responsible for the maintenance of two distinct low-shore assemblages. In this light, its importance should be taken into account by policies aiming to preserve biodiversity on rocky shores.  相似文献   

2.
Despite recent rapid increases in the occurrence of nonindigenous marine organisms in the marine environment, few studies have critically examined the invasion process for a marine species. Here we use manipulative experiments to examine processes of invasion for the Asian kelp Undaria pinnatifida (Harvey) Suringar at two sites on the east coast of Tasmania. Disturbance to reduce cover of the native algal canopy was found to be critical in the establishment of U. pinnatifida, while the presence of a stable native algal canopy inhibited invasion. In the first sporophyte growth season following disturbance of the canopy, U. pinnatifida recruited in high densities (up to 19 plants m−2) while remaining rare or absent in un-manipulated plots. The timing of disturbance was also important. U. pinnatifida recruited in higher densities in plots where the native canopy was removed immediately prior to the sporophyte growth season (winter 2000), compared with plots where the canopy was removed 6 months earlier during the period of spore release (spring 1999). Removal of the native canopy also resulted in a significant increase in cover of sediment on the substratum. In the second year following canopy removal, U. pinnatifida abundance declined significantly, associated with a substantial recovery of native canopy-forming species. A feature of the recovery of the native algal canopy was a significant shift in species composition. Species dominant prior to canopy removal showed little if any signs of recovery. The recovery was instead dominated by canopy-forming species that were either rare or absent in the study areas prior to manipulation of the canopy.  相似文献   

3.
We examined the effects of native kelps, Laminaria longicruris de la Pylaie and L. digitata (Hudson) Lamouroux, and of the invasive alga, Codium fragile ssp. tomentosoides (Van Goor) Silva, on the composition and abundance of mobile benthic macrofauna and of turf algae by measuring the response of these assemblages to experimental removal of the respective macroalgal canopy. From June 2003 to November 2004, we censused macrofauna and measured canopy cover within 4 × 10 m strips of alternating Canopy Intact (control) and Canopy Removed treatments in both a Codium- and a Laminaria-dominated habitat in the rocky subtidal zone of a semi-protected embayment on the Atlantic coast of Nova Scotia, Canada. Macroalgal canopy cover fluctuated seasonally, peaking in September/October (69% cover in 2003; 55% cover in 2004) for Codium and in May 2004 (70% cover) for kelps, and with both canopy types reaching a winter minimum in January 2004 (22 and 28% cover, respectively). In both Codium and Laminaria habitats, significant effects of canopy removal on the overall macrofaunal assemblage were evident only during periods in which canopy cover in the Canopy Intact treatment was ≥ 50%. In the Codium habitat, 4 out of 11 characteristic taxa were more abundant in the Canopy Intact treatment, where taxonomic diversity also was higher. In contrast, 4 out of 11 characteristic taxa in the Laminaria habitat were more abundant in the Canopy Removed treatment and diversity was similar between treatments. Turf algae were sampled in November 2004 and, despite between-treatment differences in the light regime, there was no significant effect of canopy removal. Our results indicate that selection of algal habitats by mobile macrofauna is likely determined by the different shelter and foraging opportunities offered by these morphologically dissimilar ecosystem engineers.  相似文献   

4.
The effects of small-scale disturbances (80×30-cm plots) of canopy and grazers on intertidal assemblages were investigated in this 4-year experiment on sheltered rocky shores on the Swedish west coast. Canopy disturbances due to ice scouring were mimicked by removal of adult plants of the seaweed Ascophyllum nodosum (L.) Le Joli. Density of the main epilithic grazing gastropods, Littorina spp., was lowered by exclosure and handpicking. Based on earlier experiments in other areas, the general hypothesis was that canopy removal and grazer exclosure, alone or in combination, should increase the recruitment of A. nodosum or other fucoid juveniles, and change the structure of the understorey assemblage.There was an effect of canopy removal on the development of this assemblage, lasting for more than 31 months. Both increased and decreased abundances of species were found as short-term effects, but there was also a longer-term effect with increased abundance. Grazer exclosure was only effective in combination with canopy removal, causing a short-term increase in ephemeral green algae. Short-term effects of canopy removal were also the increase in recruitment of Semibalanus balanoides (Linnaeus) and the decrease of the red alga Hildenbrandia rubra (Sommerfelt) Meneghini. Fast recruitment and growth of fucoid species (Fucus serratus L. and F. vesiculosus L.) restored the canopy and conditions of the understorey within 18 months. Thus, the canopy removal changed the physical conditions for the understorey, making it possible for other species to coexist in this community. Surprisingly, no effect of canopy removal or grazer exclusion was found on the recruitment of juvenile A. nodosum, neither by canopy removal nor grazer exclosure. The lack of such effects might be due to the early mortality caused by other grazers (small, mobile crustaceans), or to the low density of periwinkles on these shores. However, despite the patchy and generally low recruitment of A. nodosum juveniles, observations suggested that the cover of A. nodosum in manipulated patches would return to initial levels, either by recruitment or regrowth of small holdfasts and from growth of edge plants.  相似文献   

5.
Recovering populations may experience positive density-dependent feedbacks that contribute to population increases. Diadema antillarum, a keystone herbivore on Caribbean coral reefs, suffered a well-documented mass mortality in 1983-84. High densities of adults of this long-spined urchin could provide effective refuge from predation for juveniles under a spine canopy, as has been suggested for other urchin species. We evaluated the effect of adult density on juvenile persistence of D. antillarum experimentally, and examined size-frequency distributions of recovering local populations for evidence of positively density-dependent juvenile persistence at St. Croix, U.S. Virgin Islands. Juvenile persistence was significantly higher in high adult density treatments, and bimodal population size distributions also suggest potential positive effects of adult density on juveniles. This positive feedback could accelerate the recovery of this important coral reef grazer.  相似文献   

6.
Many damselfishes exclude other grazers from their territories and “farm” filamentous algae within their territories. In this study the indirect effect of damselfish territories on faunal composition and abundance of internal bioeroders of dead Acropora formosa (Dana, 1846) was investigated in territories of two damselfish species, Stegastes nigricans (Lacepède, 1802) and Plectroglyphidodon lacrymatus (Quoy and Gaimard, 1825). S. nigricans tends to be more protective and defend their territories more aggressively than P. lacrymatus. Newly killed branches of A. formosa were placed inside and outside damselfish territories, for 1 or 2 years, at a coral reef near Zanzibar, Tanzania. As predicted, the coral branches became covered with more filamentous algae in the S. nigricans territories than in the controls, with intermediate levels in the P. lacrymatus territories. Among the internal bioeroding fauna, polychaetes were by far the most common group. In total, there were significantly more borers in the first year than the second, which was mainly due to a high abundance of sabellids. Furthermore, sabellids were significantly more abundant in control areas and in the P. lacrymatus territories compared to the S. nigricans territories. However, many other genera showed the opposite pattern, with more polychaetes in the fish territories compared to the controls. There was also a clear difference in assemblage structure between S. nigricans territories and controls. Thus, we found strong effects of whether a piece of coral was placed inside or outside a damselfish territory on the abundance of many of the bioeroding taxa. We discuss multiple reasons for these indirect effects of the territories, including that deposit feeding bioeroders may benefit from the dense algal turf found inside the territories whereas suspension feeding bioeroders may benefit from substrate with less filamentous algae found outside territories. Considering our results in the context of the large areas of coral reefs that typically are defended as territories by damselfishes, these fish are likely to have a considerable impact on the boring community of a coral reef.  相似文献   

7.
Disturbance of competitive‐dominant plant and algae canopies often lead to increased diversity of the assemblage. Kelp forests, particularly those of temperate Western Australia, are habitats with high alpha diversity. This study investigated the roles of broad‐scale canopy loss and local scale reef topography on structuring the kelp‐dominated macroalgal forests in Western Australia. Eighteen 314 m2 circular areas were cleared of their Ecklonia radiata canopy and eighteen controls were established across three locations. The patterns of macroalgal recolonisation in replicate clearances were observed over a 34 month period. Macroalgal species richness initially increased after canopy removal with a turf of filamentous and foliose macroalgae dominating cleared areas for up to seven months. A dense Sargassum canopy dominated cleared areas from 11 to 22 months. By 34 months, partial recovery of the kelp canopy into cleared areas had occurred. Some cleared areas did not follow this trajectory but remained dominated by turfing, foliose and filamentous algae. As kelp canopies developed, the initial high species diversity declined but still remained elevated relative to undisturbed controls, even after 34 months. More complex reef topography was associated with greater variability in the algal assemblage between replicate quadrats suggesting colonising algae had a greater choice of microhabitats available to them on topographically complex reefs. Shading by canopies of either Sargassum spp. and E. radiata are proposed to highly influence the abundance of algae through competitive exclusion that is relaxed by disturbance of the canopy. Disturbance of the canopy in E. radiata kelp forests created a mosaic of different patch types (turf, Sargassum‐dominated, kelp‐dominated). These patch types were both transient and stable over the 34 months of this study, and are a potential contemporary process that maintains high species diversity in temperate kelp‐dominated reefs.  相似文献   

8.
Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undaria pinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.  相似文献   

9.
The role of anti-herbivore organismal defenses in algae-herbivore interaction is frequently investigated without taking into account the potential role of environmental factors in mediating the interaction. Here we reexamine the interaction between the highly acidic, brown alga Desmarestia viridis and the green sea urchin, Strongylocentrotus droebachiensis, by incorporating a previously overlooked facet, the effect of changes in the wave environment on the ability of the urchin to establish contact with the alga. Factorial experiments in a wave tank (presence versus absence of waves; real versus mimic algae) showed that the aggregation of urchins on D. viridis was more than 2-fold greater in the absence than in the presence of waves. Similar numbers of urchins made contact with natural and mimic D. viridis plants, both with and without waves, indicating that any external release of chemicals (acid) from the alga had no perceptible repulsive effect on the urchin. The ability of the urchins to climb onto D. viridis increased markedly when urchin density attained a critical level. These results were consistent with field observations that urchins readily attack D. viridis under conditions of low wave action but do not under conditions of moderate wave action. We conclude (1) that the chemical makeup of D. viridis alone is neither necessary nor sufficient to limit contacts by the urchins and that (2) wave action is a major factor explaining the survival of D. viridis on urchin barrens, because waves limit the movements of the urchins towards the alga. We recommend that studies addressing marine algal defenses against herbivores be more comprehensive and examine interactions between algal traits, the physical environment, and the abundance and behavioral repertoire of herbivores.  相似文献   

10.
We ran field experiments to examine the responses of the black sea urchin Tetrapygus niger to predatory sea stars. Trials involving simulated attacks (one or several arms of a sea star being placed on top of half the urchin) showed that the urchin differentiated between the predatory sea stars, Heliaster helianthus and Meyenaster gelatinosus, and a non-predatory sea star, Stichaster striatus, and showed almost no response to a sea star mimic. We further compared the responses of the urchin to different threat levels presented by the two predatory sea stars. The highest threat level was a simulated attack, then mere contact, and subsequently sea stars being placed at different distances from the urchin. All urchins responded to simulated attacks and contact with both sea stars. The proportion responding decreased with distance and more rapidly in trials with H. helianthus (0% at a distance of 30 cm) than with M. gelatinosus (33% at a distance of 50 cm). At each of the threat levels where there was a response to both sea stars, the urchins responded more rapidly to M. gelatinosus than to H. helianthus. In a third experiment where a predatory sea star was added to a circular area (1-m diameter) in which either 4-8 or 11-19 undisturbed urchins were present, the urchins fled the area more rapidly when the added sea star was M. gelatinosus, but the rate of fleeing did not vary with density, as might occur if there was communication among urchins using alarm signals. Our observations suggest that M. gelatinosus presents a stronger predatory threat than H. helianthus. This corresponds to field observations showing that the urchins are more frequently consumed by M. gelatinosus. These are the first field experiments demonstrating distance chemodetection by a marine invertebrate under back-and-forth water flow from wave activity.  相似文献   

11.
Summary When the common sea urchin Diadema antillarum was removed from a 50 m strip of reef in St. Thomas, US Virgin Islands, cover of upright algae and the grazing rates and densities of herbivorous parrotfish and surgeonfish increased significantly within 11–16 weeks when compared to immediately adjacent control areas. Sixteen months after removal, Diadema had recovered to 70% of original density, abundance of upright algae no longer differed between removal and control areas, and the abundance and grazing activity of herbivorous fish in the removal was approaching equivalence with control areas. On a patch reef in St. Croix that had been cleared of Diadema 10–11 years earlier (Ogden et al. 1973b), urchins had recovered to only 50–60% of original density. This reef still showed significantly higher rates of grazing by fish and a significantly greater density of parrotfish and surgeonfish than a nearby control reef where Diadema densities had not been altered. These results indicate that high Diadema densities (7–12/m2 for this study) may suppress the densities of herbivorous fish on Caribbean reefs.  相似文献   

12.
Ling SD 《Oecologia》2008,156(4):883-894
Global climate change is predicted to have major negative impacts on biodiversity, particularly if important habitat-modifying species undergo range shifts. The sea urchin Centrostephanus rodgersii (Diadematidae) has recently undergone poleward range expansion to relatively cool, macroalgal dominated rocky reefs of eastern Tasmania (southeast Australia). As in its historic environment, C. rodgersii in the extended range is now found in association with a simplified 'barrens' habitat grazed free of macroalgae. The new and important role of this habitat-modifier on reef structure and associated biodiversity was clearly demonstrated by completely removing C. rodgersii from incipient barrens patches at an eastern Tasmanian site and monitoring the macroalgal response relative to unmanipulated barrens patches. In barrens patches from which C. rodgersii was removed, there was a rapid proliferation of canopy-forming macroalgae (Ecklonia radiata and Phyllospora comosa), and within 24 months the algal community structure had converged with that of adjacent macroalgal beds where C. rodgersii grazing was absent. A notable scarcity of limpets on C. rodgersii barrens in eastern Tasmania (relative to the historic range) likely promotes rapid macroalgal recovery upon removal of the sea urchin. In the recovered macroalgal habitat, faunal composition redeveloped similar to that from adjacent intact macroalgal beds in terms of total numbers of taxa, total individuals and Shannon diversity. In contrast, the faunal community of the barrens habitat is overwhelmingly impoverished. Of 296 individual floral/faunal taxa recorded, only 72 were present within incipient barrens, 253 were present in the recovered patches, and 221 were present within intact macroalgal beds. Grazing activity of C. rodgersii results in an estimated minimum net loss of approximately 150 taxa typically associated with Tasmanian macroalgal beds in this region. Such a disproportionate effect by a single range-expanding species demonstrates that climate change may lead to unexpectedly large impacts on marine biodiversity as key habitat-modifying species undergo range modification.  相似文献   

13.
There is considerable controversy about the role of individual species in ecosystem functioning. Most models stress the role of species richness and diversity in ecosystem function, but it is also recognised that individual species or functionally similar species can play prominent roles in assessments of function. There have been relatively few tests of functional replacement by similar species in the marine environment. On intertidal reef platforms in southern New Zealand, six species of fucoid algae co-occur. Two of these, Cystophora torulosa and Hormosira banksii, have extensive cover in the mid-tidal zone. These species were removed from their areas of dominance in the mid-tidal zone at two sites and followed for several years to determine how resilient they are to disturbance, what processes determine functional recovery, the role of the dominant grazer, the gastropod Turbo smaragdus, in the recovery process, and whether there is functional replacement of species. In the C. torulosa removal experiment, H. banksii recruited rapidly into removal treatments within the first year at one site, but this took a year longer at the other site. A press removal of C. torulosa developed almost 100% cover of H. banksii after 3 years, but only at one site. In the pulse treatment, there was a mixed stand of the two species after 3-4 years. In the H. banksii removal experiment, there was no functional replacement by other species. The rate of recovery for H. banksii was variable. Bare space increased following canopy removal, particularly on the higher shore treatment at one site, because of the burn-off of newly exposed turfing coralline algae, which had not fully recovered by the end of the experiment. After 10 months, there were 20-40% fewer species in the removal plots in both experiments than in controls. T. smaragdus grazing had great effects on ephemeral algae, but not on the fucoids. The conclusion is that these fucoid species have no functional equivalents in their areas of dominance. They are the autogenic engineers or foundation species on which most other species in their communities rely. There is little buffering overall in these mid-shore zones should these species be lost or severely reduced in abundance. They are, therefore, key species in the function of the intertidal system and must be understood if the functioning of these areas is to be managed effectively. These results are discussed in the spirit of this festschrift for AJ Underwood.  相似文献   

14.
Reef-associated fishes can respond to changes in habitat structure and the nature of their response can change with different spatial scales of observation. A structured hierarchical mensurative sampling design was used to sample temperate reef fish assemblages in northeastern New Zealand at several spatial scales over 2 years. The three spatial scales examined were tens of meters (transects), hundreds to thousands of meters (sites) and hundreds of kilometers (locations). We tested the hypothesis that fish assemblages differed between kelp forest habitat (relatively dense stands of the kelp, Ecklonia radiata (C. Agardh) J. Agardh, median depth=13.5 m) and barrens habitat (rocky reef dominated by turfing and encrusting red algae and the grazing urchin, Evechinus chloroticus (Valenciennes), median depth=6.7 m). Recently developed multivariate techniques were used to test for and quantify multivariate variation at different spatial scales. There were significant effects of habitat on the spatial distribution of fish assemblages, characterised by greater abundances or frequencies of Parika scaber, Chromis dispilus, Trachurus novaezelandiae, Nemadactylus douglasii, Bodianus unimaculatus, Odax pullus and Pseudolabrus miles in kelp forest habitat, and greater abundances or frequencies of Notolabrus celidotus, Notolabrus fucicola, Girella tricuspidata, Coris sandageri, Chironemus marmoratus, Parma alboscapularis, Scorpis violaceus and Kyphosus sydneyanus in barrens habitat. Some of the more common species, including Upeneichthys lineatus, Scorpis lineolatus and Cheilodactylus spectabilis showed no strong consistent effects of these two differing habitats on their distributions. There was, however, a significant Habitat×Locations interaction: effects of habitat did not occur at all locations. Variability was highest at the scale of individual transects and variability from site to site and from location to location was comparable. Spatial variation was large compared to inter-annual variation, which was minimal, and spatial patterns were consistent in the 2 years examined. Further experiments, including manipulations, are required to understand what mechanisms and processes might be driving these patterns. This study, coupled with results from previous studies, suggests that there may be a dynamic inter-play between effects of habitat on fish and effects of fish on biogenic habitat, such as kelp forests.  相似文献   

15.
The role of green sea urchin Strongylocentrotus droebachiensis as a source of fecal particulate organic matter (POM) for the benthic nearshore ecosystems has been studied over a 3.5-month period. Three macroalgae were tested as food sources: Alaria esculenta, Laminaria longicruris and Ulvaria obscura. Urchins were fed ad libitum with either a single alga species or a mixture of all three algae. Consumption and defecation rates were determined as well as the feces/alga ratio in term of biomass and biochemical composition. Consumption rate increased exponentially with urchin size and also varied with alga species. In the single alga trial, consumption rate was higher for both brown algae (Laminaria and Alaria) compared to Ulvaria. Urchins feeding on the mixture of algae maintained their total ingestion rate (sum of the three algae) at the same level to those feeding on a single alga diet. The mixed algae trial showed that urchins clearly preferred Laminaria (72% of total ingestion) over Alaria (22%) and Ulvaria (6%). The defecation rate was tightly correlated with the food consumption rate and thus increased with urchin size. On average, 75% of the ingested algal biomass was released as fecal POM. The percentage of food defecated changed with alga species, with the highest value for Alaria (81%) and the lowest for Laminaria (67%). The percentage of food defecated by urchins feeding on the mixture of algae was generally comparable to those feeding on single alga diet. Biochemical composition (in soluble carbohydrates, proteins and lipids) of urchin fecal POM reflected that of the algae content. From 40% to 80% of macronutrients in algal food persisted in fecal matter. This proportion varied with the alga species and macronutrient considered. This study shows that the green sea urchin plays a significant role in the production of POM within nearshore benthic ecosystems, and it is a potentially nutritious food source for detritivores.  相似文献   

16.
Estimates of reef fish densities made by divers visually censusing 5 m wide strip transects were compared with capture-resight estimates calculated independently using data on the resighting frequencies of fish marked with colour-coded tags. The difference in density estimates between methods varied between species but with patterns consistent at the three eastern Tasmanian sites studied. Densities of the two most abundant species, the wrasses Notolabrus tetricus and Notolabrus fucicola, showed good agreement between methods. By contrast, populations of the two monacanthids Meuschenia australis and Meuschenia freycineti were underestimated by an order of magnitude in strip transects relative to capture-resight, while populations of the open-water latrid Latridopsis forsteri were overestimated.For all common fish species observed in strip transects, variation in density estimates between divers was extremely low compared to variation between sites and between months. Variation in density estimates between different days within a week and between 50 m blocks located 50 m apart was also negligible; however, residual error associated with variation by a single diver within a block and day was high. Biases associated with changing detectability of fishes in open versus densely vegetated habitats were assessed by algal removal experiments, and were found to be negligible or non-significantly low for five of the six species examined. The exceptional species—N. tetricus—exhibited a 70% rise in fish sighted by diver following algal clearance despite trapping data indicating no increase in fish numbers.Diver estimates of fish length were on average 7% greater than measured lengths. Divers possessed a clear tendency to make increasingly inaccurate size estimates as fish length deviated in either direction from 300 mm. Lengths of 175-mm animals were underestimated by ≈20% and 400-mm fishes were overestimated by ≈10%. These changes in diver bias with fish size were largely independent of fish species, site and diver. The precision of size estimates, as indicated by the standard deviation of bias, also varied with fish size, with values varying from ≈13% at 200 mm fish length to ≈8% at 400 mm length. The decline in precision at small body size largely reflected size intervals used by divers to bin data. Divers appear capable of making more precise size estimates than the 25-mm interval used at small fish sizes.  相似文献   

17.
In the sublittoral kelp forests of New South Wales, dictyotalean turfing algae dominate the substratum in areas where kelp canopies have been removed by storms. The effects of the presence of these algae on the recruitment of kelp plants and the subsequent structure of the benthic community were determined. Areas of turfing algae in clearings were experimentally cleared of turf at a time of dense kelp settlement, and areas of the kelp canopy were also removed. These treatments were compared with unmanipulated areas of turf in clearings and areas under the kelp canopy. The number of kelp recruits in each replicate plot was recorded throughout time as were the abundances of most of the macroscopic and microscopic species living on the substratum. Kelp was found to recruit very quickly to areas of substratum which had the overlying kelp canopy removed, but few recruits appeared under the natural canopy, or in areas with turfing algae, or in clearings where turfing algae had been removed. The results showed that whilst the presence of a natural kelp canopy and/or turfing algae inhibited the recruitment of kelps, removal of turfing species from clearings did not facilitate kelp recruitment. This indicated that the presence of turf did not solely inhibit kelp recruitment, but some lingering influence of turf seems to affect the substratum in clearings such that kelp cannot recruit to such areas. Turfing species returned and dominated the substratum in clearings where turf had been removed. After an initial decline, encrusting species increased in abundances in clearings where kelp recruited as these recruits developed a canopy. Turf and encrusting species remained great in cover in the respective control treatments. The results are discussed in terms of alternate stable states within this community. Such concepts are concluded to be dependent upon the spatial and temporal scales of one's investigation.  相似文献   

18.
The formation of sea urchin ‘barrens’ on shallow temperate rocky reefs is well documented. However there has been much conjecture about the underlying mechanisms leading to sea urchin barrens, and relatively little experimentation to test these ideas critically. We conducted a series of manipulative experiments to determine whether predation mortality is an important mechanism structuring populations of the sea urchin Heliocidaris erythrogramma in Tasmania. Tethered juvenile and adult sea urchins experienced much higher rates of mortality inside no-take marine reserves where sea urchin predators were abundant compared to adjacent fished areas where predators were fewer. Mortality of tagged (but not tethered) sea urchins was also notably higher in marine reserves than in adjacent areas open to fishing. When a range of sizes of sea urchins was exposed to three sizes of rock lobsters in a caging experiment, juvenile sea urchins were eaten more frequently than larger sea urchins by all sizes of rock lobster, but only the largest rock lobsters (> 120 mm CL) were able to consume large adult sea urchins. Tagging (but not tethering) juvenile and adult sea urchins in two separate marine reserves indicated that adult sea urchins experience higher predation mortality than juveniles, probably because juveniles can shelter in cryptic microhabitat more effectively. In a field experiment in which exposure of sea urchins to rock lobster (Jasus edwardsii) and demersal reef fish predators was manipulated, rock lobsters were shown to be more important than fish as predators of adult sea urchins in a marine reserve. We conclude that predators, and particularly rock lobsters, exert significant predation mortality on H. erythrogramma in Tasmanian marine reserves, and that adult sea urchins are more vulnerable than smaller cryptic individuals. Fishing of rock lobsters is likely to reduce an important component of mortality in H. erythrogramma populations.  相似文献   

19.
A comparison of Kenyan reefs of different historical and observed levels of fishing exploitation showed that more exploited reef lagoons had greater sea urchin densities and sizes, fewer and smaller fish and less coral cover. In the most exploited lagoon the biomass of the burrowing sea urchin Echinometra mathaei increased five fold during the previous 15 years. An ecological study of the three most common omnivorous sea urchin species inhabiting hard substrate within these reef lagoons (E. mathaei, Diadema savignyi and D. setosum) suggests that they are ecologically separated by predation and avoid predators and competitors by occupying different size burrows or crevices within the lagoon. Predator removal through fishing activities may result in ecological release of the sea urchins and result in competitive exclusion of weaker competitors. The most exploited reef had a nearly monospecific barren of E. mathaei living outside burrows suggesting that E. mathaei may be the top competitor. Its ecological release appears to lead to a decrease in live coral cover, increased substrate bioerosion and eventually a loss of topographic complexity, species diversity, fish biomass and utilizable fisheries productivity. Data from the outer reef edge were more difficult to interpret but may indicate similar patterns. Within this area, physical stresses such as waves and currents may be a greater controlling force in regulating fishing activities and coral reef community structure.  相似文献   

20.
In Hong Kong, the sea urchin, Anthocidaris crassispina (A. Agassiz, 1863), is an important grazer in low-shore rock pools, which are dominated by crustose coralline algae (CCA > 70% cover). The pools are emersed for an average of ∼ 6 h during daytime low tides, at which time the pool water becomes nitrogen enriched, primarily due to urchin excretion. This nitrogen enhancement potentially provides an episodic, additional, nitrogen source for the CCA. Factorial laboratory experiments were conducted to examine whether this nitrogen source contributed to CCA primary productivity and the relative importance of sea urchin induced effects (grazing vs. nitrogen regeneration). Urchin grazing significantly stimulated area-specific CCA productivity, although the CCA showed no response to nitrogen excretion, suggesting these algae were not nitrogen limited. This grazing enhanced CCA productivity apparently facilitates CCA to quickly occupy newly released, small, patches (cm) of bare surface and suggests that top-down (grazing) effects are more important then bottom-up (nitrogen) effects in controlling the dominance of CCA in low-shore, tropical, rock pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号