首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that surface wettability does not alter the positive effect of natural biofilms on larval attachment in the barnacle Balanus amphitrite. We also answered the question: Does substratum-biofilm interaction affect the larval choice in barnacle? We developed natural multi-species biofilms of different ages on both high (glass) and low (polystyrene) wettability surfaces at mid-intertidal height (native habitat of B. amphitrite). Attachment choice of both young (0-d-old) and old (6-d-old) larvae to biofilms was determined using still water choice bioassay. Irrespective of larval age, cyprid preferred to attach to un-filmed glass than to un-filmed polystyrene. In contrast to aged larvae, young larvae preferred old (6-d-old) biofilms on polystyrene to young (3-d-old) biofilms on glass. In this study, we were also able to examine the interaction between surface wettability, biofilms and larval attachment, by characterizing bacterial community composition in biofilms. Bacterial community composition showed significant differences between biofilms of different ages. Old biofilms positively influenced larval attachment, irrespective of the type of substrata, thereby supporting the hypothesis that surface wettability does not alter the positive effect of natural biofilms on larval attachment.  相似文献   

2.
In laboratory-based biofouling assays, the influence of physico-chemical surface characteristics on barnacle settlement has been tested most frequently using the model organism Balanus amphitrite (= Amphibalanus amphitrite). Very few studies have addressed the settlement preferences of other barnacle species, such as Balanus improvisus (= Amphibalanus improvisus). This study aimed to unravel the effects of surface physico-chemical cues, in particular surface-free energy (SFE) and surface charge, on the settlement of cyprids of B. improvisus. The use of well-defined surfaces under controlled conditions further facilitates comparison of the results with recent similar data for B. amphitrite. Zero-day-old cyprids of B. improvisus were exposed to a series of model surfaces, namely self-assembled monolayers (SAMs) of alkanethiols with varying end-groups, homogenously applied to gold-coated polystyrene (PS) Petri dishes. As with B. amphitrite, settlement of cyprids of B. improvisus was influenced by both SFE and charge, with higher settlement on low-energy (hydrophobic) surfaces and negatively charged SAMs. Positively charged SAMs resulted in low settlement, with intermediate settlement on neutral SAMs of similar SFE. In conclusion, it is demonstrated that despite previous suggestions to the contrary, these two species of barnacle show similar preferences in response to SFE; they also respond similarly to charge. These findings have positive implications for the development of novel antifouling (AF) coatings and support the importance of consistency in substratum choice for assays designed to compare surface preferences of fouling organisms.  相似文献   

3.

The barnacle Balanus improvisus is the major fouling macroorganism in Swedish waters and it colonizes most man‐made surfaces submerged in the sea. New or impending legislation restricts the use of traditional, hazardous antifouling coatings based on heavy metals, mainly copper and tin. This calls for the development of new non‐toxic methods that prevent barnacle settlement. In this work several adrenoceptor compounds are shown to be very efficient in preventing the settlement of cyprid larvae of B. improvisus. The settlement rate of laboratory‐reared cyprids was studied in hydrophilised polystyrene dishes containing adrenoceptor antagonists and agonists dissolved in seawater. Two of these drugs, medetomidine and clonidine, repeatedly inhibited settlement at concentrations between 1 nM and 10 nM. In the vertebrate adrenoceptor classification system, which separates pharmacological substances according to their receptor affinity, both of these substances are classified as α2 adrenoceptor agonists. An inhibiting effect on presyn‐aptic receptors is suggested, but the localization of the receptor effect requires futher studies. Experiments also revealed that the inhibiting effect of medetomidine was reversible. Cyprids incubated with medetomidine for 20 h attached and metamorphosed into juvenile barnacles after washing and transferrence to seawater. The antagonizing compound atipamezole reversed the effect of medetomidine. This observation supports the assumption that this substance acts at the receptor level. Studies of the surface affinity of medetomidine revealed a strong tendency to accumulate in solid/ liquid phase boundaries. This ability makes it particularly attractive as a candidate for the development of a slow‐release carrier in marine coatings. Panels coated with medetomidine in an acrylate polymer and exposed in the field reduced the recruitment of B. improvisus by 96% after 4 weeks and by 70% after 8 weeks.  相似文献   

4.
WJ Yang  KG Neoh  ET Kang  SS Lee  SL Teo  D Rittschof 《Biofouling》2012,28(9):895-912
Dense and uniform polymer brush coatings were developed to combat marine biofouling. Nonionic hydrophilic, nonionic hydrophobic, cationic, anionic and zwitterionic polymer brush coatings were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-hydroxyethyl methacrylate, 2,3,4,5,6-pentafluorostyrene, 2-(methacryloyloxy)ethyl trimethylammonium chloride, 4-styrenesulfonic acid sodium and N,N'-dimethyl-(methylmethacryloyl ethyl) ammonium propanesulfonate, respectively. The functionalized surfaces had different efficacies in preventing adsorption of bovine serum albumin (BSA), adhesion of the Gram-negative bacterium Pseudomonas sp. NCIMB 2021 and the Gram-positive Staphylococcus aureus, and settlement of cyprids of the barnacle Amphibalanus amphitrite (=Balanus amphitrite). The nonionic hydrophilic, anionic and zwitterionic polymer brushes resisted BSA adsorption during a 2?h exposure period. The nonionic hydrophilic, cationic and zwitterionic brushes exhibited resistance to bacterial fouling (24?h exposure) and cyprid settlement (24 and 48?h incubation). The hydrophobic brushes moderately reduced protein adsorption, and bacteria and cyprid settlement. The anionic brushes were least effective in preventing attachment of bacteria and barnacle cyprids. Thus, the best approach to combat biofouling involves a combination of nonionic hydrophilic and zwitterionic polymer brush coatings on material surfaces.  相似文献   

5.
Gregarious behaviour of marine larvae is perhaps most clearly associated with finding a suitable habitat in a changeable or restricted environment, or with finding other conspecifics with which to mate. Prior work has shown that in settlement assays using cypris larvae of the barnacle Balanus amphitrite, gregarious interactions significantly affected the interpretation of experiments testing the activity of organic settlement promoters and inhibitors. Other studies have also shown effects of cyprid age and pheromone concentration on settlement behaviour. However, the effects of interactions between gregariousness and these two factors are not known. The aim of this study was to test the hypotheses that i) as cyprids age the effects of gregariousness become less apparent, and ii) as the duration of the experiment increases gregarious effects become more apparent, using cypris larvae of B. amphitrite and Balanus improvisus. Three age classes of cyprids were used at six densities in a fully factorial design. For B. improvisus cyprids significant gregarious effects occurred between 3 or more larvae, and although larval age and experiment duration had significant main effects, there were no interactions between these important factors and gregariousness. For B. amphitrite cyprids significant gregarious effects also occurred with 3 larvae per well, though this effect was strongly dependent upon experiment duration. B. amphitrite cyprid sensitivity to conspecific cues does not change with age, although increasing experiment duration and age interact to increase settlement. Differences between species may be due to different thresholds to conspecific larval cues, or B. improvisus cyprids release much more larval temporary adhesive during exploration.  相似文献   

6.
Marechal JP  Hellio C  Sebire M  Clare AS 《Biofouling》2004,20(4-5):211-217
Submerged marine surfaces are rapidly colonized by fouling organisms. Current research is aimed at finding new, non-toxic, or at least environmentally benign, solutions to this problem. Barnacles are a major target organism for such control as they constitute a key component of the hard fouling community. A range of standard settlement assays is available for screening test compounds against barnacle cypris larvae, but they generally provide little information on mechanism(s) of action. Towards this end, a quick and reliable video-tracking protocol has been developed to study the behaviour of the cypris larvae of the barnacle, Balanus amphitrite, at settlement. EthoVision 3.0 was used to track individual cyprids in 30-mm Petri dishes. Experiments were run to determine the optimal conditions vis-a-vis acclimation time, tracking duration, number of replicates, temperature and lighting. A protocol was arrived at involving a two Petri dish system with backlighting, and tracking over a 5-min period after first acclimating the cyprids to test conditions for 2 min. A minimum of twenty replicates was required to account for individual variability in cyprid behaviour from the same batch of larvae. This methodology should be widely applicable to both fundamental and applied studies of larval settlement and with further refinements, to that of smaller fouling organisms such as microalgae and bacteria.  相似文献   

7.
Kuan Chun Chaw 《Biofouling》2013,29(7):611-619
The behavioural response of cypris larvae from A. amphitrite (=Balanus amphitrite) exploring three model glass surfaces is quantified by close-range microscopy. Step length and step duration measurements reveal a response to both surface properties and flow. Without flow, 2-day-old cyprids took larger steps with shorter step duration on hydrophilic glass surfaces (bare and NH2-treated) vs hydrophobic glass (CH3-treated). These parameters suggest a more detailed, local inspection of hydrophobic surfaces and a more extensive exploration for hydrophilic surfaces. Cyprids under flow took longer steps and exhibited shorter probing times on hydrophobic glass. On hydrophilic glass, cyprids increased their step duration under flow. This active response is attributed to drag and lift forces challenging the cyprids' temporary anchoring to the substratum. Seven-day-old cyprids showed almost no discrimination between the model surfaces. Microscopic-scale observation of cyprid exploration is expected to provide new insights into interactions between cyprids and surfaces.  相似文献   

8.
Dense and uniform polymer brush coatings were developed to combat marine biofouling. Nonionic hydrophilic, nonionic hydrophobic, cationic, anionic and zwitterionic polymer brush coatings were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-hydroxyethyl methacrylate, 2,3,4,5,6-pentafluorostyrene, 2-(methacryloyloxy)ethyl trimethylammonium chloride, 4-styrenesulfonic acid sodium and N,N′-dimethyl-(methylmethacryloyl ethyl) ammonium propanesulfonate, respectively. The functionalized surfaces had different efficacies in preventing adsorption of bovine serum albumin (BSA), adhesion of the Gram-negative bacterium Pseudomonas sp. NCIMB 2021 and the Gram-positive Staphylococcus aureus, and settlement of cyprids of the barnacle Amphibalanus amphitrite (=Balanus amphitrite). The nonionic hydrophilic, anionic and zwitterionic polymer brushes resisted BSA adsorption during a 2 h exposure period. The nonionic hydrophilic, cationic and zwitterionic brushes exhibited resistance to bacterial fouling (24 h exposure) and cyprid settlement (24 and 48 h incubation). The hydrophobic brushes moderately reduced protein adsorption, and bacteria and cyprid settlement. The anionic brushes were least effective in preventing attachment of bacteria and barnacle cyprids. Thus, the best approach to combat biofouling involves a combination of nonionic hydrophilic and zwitterionic polymer brush coatings on material surfaces.  相似文献   

9.
Summary Settlement rates of the high intertidal barnacle, Balanus glandula, were monitored at three sites in the rocky intertidal zone in Central California simultaneously with measurements of larval concentrations in the adjacent water column. In both 1983 and 1984, settlement rates onto vacant substrate differed among the sites by nearly two orders of magnitude. For all sampling dates, this spatial variation in settlement mirrored the spatial distribution of Balanus glandula cyprid concentration in the water column. A perfect rank correlation was found between cyprid concentrations near a site and subsequent settlement. A noteworthy observation was that the sites switched rank in their settlement rates from 1983 to 1984. This change in settlement rankings matched a switch in rankings for cyprid concentrations.Settlement itself appears to be an important cause of the spatial pattern of cyprid concentrations. Comparing the rates of settlement to estimates of the number of cyprids available at a site suggests that settlement causes a large drain on the cyprid population as a water mass passes over successive sites. No consistent spatial patterns were found in the distribution of other major plankton groups (calanoid copepods) that are similar in size to Balanus cyprids but do not settle.The large differences in settlement rates among these sites were previously shown to be a leading cause of large differences in the structure of benthic barnacle populations. The close correspondence shown here between these large differences in settlement and differences in larval concentrations suggests that nearshore oceanic processes affecting larval arrival contribute to the control of benthic community structure.  相似文献   

10.
Antifouling coatings based on organotin compounds possess a world-wide threat to the environment and due to growing restrictions there is a need for environmentally safe antifouling systems. TNO is working on the development of novel antifouling systems based on secondary metabolites from sponges. Screening for natural antifoulants is conducted using a settlement assay with cyprid larvae of the barnacle Balanus amphitrite Darwin. Forty-four sponges (35 species) were collected from around the island of Curaçao in the Caribbean and settlement assays were performed with the ethyl-acetate extracts. Thirty-one extracts significantly inhibited cyprid settlement at 0.1 mg ml−1, of which 22 significantly inhibited settlement at 0·01 mg ml−1.  相似文献   

11.

Submerged marine surfaces are rapidly colonized by fouling organisms. Current research is aimed at finding new, non-toxic, or at least environmentally benign, solutions to this problem. Barnacles are a major target organism for such control as they constitute a key component of the hard fouling community. A range of standard settlement assays is available for screening test compounds against barnacle cypris larvae, but they generally provide little information on mechanism(s) of action. Towards this end, a quick and reliable video-tracking protocol has been developed to study the behaviour of the cypris larvae of the barnacle, Balanus amphitrite, at settlement. EthoVision 3.0 was used to track individual cyprids in 30-mm Petri dishes. Experiments were run to determine the optimal conditions vis-à-vis acclimation time, tracking duration, number of replicates, temperature and lighting. A protocol was arrived at involving a two Petri dish system with backlighting, and tracking over a 5-min period after first acclimating the cyprids to test conditions for 2 min. A minimum of twenty replicates was required to account for individual variability in cyprid behaviour from the same batch of larvae. This methodology should be widely applicable to both fundamental and applied studies of larval settlement and with further refinements, to that of smaller fouling organisms such as microalgae and bacteria.  相似文献   

12.
A convenient assay method for estimation of barnacle, Balanus amphitrite, settlement inductive activity was developed. To avoid the inductive effect by comrades and laborious observation requirements, cyprid larvae were put individually into wells of a 96-well plate. The settlement ratio from the experiment without any inducers was quite low; therefore this assay allowed easy estimation of settlement inductive activities. Some known inductive agents, such as serotonin and barnacle extracts, clearly showed inductive activities. This assay method is proven to be suitable for estimation of barnacle settlement-inducing activities of both water-soluble and -insoluble compounds. Received October 31, 1997; accepted July 10, 1998.  相似文献   

13.

Larval settlement of the barnacle Balanus amphitrite Darwin (Cirripedia, Balanidae) is influenced by natural biofilms. In previous work by others, discriminatory settlement of aged cyprids has been observed in response to biofilms of different age. This study extends prior work by considering the effect of the age of cyprids on the outcome of settlement assays. Settlement was investigated with 0‐day‐old (newly metamorphosed) and 5‐day‐old cyprids. Biofilms under investigation were developed in the field for periods of 5 d and 1 month, and were subsequently included in laboratory settlement assays with a choice between a filmed and an unfilmed substratum. The bioassay was modified from the conventional horizontal dish design in order to generate a low water surface‐to‐volume ratio, which served to suppress larval entrapment in an organic layer on the water surface. Irrespective of cyprid age, a clear discrimination between a filmed and an unfilmed substrata was observed, and the preference for filmed or unfilmed substratum was dependent on the age of the cyprids. Settlement of 0‐day‐old cyprids was inhibited by a biofilmed substratum whereas induction occurred with aged cyprids. This pattern of settlement was independent of biofilm age. Bacterial abundance on unfilmed substrata in treatments and controls was significantly lower than that on biofilmed surfaces, confirming that bacterial contamination did not change the qualitative option during the assay.  相似文献   

14.
The settlement of marine larvae is influenced by a wide range of physical and biological factors. It is still poorly known how the nature of substrate and the biofilm can interact in regulating settlement patterns of invertebrate larvae. Here we use laboratory experiments focused on settlement behaviour of the barnacle Balanus amphitrite. The aim of this work is to understand whether: (i) the nature of substratum can affect biofilm formation and its structure, (ii) the nature of substratum can affect B. amphitrite larval settlement, (iii) the age of the biofilms and the nature of substrate can interact in influencing larval settlement.Four kinds of substrata (marble, quartz, glass, and cembonit) were biofilmed under laboratory conditions for 5, 10 and 20 days at the temperature of 28 °C. Settlement response was investigated with 5-day-old cyprids. Biofilms were quantitatively and qualitatively analysed by scanning electron microscopy. The settlement of B. amphitrite larvae significantly differed among substrata; also, the patterns of development of biofilm assemblages changed with substrate. In addition, the larval attractiveness of different substrates tends to disappear with biofilm age.  相似文献   

15.

Settlement of cultured Balanus amphitrite cyprid larvae was tested on different non-solid hydrogel surfaces. Gels consisting of alginate (highly anionic), chitosan (highly cationic), polyvinyl alcohol substituted with light-sensitive stilbazolium groups (PVA-SbQ; very low cationic) and agarose (neutral) were applied in cell culture multi-well plates. Polystyrene served as a solid surface reference. Preliminary experiments were performed to determine whether any substances leaching out of the gels could inhibit barnacle settlement. Whilst leachate from the gels revealed no toxicity towards Artemia salina nauplius larvae, PVA-SbQ in solution at and above a concentration of 0.4 ppm inhibited B. amphitrite cyprid settlement. Gels were therefore washed to avoid such effects during further testing, and toxicity and settlement tests with B. amphitrite nauplii and cyprids, respectively, applied to verify that washing was effective. Settlement was tested directly on the different test materials, followed by a quality test of non-settled larvae. All gels inhibited barnacle settlement compared to the polystyrene controls. Gels consisting of 2.5% PVA-SbQ or 0.5% agarose showed promising antifouling properties. Although some settlement occurred on 2.5% PVA-SbQ gels, metamorphosis was clearly inhibited. Only 10% of the larvae had settled on 0.5% agarose gels after 8 d. Less than 40% settlement occurred on alginate gels, as well as on 2% chitosan gels. Quality testing showed that the majority of remaining non-settled larvae in all gel experiments were able to settle when offered a suitable solid substratum.  相似文献   

16.
The development of the cement cells of Balanus balanoides (L.) has been followed over a 26-day post-settlement period. Cells of the cyprid cement glands de-differentiate to form part of the juvenile barnacle apparatus, but the majority of juvenile cement cells develop by differentiation of collecting duct cells. These latter cement cells are recognized by apical invaginations which are continuous with the collecting duct lumen. Collecting ducts are present in the cyprid. The cement duct system was not studied in detail, but preliminary observations of the arrangement in B. balanoides and Elminius modestus Darwin have shown them to differ, the system in E. modestus being simpler.  相似文献   

17.
The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts.  相似文献   

18.
Isethionic acid (2-hydroxyethane sulfonic acid) and floridoside (2-O-alpha-D-galactopyranosylglycerol) were extracted from the red alga, Grateloupia turuturu, and tested for anti-settlement activity against cyprid larvae of the tropical barnacle, Balanus amphitrite and for their toxicity to nauplius larvae. Isethionic acid was active for anti-settlement but had the disadvantage of being toxic to nauplius larvae. Floridoside was a potent inhibitor of cyprid settlement at non-toxic concentrations to nauplii (0.01 mg ml(-1)).  相似文献   

19.
Wikström SA  Pavia H 《Oecologia》2004,138(2):223-230
It has been proposed that seaweed secondary metabolites, e.g. brown algal phlorotannins, may have an ecologically important function as a chemical defence against epiphytes, by acting against colonisation of epiphytic organisms. We tested whether the low epiphytic abundance on the invasive brown seaweed Fucus evanescens, compared to the congeneric F. vesiculosus, is due to a more effective chemical defence against epiphyte colonisation. A field survey of the distribution of the common fouling organism Balanus improvisus (Cirripedia) showed that the abundance was consistently lower on F. evanescens than on F. vesiculosus. However, contrary to expectations, results from experimental studies indicated that F. vesiculosus has a more effective anti-settlement defence than F. evanescens. In settlement experiments with intact fronds of the two Fucus species, both species deterred settlement by barnacle larvae, but settlement was lower on F. vesiculosus both in choice and no-choice experiments. Phlorotannins from F. vesiculosus also had a stronger negative effect on larval settlement and were active at a lower concentration than those from F. evanescens. The results show that Fucus phlorotannins have the potential to inhibit settlement of invertebrate larvae, but that settlement inhibition cannot explain the lower abundance of the barnacle Balanus improvisus on F. evanescens compared to F. vesiculosus. Assessment of barnacle survival in the laboratory and in the field showed that this pattern could instead be attributed to a higher mortality of newly settled barnacles. Observation suggests that the increased mortality was due to detachment of young barnacles from the seaweed surface. This shows that the antifouling mechanism of F. evanescens acts on post-settlement stages of B. improvisus.  相似文献   

20.
Thiyagarajan V  Qian PY 《Proteomics》2008,8(15):3164-3172
The barnacle, Balanus amphitrite, is one of the primary model organisms for rocky-shore ecology studies and biofouling research. This barnacle species has a complex life cycle during which the swimming nauplius molts six times and transforms into a cyprid stage. Cyprids must attach to a surface to metamorphose into a juvenile barnacle. To clarify the overall profile of protein expression during larval development and metamorphosis, 2-DE was used to compare the proteome of the nauplius, the swimming cyprid, the attached cyprid, and the metamorphosed cyprid. The proteome of the swimming cyprid was distinctly different from that of other life stages and had about 400 spots. The proteomes of the attached and metamorphosed cyprids were similar with respect to major proteins but had significantly lower numbers of spots compared to that of swimming larval stages. Obviously, synthesis of most proteins from swimming cyprids was switched off after attachment and metamorphosis. Our advanced MS analysis (MALDI-TOF/TOF MS/MS) allowed us to identify the proteins that were differentially and abundantly expressed in the swimming cyprid. These proteins included signal transduction proteins (adenylate cyclase and calmodulin) and juvenile hormone binding proteins. In summary, for the first time, we have analyzed the global protein expression pattern of fouling marine invertebrate larvae during metamorphosis. Our study provides new insights into the mechanisms of barnacle larval metamorphosis and also provides a foundation for exploring novel targets for antifouling treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号