首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predation can result in differing patterns of local prey diversity depending on whether predators are selective and, if so, how they select prey. A recent study comparing the diversity of juvenile fish assemblages among coral reefs with and without predators concluded that decreased prey diversity in the presence of predators was most likely caused by predators actively selecting rare prey species. We used several related laboratory experiments to explore this hypothesis by testing: (1) whether predators prefer particular prey species, (2) whether individual predators consistently select the same prey species, (3) whether predators target rare prey, and (4) whether rare prey are more vulnerable to predation because they differ in appearance/colouration from common prey. Rare prey suffered greater predation than expected and were not more vulnerable to predators because their appearance/colouration differed from common prey. Individual predators did not consistently select the same prey species through time, suggesting that prey selection behaviour was flexible and context dependent rather than fixed. Thus, selection of rare prey was unlikely to be explained by simple preferences for particular prey species. We hypothesize that when faced with multiple prey species predators may initially focus on rare, conspicuous species to overcome the sensory confusion experienced when attacking aggregated prey, thereby minimizing the time required to capture prey. This hypothesis represents a community-level manifestation of two well-documented and related phenomena, the “confusion effect” and the “oddity effect”, and may be an important, and often overlooked, mechanism by which predators influence local species diversity.  相似文献   

2.
In marine species with a pelagic larval stage, search behavior and selection of a suitable reef habitat can maximize the settlement success of recently settled juveniles and their subsequent performance (growth and survival of juveniles). Our objective was to test this hypothesis for a single target coral reef fish species (Chromis viridis) at Moorea Island. C. viridis settle on living coral colonies of Porites rus already populated with conspecifics. In the present study (conducted in experimental cages), we found that: 1) mortality rate of recently settled juveniles of C. viridis was lower in the settlement habitat (living coral colonies of P. rus) than in other habitats having physical structure different from those of P. rus colonies; 2) C. viridis juveniles preferentially colonized coral heads of P. rus with conspecifics present rather than uninhabited coral heads and they also preferentially colonized uninhabited coral heads rather than coral heads with heterospecifics; 3) mortality rate of C. viridis juveniles did not vary with the presence or absence of conspecifics or heterospecifics on P. rus colonies. Overall, the study allows us to highlight that site selection by juveniles for habitat containing conspecifics does not benefit their short term mortality rates, suggesting that in the short term at least, site selection has little importance.  相似文献   

3.
Patterns in juvenile mortality rates can have a profound affect on the distribution and abundance of adult individuals, and may be the result of a number of interacting factors. Field observations at Lizard Island (Great Barrier Reef, Australia) showed that for a coral reef damselfish, Pomacentrus moluccensis, juvenile mortality (over 1 year) varied between 20 and almost 100% among sites. Correlative data showed that juvenile mortality increased as a function of initial densities (recruitment), predator densities and the availability of preferred coral substrata. A multiple regression showed that these three variables together did not explain significantly more variation in mortality than the single factor showing the strongest relationship. This appeared to be because recruitment, predator densities and preferred coral substrata were all highly correlated, suggesting that one, two or all of these factors may be influencing juvenile mortality rates. One hypothesis was that density-dependent mortality in juveniles was the result of an interaction between predators (which appear to aggregate at high-recruitment sites) and the availability of preferred substrata (predator refuges). We tested this hypothesis by using both laboratory and field experiments to see whether fish predation could significantly alter survivorship of this damselfish, and whether this impact was dependent upon the coral substratum. The laboratory experiment was designed to test the effects of three common predators (Pseudochromis fuscus, Cephalopholis boenak and Thalassoma lunare) and three different coral substrata that varied in their complexity (Pocillopora damicornis, Acropora nasuta and A. nobilis) on the survival of juvenile Pomacentrus moluccensis. There was a significant interaction between predator species and microhabitat in determining survival. Pseudochromis fuscus and C. boenak were both significantly better at capturing juvenile damselfish than T. lunare. Juvenile survivorship was significantly better when they were given the more complex corals, Pocillopora damicornis and A. nasuta, compared with those given the open-structured species A. nobilis. This pattern reflects habitat selection in the field. Predators differed in their strike rates and the proportion of strikes that were successful, but all exhibited greater success at prey capture where A. nobilis was provided as shelter. The interaction between the effect of predator species and microhabitat structure on damselfish survival was tested in the field for a cohort of juvenile Pomacentrus moluccensis. We examined juvenile survival in the presence and absence of two predators that co-occur on natural patch reefs (C. boenak and Pseudochromis fuscus). The experimental patch reefs we used for this purpose were constructed from both high complexity (Pocillopora damicornis) and low complexity (A. nobilis) coral substrata. Both juveniles and predators were translocated to reefs at natural densities. The effects of predation were clearly dependent upon the microhabitat. Reefs of the high-complexity coral with predators supported the same high numbers of Pomacentrus moluccensis as the reefs with no resident predators. However, damselfish abundance was significantly lower on low-complexity reefs with resident predators, relative to the other treatments. Background rates of loss were high, even on preferred coral in the absence of the manipulated predator, suggesting that transient predators may be even more important than the residents. We suggest that adult abundances in this species were strongly influenced by the densities of different predators and the availability of preferred refuges. Received: 3 April 1997 / Accepted: 26 August 1997  相似文献   

4.
The global degradation of coral reefs is having profound effects on the structure and species richness of associated reef fish assemblages. Historically, variation in the composition of fish communities has largely been attributed to factors affecting settlement of reef fish larvae. However, the mechanisms that determine how fish settlers respond to different stages of coral stress and the extent of coral loss on fish settlement are poorly understood. Here, we examined the effects of habitat degradation on fish settlement using a two-stage experimental approach. First, we employed laboratory choice experiments to test how settlers responded to early and terminal stages of coral degradation. We then quantified the settlement response of the whole reef fish assemblage in a field perturbation experiment. The laboratory choice experiments tested how juveniles from nine common Indo-Pacific fishes chose among live colonies, partially degraded colonies, and dead colonies with recent algal growth. Many species did not distinguish between live and partially degraded colonies, suggesting settlement patterns are resilient to the early stages of declining coral health. Several species preferred live or degraded corals, and none preferred to associate with dead, algal-covered colonies. In the field experiment, fish recruitment to coral colonies was monitored before and after the introduction of a coral predator (the crown-of-thorns starfish) and compared with undisturbed control colonies. Starfish reduced live coral cover by 95–100%, causing persistent negative effects on the recruitment of coral-associated fishes. Rapid reductions in new recruit abundance, greater numbers of unoccupied colonies and a shift in the recruit community structure from one dominated by coral-associated fishes before degradation to one predominantly composed of algal-associated fish species were observed. Our results suggest that while resistant to coral stress, coral death alters the process of replenishment of coral reef fish communities.  相似文献   

5.
Coral bleaching is an increasingly prominent threat to coral reef ecosystems, not only to corals, but also to the many organisms that rely on coral for food and shelter. Coral-feeding fishes are negatively affected by coral loss caused by extensive bleaching, but it is unknown how feeding behaviour of most corallivorous fishes changes in response to coral bleaching. In this study, coral bleaching was experimentally induced in situ to examine the feeding response of two obligate corallivorous fish, Labrichthys unilineatus (Labridae) and Chaetodon baronessa (Chaetodontidae). Feeding rates were monitored before, during, and immediately after experimental bleaching of prey corals. L. unilineatus significantly increased its feeding on impacted corals during bleaching, but showed a steady decline in feeding once corals were fully bleached. Feeding response of L. unilineatus appears to parallel the expected stress-induced mucous production by bleaching colonies. In contrast, C. baronessa preferentially fed from healthy colonies over bleached colonies, although bleached colonies were consumed for five days following manipulation. Feeding by corallivorous fishes can play an important role in determining coral condition and mortality of corals following stress induced bleaching.  相似文献   

6.
The prey species composition and feeding rate of the pit-making ant lion larva,Myrmeleon bore Tjeder, which inhabits open sandy areas, were examined. Not less than 30 prey species, most of which were ants, were collected during a research period of 1.5 years. First instar larvae most often (81.1%) captured ants. Although 3rd instar larvae captured larger-sized prey than individuals of any other instar, they also captured small prey. The feeding rate of 3rd instar larvae was estimated by using the frequency of observed predation (FOP; (no. of ant lions handling a prey)/(total no. of pits observed)), the prey-handling time and the rhythm of daily foraging activity. FOP ofM. bore larvae was constant on the whole from spring to autumn. It was estimated that each captured 1.25 prey per day on average during this period. This estimate, however, was the feeding rate for days on which there was no rain. Assuming that the larvae cannot capture prey due to pit destruction when there is more than 10 mm of rainfall per day, the figure was reduced to 1.03 prey/day. The estimated feeding rate was evaluated with reference to larval foraging behavior.  相似文献   

7.
The interaction of flowing water with reef topography creates a continuum of flow microhabitats that can alter species distributions directly via transport of organisms or propagules, or indirectly by modulating the availability of critical resources. To examine how water flow affects the distribution and feeding performance of two species of planktivorous tube blennies (Chaenopsidae), flow speed and turbulence were measured within the feeding areas of Acanthemblemaria spinosa and A. aspera at three sites within Glover’s Reef, Belize. Although co-occurring, A. spinosa occupies topographically high locations (e.g., upright coral skeletons) while A. aspera occupies topographically low shelters in the coral pavement. Boundary layer theory predicts that A. spinosa should experience higher flow (and a higher flux of planktonic food) relative to A. aspera; however, complex topography and oscillatory flow require that this prediction is tested directly in the field. Within each site, the flow experienced by A. spinosa was, indeed, faster and more turbulent than that experienced by A. aspera at site-specific intermediate wave heights. When waves were small, gentle velocity gradients produced similar flows for the two species. When waves were high, flow was uniformly fast through the water column due to thinning of the benthic boundary layer. Plankton availability was similar for the species, with the exception of a greater abundance of harpacticoid copepods at the shelters of A. aspera. Quantitative behavioral observations suggest that the foraging strategies employed by the two fishes exploit the prevailing hydrodynamic conditions. For example, A. spinosa, the stronger swimmer of the two, attacks nearly 100% of the time in the water column where it can exploit the higher flux of plankton associated with faster flows, while A. aspera attacks primarily toward the reef surface where currents are likely to be slower and it can exploit more abundant benthic prey. Communicated by Biology Editor Dr. Mark McCormick  相似文献   

8.
We present the first representative and quantified overview of the indices used worldwide for assessing the biodiversity of coral reef fishes. On this basis, we discuss the suitability and drawbacks of the indices most widely used in the assessment of coral fish biodiversity. An extensive and systematic survey of the literature focused on coral reef fish biodiversity was conducted from 1990 up to the present. We found that the multicomponent aspect of biodiversity, which is considered as a key feature of biodiversity for numerous terrestrial and marine ecosystems, has been poorly taken into account in coral reef fish studies. Species richness is still strongly dominant while other diversity components, such as functional diversity, are underestimated even when functional information is available. We also demonstrate that the reason for choosing particular indices is often unclear, mainly based on empirical rationales and/or the reproduction of widespread habits, but generally with no clear relevance with regard to the aims of the studies. As a result, the most widely used indices (species richness, Shannon, etc.) would appear to be poorly suited to meeting the main challenges facing the monitoring of coral reef fish biodiversity in the future. Our results clearly show that coral reef scientists should rather take advantage of the multicomponent aspect of biodiversity. To facilitate this approach, we propose general guidelines to serve as a basis for the selection of indices that provide complementary and relevant information for monitoring the response of coral reef fish biodiversity in the face of structuring factors (natural or anthropic). The aim of these guidelines was to achieve a better match between the properties of the selected indices and the context of each study (e.g. expected effect of the main structuring factors, nature of data available).  相似文献   

9.
Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star (Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46–96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3–4 species (6–8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.  相似文献   

10.
Chemical alarm cues function as early indicators of a predation threat and influence the outcome of predator–prey interactions in the favour of the prey animal. The tropical goby, Asterropteryx semipunctatus, responded with a stereotypical alarm response, including reduced movement and feeding, following exposure to water that contained chemical cues from injured conspecifics under natural field conditions. Gobies did not exhibit an alarm response when challenged with extracts from damaged fish from a different taxonomic family. The behavioural response in the field was similar to that observed in laboratory experiments. This study verifies the use of chemical alarm cues in a marine fish in their natural environment.  相似文献   

11.
 The consequences of macroalgal overgrowth on reef fishes and means to reverse this condition have been little explored. An experimental reduction of macroalgae was conducted at a site in the Watamu Marine National Park in Kenya, where a documented increase in macroalgal cover has occurred over the last nine years. In four experimental 10 m by 10 m plots, macroalgae were greatly reduced (fleshy algal cover reduced by 84%) by scrubbing and shearing, while four similar plots acted as controls. The numerical abundance in all fish groups except wrasses and macroalgal-feeding parrotfishes (species in the genera Calotomus and Leptoscarus) increased in experimental algal reduction plots. Algal (Sargassum) and seagrass (Thalassia) assays, susceptible to scraping and excavating parrotfishes, were bitten more frequently in the algal reduction plots one month after the manipulation. Further, surgeonfish (Acanthurus leucosternon and A. nigrofuscus) foraging intensity increased in these algal reduction plots. The abundance of triggerfishes increased significantly in experimental plots relative to control plots, but densities remained low, and an index of sea urchin predation using tethered juvenile and adult Echinometra mathaei showed no differences between treatments following macroalgal reduction. Dominance of reefs by macrofleshy algae appears to reduce the abundance of fishes, mostly herbivores and their rates of herbivory, but also other groups such as predators of invertebrates (triggerfishes, butterflyfishes and angelfishes). Accepted: 2 February 1999  相似文献   

12.
The study examined the effects of coastal embankment building on fish recruitment in three habitat types (beach-rock, white sand and muddy sand) in the near shore and fringing reef habitats of Moorea lagoon (French Polynesia). The results showed a positive relationship between the presence of embankments and the density and species richness of juvenile fish along the shoreline (whatever the habitat types). However, embankments deteriorated adjacent fringing reefs (decrease of live coral), which led to a decrease of fish density on beach-rock and white sand sites, and a decrease of fish species richness on muddy sand sites.  相似文献   

13.
The present study aimed to investigate the spatial structure of fish communities at juvenile and adult stages on coral reefs at Kudaka Island (Ryukyu Archipelago, Japan) and to relate spatial patterns in the structure of the fish communities to gradients in environmental variables. Diurnal visual censuses allowed us to record 2,602 juveniles belonging to 60 species and 1,543 adults belonging to 53 species from October to December 2005. The distribution of species highlighted that the juvenile community was organised into three distinct assemblages, rather than exhibiting gradual change in community structure along the cross-reef gradient. Correlations between spatial patterns of juvenile community and environmental variables revealed that the most significant factors explaining variation in community structure were coral rubble and coral slab. In contrast, the adult community was organised into one assemblage, and the most significant variation factors in community structure were depth, live coral in massive form, live coral in branched form, dead coral and sand. Overall, the present study showed that most juvenile and adult coral reef fish at Kudaka Island exhibited striking patterns in their distribution and depth and some biological factors (e.g., abundance of live coral, dead coral and coral rubble) might exert considerable influence on the distribution of fishes.  相似文献   

14.
Srinivasan M 《Oecologia》2003,137(1):76-84
Many coral reef fishes have restricted depth ranges that are established at settlement or soon after, but the factors limiting these distributions are largely unknown. This study examines whether the availability of microhabitats (reef substrata) explains depth limits, and evaluates whether juvenile growth and survival are lower beyond these limits. Depth-stratified surveys of reef fishes at Kimbe Bay (Papua New Guinea) showed that the abundance of new settlers and the cover of coral substrata differed significantly among depths. A field experiment investigated whether settling coral reef fishes preferred particular depths, and whether these depth preferences were dependent on microhabitat. Small patch reefs composed of identical coral substrata were set up at five depths (3, 6, 10, 15 and 20 m), and settlement patterns were compared to those on unmanipulated reef habitat at the same five depths. For all species, settlement on patch reefs differed significantly among depths despite uniform substratum composition. For four of the six species tested, depth-related settlement patterns on unmanipulated habitat and on patch reefs did not differ, while for the other two, depth ranges were greater on the patch reefs than on unmanipulated habitat. A second experiment examined whether depth preferences reflected variation in growth and survival when microhabitat was similar. Newly settled individuals of Chrysiptera parasema and Dascyllus melanurus were placed, separately, on patch reefs at five depths (as above) and their survival and growth monitored. D. melanurus, which is restricted to shallow depths, had highest survival and growth at the shallowest depth. Depth did not affect either survival or growth of C. parasema, which has a broader depth range than D. melanurus (between 6 and 15 m). This suggests that the fitness costs potentially incurred by settling outside a preferred depth range may depend on the strength of the depth preference.  相似文献   

15.
Phase shifts and the role of herbivory in the resilience of coral reefs   总被引:5,自引:4,他引:1  
Cousin Island marine reserve (Seychelles) has been an effectively protected no-take marine protected area (MPA) since 1968 and was shown in 1994 to support a healthy herbivorous fish assemblage. In 1998 Cousin Island reefs suffered extensive coral mortality following a coral bleaching event, and a phase shift from coral to algal dominance ensued. By 2005 mean coral cover was <1%, structural complexity had fallen and there had been a substantial increase in macroalgal cover, up to 40% in some areas. No clear trends were apparent in the overall numerical abundance and biomass of herbivorous fishes between 1994 and 2005, although smaller individuals became relatively scarce, most likely due to the loss of reef structure. Analysis of the feeding habits of six abundant and representative herbivorous fish species around Cousin Island in 2006 demonstrated that epilithic algae were the preferred food resource of all species and that macroalgae were avoided. Given the current dominance of macroalgae and the apparent absence of macroalgal consumers, it is suggested that the increasing abundance of macroalgae is reducing the probability of the system reverting to a coral dominated state.  相似文献   

16.
Zooplankton concentrations are known to vary by as much as an order of magnitude over a lunar cycle. Here, we conducted an experiment to determine the effect of ambient zooplankton concentrations over a lunar cycle on feeding rates of the corals Pavona gigantea (Verrill) (mounding coral, 3.0 mm diameter polyps) and Pocillopora damicornis (Linnaeus) (branching coral, 1.0 mm diameter polyps) in situ on a shallow reef at Isla Contadora, Gulf of Panamá (Pacific), Panamá. Coral fragments exposed to either enhanced or ambient zooplankton concentrations were allowed to feed for 1 h, collected, and their gut contents dissected. The number of zooplankton captured was counted, feeding rates calculated per cm2, and the species composition of captured zooplankton assemblages determined. Although both species captured the same zooplankton assemblage, feeding rates were always significantly higher for P. gigantea than for P. damicornis. Under ambient flow and zooplankton concentrations, feeding rates were highly correlated with zooplankton concentration in the 200-400 μm size class. Under constantly enhanced zooplankton concentrations in the control fragments, feeding rates did not vary significantly over the lunar cycle. As such, coral feeding rates vary not as a result of lunar phase per se, but with changes in zooplankton abundance over the lunar cycle. Coral feeding rates are directly proportional to ambient zooplankton concentrations and may vary by as much as 50% over a lunar cycle, suggesting that corals must cope with major swings in sources of fixed carbon and nutrients over relatively short timescales.  相似文献   

17.
This study investigated the influence of reproductive strategy (benthic or pelagic eggs) and habitat preferences (lagoon or outer slope) on both diversity and genetic differentiation using a set of populations of seven coral reef fish species over different geographic scales within French Polynesia. We hypothesized that a Holocene sea-level decrease contributed to severe reduction of population size for species inhabiting lagoons and a subsequent decrease of genetic diversity. Conversely, we proposed that species inhabiting stable environments, such as the outer slope, should demonstrate higher genetic diversity but also more structured populations because they have potentially reached a migration-genetic drift equilibrium. Sequences of the 5' end of the mitochondrial DNA (mtDNA) control region were compared among populations sampled in five isolated islands within two archipelagos of French Polynesia. For all the species, no significant divergences among populations were found. Significant differences in mtDNA diversity between lagoonal and outer-slope species were demonstrated both for haplotype diversity and sequence divergence but none were found between species with different egg types. Pairwise mismatch distributions suggested rapid population growth for all the seven species involved in this study, but they revealed different distributions, depending on the habitat preference of the species. Although several scenarios can explain the observed patterns, the hypothesis of population size reduction events relative to Holocene sea-level regression and its consequence on French Polynesia coral reefs is the most parsimonious. Outer-slope species have undergone a probable weak and/or old bottleneck (outer reefs persisted during low sea level, leading to reef area reductions), whereas lagoonal species suffered a strong and/or recent bottleneck since Holocene sea-level regression resulted in the drying out of all the atolls that are maximum 70 meters deep. Since present sea level was reached between 5000 and 6000 years ago, different demographic events (bottlenecks or founder events) have lead to the actual populations of lagoons in French Polynesia.  相似文献   

18.
Debate on the control of population dynamics in reef fishes has centred on whether patterns in abundance are determined by the supply of planktonic recruits, or by post-recruitment processes. Recruitment limitation implies little or no regulation of the reef-associated population, and is supported by several experimental studies that failed to detect density dependence. Previous manipulations of population density have, however, focused on juveniles, and there have been no tests for density-dependent interactions among adult reef fishes. I tested for population regulation in Coryphopterus glaucofraenum, a small, short-lived goby that is common in the Caribbean. Adult density was manipulated on artificial reefs and adults were also monitored on reefs where they varied in density naturally. Survival of adult gobies showed a strong inverse relationship with their initial density across a realistic range of densities. Individually marked gobies, however, grew at similar rates across all densities, suggesting that density-dependent survival was not associated with depressed growth, and so may result from predation or parasitism rather than from food shortage. Like adult survival, the accumulation of new recruits on reefs was also much lower at high adult densities than at low densities. Suppression of recruitment by adults may occur because adults cause either reduced larval settlement or reduced early post-settlement survival. In summary, this study has documented a previously unrecorded regulatory mechanism for reef fish populations (density-dependent adult mortality) and provided a particularly strong example of a well-established mechanism (density-dependent recruitment). In combination, these two compensatory mechanisms have the potential to strongly regulate the abundance of this species, and rule out the control of abundance by the supply of recruits.  相似文献   

19.
The distribution and abundance of the dominant initial macroborers of dead coral substrate, sipunculans and polychaetes were investigated over time at seven sites within French Polynesia. Sites were located in the lagoon of high islands and atolls, and varied from highly eutrophic to oligotrophic. Significant differences occurred between sites and patterns of recruitment varied over time and between sites. With increasing exposure, the densities of polychaetes increased but not the number of species present, whereas both the densities and number of species of sipunculans increased. The atoll sites tended to be dominated by suspension feeding polychaetes and the high island sites by deposit feeding polychaetes. Sipunculans tended to dominate the high island sites in comparison to the atoll sites and they all fed by scraping algae and detritus from the substrate. We suggest that this distribution of feeding types is related to water quality and to land run off. In the atolls, the lagoonal waters are oligotrophic and little land run off occurs, whereas at the high island sites, high rates of land run off occur during the wet season with high levels of suspended material in the water column.These variations in densities of boring species, affect rates of bioerosion and have the potential to alter the equilibrium between reef growth and reef destruction. We suggest that it is critical for reef managers to try to maintain water quality and limit land-based terrestrial run off and associated nutrients into coastal waters. This is especially important if the reefs have been affected by bleaching events or Crown of Thorns plagues, resulting in extensive death of coral colonies and with it, the potential for a massive increase in the rate of bioerosion. The long-term maintenance of the reef structure is critical if coral recruitment and recovery of the reef are to occur.  相似文献   

20.
Synopsis A visual census technique is described in which the results of three separate enumerations of fish at a site are combined to produce a best estimate of the fish fauna present. Its precision and accuracy are examined, and compared to those of censuses obtained by modifications of the technique. Visual censuses can display high repeatability, but they seldom (if ever) completely sample the fish present at a site. Accuracy varies with technique used. In our tests, the preferred method yielded 82% of species and 75% of individuals known to be present and potentially censurable at the time the observations were made. Visual censuses are of comparable accuracy to ichthyocide collections of unenclosed sites, but the two methods sample different components of the total fish fauna. It is important when using visual censuses to remember that their accuracy is not 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号