首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ammonium ion (NH4+) content in the mantles, fins, arms, haemolymph, and buoyancy fluid of 17 species of squids belonging to nine families was determined. Great individual variation of ammonium concentration was found in the buoyancy fluid of Liocranchia reinhardti(Steenstrup, 1856), i.e. 38–1108 mM, and in the vacuolized tissues of Histioteuthis macrohista N. Voss, 1969, i.e. 50–775 mM.  相似文献   

2.
Revegetation on disturbed, low organic matter content, decomposed granite (DG) substrates are limited by low plant-available moisture and nitrogen. Data from a single DG site in northern California, USA, showed that a significant fraction of the ammonium from fertilizers or organic matter mineralization was fixed into silicate interlayer positions. To evaluate the broader relevance of NH4+ fixation, the NH4+ fixation capacities of 11 other drastically disturbed DG substrates throughout California were evaluated. The fixation capacities of the substrates were quite varied and increased as added NH4+ application levels increased (124–1,670 kg NH4+ ha−1). When amended with 124 kg NH4+ ha−1, 7 of the 11 substrates fixed between 14 and 78% of the added NH4+. Analysis of particle size fractions of a typical material indicated that the very fine sand fraction had the highest fixation capacity and the clays and very coarse sands had the lowest, on a gravimetric basis. The overall fixation capacities showed no significant relation to potential predictive characteristics, including extractable K+, NH4+, or total N levels. Three methods of cation exchange capacity (CEC) measurement were tested for their ability to predict NH4+ fixation. The Ba method which utilizes an indicator cation that is not subject to interlayer fixation was not a reliable indicator of NH4+ fixation. The NH4+ method had the strongest relation to NH4+ fixation in the DG materials. The difference between the measured CEC of the NH4+ method and the Ba method was found to be most predictive of NH4+ fixation.  相似文献   

3.
A nitrate uptake system is induced (along with nitrate reductase) when NH4+-grown Penicillium chrysogenum is incubated with inorganic nitrate in synthetic medium in the absence of NH4+. Nitrate uptake and nitrate reduction are probably in steady state in fully induced mycelium, but the ratios of the two activities are not constant during the induction period. Substrate concentrations of ammonium cause a rapid decay of nitrate uptake and nitrate reductase activity. The two activities are differentially inactivated (the uptake activity being more sensitive). Glutamine and asparagine are as effective as NH4+ in suppressing nitrate uptake activity. Glutamate and alanine were about half as effective as NH4+. Cycloheximide interferes with the NH4+-induced decay of nitrate uptake activity. The ammonium transport system is almost maximally deinhibited (or derepressed) in nitrate-grown mycelium.  相似文献   

4.
The effects of metabolic and protein synthesis inhibitors on NH4 + uptake by Pisum arvense plants at low (0.05 mM) and high (1 mM) external ammonium concentration were studied. In short-time experiments cycloheximide decreased the ammonium uptake rate at low level of NH4 + and increased the absorption of NH4 + from uptake medium containing high ammonium concentration. Arsenate and azide supplied into uptake solutions at low ammonium concentration strongly decreased or completely suppressed the NH4 + uptake rate, respectively. When the experiments were carried out at high level of ammonium only azide decreased the uptake rate of NH4 + and arsenate stimulated this process. Dinitrophenol very strongly repressed the uptake rate of NH4 + at both ammonium concentrations. After removing dinitrophenol from both solutions, neither at low nor high external ammonium level the recovery of NH4 + uptake rate was achieved within 150 min or 3 h, respectively. The recovery of NH4 + uptake rate after removing azide was observed within 90 min and 3 h at low and high ammonium concentrations, respectively. The regulation of NH4 + uptake by some inhibitors at low external ammonium level was investigated using plasma membrane vesicles isolated from roots by two-phase partitioning. Orthovanadate completely suppressed the uptake of NH4 + by vesicles and quinacrine decreased the NH4 + uptake which 55 suggests that ammonium uptake depends on activities of plasma membrane-bound enzymes. On the other hand, it was found that dinitrophenol completely reduced the NH4 + uptake by vesicles. The various effects of inhibitors on ammonium uptake dependent on external ammonium concentration suggest the action of different ammonium transport systems in Pisum arvense roots. The ammonium transport into root cells at low NH4 + level requires energy and synthesis of protein in the cytoplasm. The research was supported by grant of KBN No. 6PO4C 068 08  相似文献   

5.
As the race toward higher efficiency for inorganic/organic hybrid perovskite solar cells (PSCs) is becoming highly competitive, a design scheme to maximize carrier transport toward higher power efficiency has been urgently demanded. In this study, a hidden role of A‐site cations of PSCs in carrier transport, which has been largely neglected is unraveled, i.e., tuning the Fröhlich electron–phonon (e–ph) coupling of longitudinal optical (LO) phonon by A‐site cations. The key for steering Fröhlich polaron is to control the interaction strength and the number of proton (or lithium) coordination to halide ions. The coordination to I? alleviates electron–phonon scattering by either decreasing the Born effective charge or absorbing the LO motion of I. This novel principle discloses low electron–phonon coupling in several promising organic cations including hydroxyl–ammonium cation (NH3OH+), hydrazinium cation (NH3NH2+) and possibly Li+ solvating methylamine (Li+???NH2CH3), on a par with methyl–ammonium cations. A new perspective on the role of A‐site cations could help in improving power efficiency and accelerating the application of PSCs.  相似文献   

6.
Nitrate (NO3) and ammonium (NH4+) are the main forms of nitrogen available in the soil for plants. Excessive NH4+ accumulation in tissues is toxic for plants and exclusive NH4+-based nutrition enhances this effect. Ammonium toxicity syndrome commonly includes growth impairment, ion imbalance and chlorosis among others. In this work, we observed high intraspecific variability in chlorophyll content in 47 Arabidopsis thaliana natural accessions grown under 1 mM NH4+ or 1 mM NO3 as N-source. Interestingly, chlorophyll content increased in every accession upon ammonium nutrition. Moreover, this increase was independent of ammonium tolerance capacity. Thus, chlorosis seems to be an exclusive effect of severe ammonium toxicity while mild ammonium stress induces chlorophyll accumulation.  相似文献   

7.
Ammonium uptake rates and the mechanism for ammonium transport into the cells have been analysed in Zostera marina L. In the cells of this species, a proton pump is present in the plasmalemma, which maintains the membrane potential. However, this seagrass shows a high-affinity transport mechanism both for nitrate and phosphate which is dependent on sodium and is unique among angiosperms. We have then analysed if the transport of another N form, ammonium, is also dependent of sodium. First, we have studied ammonium transport at the cellular level by measurements of membrane potentials, both in epidermal root cells and mesophyll cells. And second, we have monitored uptake rates in whole leaves and roots by depletion experiments. The results showed that ammonium is taken up by a high-affinity transport system both in root and leaf cells, although two different of kinetics could be discerned in mesophyll cells (with affinity constants of 2.2 ± 1.1 μM NH4+, in the range 0.01-10 μM NH4+, and 23.2 ± 7.1 μM NH4+, at concentrations between 10 and 500 μM NH4+). However, only one kinetic could be observed in epidermal root cells, which showed a Km = 11.2 ± 1.0 μM NH4+, considering the whole ammonium concentration range assayed (0.01-500 μM NH4+). The higher affinity of leaf cells for ammonium was consistent with the higher uptake rates observed in leaves, with respect to roots, in depletion experiments at 10 μM NH4+ initial concentration. However, when an initial concentration of 100 μM was assayed, the difference between uptake rates was reduced, but still being higher in leaves. Variations in proton or sodium-electrochemical gradient did not affect ammonium uptake, suggesting that the transport of this nutrient is not driven by these ions and that the ammonium transport mechanism could be different to the transport of nitrate and phosphate in this species.  相似文献   

8.
In the present work the distribution of ions in aboveground plant parts was studied in order to establish the suitability of using radiocaesium as a tracer for the plant absorption of nutrients, such as potassium (K+) and ammonium (NH4+). We present the results for the distributions of 137Cs, 40K and NH4+ from four tropical plant species: lemon (Citrus aurantifolia), orange (Citrus sinensis), guava (Psidium guajava) and chili pepper (Capsicum frutescens). Activity concentrations of 137Cs and 40K were measured by gamma spectrometry and concentrations of free NH4+ ions by a colorimetric method. Similarly to potassium and ammonium, caesium showed a high mobility within the plants, exhibiting the highest values of concentration in the growing parts of the tree (fruits, new leaves, twigs, and barks). A significant correlation between activity concentrations of 137Cs and 40K was observed in these tropical plants. The K/Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting that caesium could be a good tracer for 40K in tropical woody fruit species. Despite the similarity observed for the behaviour of caesium and ammonium in the newly grown plant compartments, 137Cs was not well correlated with NH4+. Significant temporal changes in the NH4+ concentrations were observed during the development of fruits, while the 137Cs activity concentration alterations were not of great importance, indicating, therefore, that Cs+ and free NH4+ ions could have distinct concentration ratios for each particular plant organ.  相似文献   

9.
Density functional theory calculations were performed to investigate the adsorption and hydration of an ammonium ion (NH4 +) confined in the interlayer space of montmorillonites (MMT). NH4 + is trapped in the six-oxygen-ring on the internal surface and forms a strong binding with the surface O atoms. The hydration of NH4 + is affected significantly by the surface. Water molecules prefer the surface sites, and do not bind with the NH4 + unless enough water molecules are supplied. Moreover, the water molecules involved in NH4 + hydration tend to bind with the surface simultaneously. The hydration energy increases with the intercalated water molecules, in contrast to that in gas phase. In addition, the hydration leads to the extension of MMT basal spacing.
Figure
Hydrated ammonium ion inside montmorillonite  相似文献   

10.
Guanine nucleotides and Na+ are known to regulate ligand binding to cardiac muscarinic receptors, which are netagively couple to the adenylate cyclase system. In the present study, we found that NH4+ was more potent than Na+ or other monovalent cations in regulating the affinity of the muscarinic receptor for agonists and antagonists. The effect of NH4+ (or Na+) on the binding of the antagonist [3H]quinuclidinyl benzilate (QNB) to muscarinic receptors in homogenates of embryonic chick hearts depended on the assay buffer used. NH4+ increased Kd in phosphate buffer or histidine and increased Bmax in Tris. NHf4+ (0.1 M) increased the IC50 value for actylcholine inhibition of [3H]QNB binding 20-fold compared to 3–4-fold with 0.1 M Na+ or K+. Furthermore, NH4+ could substitute for and was more potent than Na+ in producing synergistic effects with Gpp[NH]p to reduce the affinity of the receptor of acetylcholine. Tris depressed these effects. Gpp[NH]p plus 0.4 M NH4Cl totally converted the receptor population to a low affinity agonist state and increased the IC50 for acetylcholine by more than 2000-fold. Two conclusions can be made from the present results. First, NH4+ appears to be the most potent effector yet studied of the monovalent cation site of the muscarinic receptor system. Second, the use of Tris in muscarinic receptor ligand binding assays will produce anomalous results concerning the properties of both agonist antagonist binding to the receptor.  相似文献   

11.
Interactive microbial communities are ubiquitous, influencing biogeochemical cycles and host health. One widespread interaction is nutrient exchange, or cross-feeding, wherein metabolites are transferred between microbes. Some cross-fed metabolites, such as vitamins, amino acids, and ammonium (NH4+), are communally valuable and impose a cost on the producer. The mechanisms that enforce cross-feeding of communally valuable metabolites are not fully understood. Previously we engineered a cross-feeding coculture between N2-fixing Rhodopseudomonas palustris and fermentative Escherichia coli. Engineered R. palustris excretes essential nitrogen as NH4+ to E. coli, while E. coli excretes essential carbon as fermentation products to R. palustris. Here, we sought to determine whether a reciprocal cross-feeding relationship would evolve spontaneously in cocultures with wild-type R. palustris, which is not known to excrete NH4+. Indeed, we observed the emergence of NH4+ cross-feeding, but driven by adaptation of E. coli alone. A missense mutation in E. coli NtrC, a regulator of nitrogen scavenging, resulted in constitutive activation of an NH4+ transporter. This activity likely allowed E. coli to subsist on the small amount of leaked NH4+ and better reciprocate through elevated excretion of fermentation products from a larger E. coli population. Our results indicate that enhanced nutrient uptake by recipients, rather than increased excretion by producers, is an underappreciated yet possibly prevalent mechanism by which cross-feeding can emerge.Subject terms: Microbial ecology, Bacterial evolution, Bacterial physiology  相似文献   

12.
13.
The effect of some ammonium salts on nitrate reductase (NR) level, onin vivo nitrate reduction and on nitrate content was followed in the presence of nitrate in the medium, under changing experimental conditions, in excisedPisum sativum roots, and their effect was compared with that of KNO3, Ca(NO3)2 and NaNO3 at 15 mM NO3 - concentration, i.e. at a concentration which considerably exceeded the level of saturation with nitrate with respect to nitrate reductase. The effect of ammonium salts on NR level is indirect and changes from a positive one to a strongly negative one which is dependent on the time of action of the salt, on the presence of other cations, on pH of the solution of the ammonium salt and on the nature of the anion of the ammonium salt. A positive effect on the enzyme level can be observed in the presence of other cations than NH4 + at suitable concentrations of those ammonium salts, the solutions of which have their pH values in the acid region (i.e. NH4H2PO4, (NH4)2SO4 and NH4NO3). However their positive effect is independent of the presence of NH4 + ions, and it is obviously the result of an increased concentration of H+ ions. A clear-cut negative effect on NR level can be observed after 24 h in one-salt NH4NO3 solution where NH4 + is not balanced with other cations and thus certainly can adversely influence many metabolic processes, and in the solutions containing neutral (pH 6.2) and dibasic ammonium phosphates in which dissolved undissociated ammonia [(NH3). (H2O) which can also affect many metabolic processes incl. proteosynthesis] probably has a toxic influence. Thein vivo nitrate reduction is always depressed in excised pea roots in the presence of ammonium salts in the medium, regardless of the level of nitrate reductase. Under the described conditions, no relationship could be established between the enzyme level and the so-called metabolic NO3 - pool (i.e. NO2 - production under anaerobic conditions), nor between NR level and the total nitrate content in the roots. One-salt solutions of NaNO3, Ca(NO3)2 and KNO3 exert different effects on the level of nitrate reductase and on the content of NO3 - in the roots, but the in vivo NO3 - reduction shows the same trend as NR level in the roots influenced by these salts. Cl- ions, supplied in NH4C1, depress both NR level and NO3 - content in the roots at higher concentrations, but they do not significantly affect the in vivo nitrate reduction in comparison with other ammonium salts. These results indicate that NR level,in vivo nitrate reduction, and nitrate uptake can be regulated in pea roots independently of each other.  相似文献   

14.
Pyridoxine kinase purified from sheep liver was found to consist of a single polypeptide chain with a molecular weight of 60,000 as determined by gel filtration, sedimentation equilibrium ultracentrifugation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric pH of the enzyme was 5.1, and the pH optimum was between 5.5 and 6.0. The enzyme required divalent cations for activity. At cation concentrations of 80 μm, the enzyme activity with each cation was in the order of Zn2+ > Mn2+ > Mg2+. At cation concentrations of 400 μm, the enzyme activity with each cation was in the order of Mn2+ > Zn2+ > Mg2+. Excess free divalent cation inhibited the enzyme. Pyridoxine kinase also required monovalent cations. The enzyme activation was greatest with K+, then Rb+ and NH4+, whereas the enzyme had very little activity with Na+, Li+, or Cs+. Na+ did not interfere with the activation by K+. The activation of the kinase by K+, NH4+, and Rb+ followed Michaelis-Menten kinetics, and the apparent Km values for the cations were 8.9, 3.7, and 5.3 mm, respectively. Increasing the potassium concentration lowered the apparent Km value of the enzyme for pyridoxine and had little or no effect on the Km for ZnATP2? or the V of the kinase-catalyzed reaction.  相似文献   

15.
The close association of the heme enzyme myeloperoxidase to phosphatidylserine epitopes on the surface of non-vital polymorphonuclear leukocytes (PMNs) and other apoptotic cells at inflammatory sites favours modifications of this phospholipid by myeloperoxidase products. As detected by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, ammonium ions inhibit in a concentration-dependent manner the hypochlorous acid-mediated formation of aldehyde and nitrile products from 1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS). Concomitantly, the formation of monochloramine (NH2Cl) raises with increasing NH4+ concentrations. A transchlorination from monochlorinated O-phospho-l-serine to NH4+ with the formation of NH2Cl occurs only when extraordinary high NH4+ concentrations are applied. Due to the low rate of 0.044 M− 1 s− 1 for this process, a transhalogenation reaction from transient chlorinated intermediates of the serine moiety to NH4+ can be ruled out as an important process contributing to the HOCl-mediated formation of NH2Cl. A significant formation of NH2Cl by myeloperoxidase interacting with DPPS in the presence of ammonium ions takes only place at acidic pH values around 5, a scenario that may occur in phagosomes of macrophages after the uptake of apoptotic PMNs.  相似文献   

16.
Properties of pyruvate kinase from soybean nodule cytosol   总被引:2,自引:2,他引:0  
The properties of pyruvate kinase from soybean (Glycine max L.) nodule cytosol were examined to determine what influence the N2 fixation process might have on this supposed key control enzyme. A crude enzyme preparation was prepared by chromatography of cytosol extract on a diethylaminoethyl-cellulose column. ATP and citrate at 5 mm concentrations inhibited pyruvate kinase 27 and 34%, respectively. Enzyme activation was hyperbolic with respect to both K+ and NH4+ concentrations. In the presence of physiological concentrations of K+ and high phosphoenolpyruvate (PEP) concentrations, NH4+ inhibited enzyme activity. Comparisons of kinetic parameters (Vmax and apparent Ka) for NH4+ and K+ with inhibition curves indicated that inhibition was very likely a result of competition of the ions for activation site(s) on the pyruvate kinase. In addition, apparent Ka (monovalent cation) and Km (PEP) were influenced by PEP and monovalent cation concentrations, respectively. This effect may reflect a fundamental difference between plant and animal pyruvate kinases. It is concluded that control of cytosol pyruvate kinase may be closely related to reactions involved in the assimilation of NH4+.  相似文献   

17.
An understanding of the mechanisms underlying ammonium (NH4+) toxicity in plants requires prior knowledge of the metabolic uses for nitrogen (N) and carbon (C). We have recently shown that pea plants grown at high NH4+ concentrations suffer an energy deficiency associated with a disruption of ionic homeostasis. Furthermore, these plants are unable to adequately regulate internal NH4+ levels and the cell‐charge balance associated with cation uptake. Herein we show a role for an extra‐C application in the regulation of C–N metabolism in NH4+‐fed plants. Thus, pea plants (Pisum sativum) were grown at a range of NH4+ concentrations as sole N source, and two light intensities were applied to vary the C supply to the plants. Control plants grown at high NH4+ concentration triggered a toxicity response with the characteristic pattern of C‐starvation conditions. This toxicity response resulted in the redistribution of N from amino acids, mostly asparagine, and lower C/N ratios. The C/N imbalance at high NH4+ concentration under control conditions induced a strong activation of root C metabolism and the upregulation of anaplerotic enzymes to provide C intermediates for the tricarboxylic acid cycle. A high light intensity partially reverted these C‐starvation symptoms by providing higher C availability to the plants. The extra‐C contributed to a lower C4/C5 amino acid ratio while maintaining the relative contents of some minor amino acids involved in key pathways regulating the C/N status of the plants unchanged. C availability can therefore be considered to be a determinant factor in the tolerance/sensitivity mechanisms to NH4+ nutrition in plants.  相似文献   

18.
Many plants develop toxicity symptoms and have reduced growth rates when supplied with ammonium (NH4+) as the only source of inorganic nitrogen. In the present study, the growth, morphology, NH4+ uptake kinetics and mineral concentrations in the tissues of the free-floating aquatic plant Salvinia natans (water fern) supplied exclusively with NH4+–N at concentrations of 0.25–15 mM were investigated. S. natans grew well, with relative growth rates of c. 0.25 g g?1 d?1 at external NH4+ concentrations up to 5 mM, but at higher levels growth was suppressed and the plants had small leaves and short roots with stunted growth. The high-affinity transport system (HATS) that mediate NH4+ uptake at dilute NH4+ levels was downregulated at high NH4+ concentrations with lower velocities of maximum uptake (Vmax) and higher half-saturation constants (K1/2). High NH4+ levels also barely affected the concentrations of mineral cations and anions in the plant tissue. It is concluded that S. natans can be characterized as NH4+-tolerant in line with a number of other species of wetland plants as growth was unaffected at NH4+ concentrations as high as 5 mM and as symptoms of toxicity at higher concentrations were relatively mild. Depolarization of the plasma membrane to the equilibrium potential for NH4+ at high external concentrations may be a mechanism used by the plant to avoid excessive futile transmembrane cycling. S. natans is tolerant to the high NH4+ levels that prevail in domestic and agricultural wastewaters, and the inherent high growth rate and the ease of biomass harvesting make S. natans a primary candidate for use in constructed wetland systems for the treatment of various types of nitrogen-rich wastewaters.  相似文献   

19.
Enhancement of cyanobacterial salt tolerance by combined nitrogen   总被引:5,自引:0,他引:5       下载免费PDF全文
Presence of certain nitrogenous compounds in the growth medium significantly enhanced the salt tolerance of the fresh-water cyanobacterium Anabaena sp. strain L-31 as well as the brackish water cyanobacterium Anabaena torulosa. Among these, nitrate, ammonium, and glutamine were most effective followed by glutamate and aspartate. These nitrogenous compounds also inhibited Na+ influx in both Anabaena spp. with the same order of effectiveness as that observed for protection against salt stress. The inhibition of Na+ influx on addition of the nitrogenous substances was rapid; nitrate and ammonium inhibited Na+ influx competitively. Proline and glycine did not affect Na+ influx and also had no influence on the salt tolerance of either Anabaena sp. The observed protection was not consequent to a stimulatory effect of combined nitrogen on growth per se. Uptake of NO3 and NH4+ increased during salt stress but was not correlated with growth. Intracellular levels of NO3 and NH4+ were found to be inadequate to constitute a major component of the internal osmoticum. The results suggest that inhibition of Na+ influx by combined nitrogen is a major mechanism for protection of cyanobacteria against salt stress.  相似文献   

20.
The ammonium analogue, methylamine, is taken up rapidly from dilute solution by Macrocystis pyrifera (L.) C. A. Agardh. 14C-methylamine was used to characterize the transport system, with respect to dependence on external concentration, temperature, pH and substrate specificity. The results suggest that methylamine enters the algal tissue via a specific mediated transport system. Uptake of methylamine showed no consistent relation to the N content of the plant tissue, but was highly dependent on the portion of plant sampled and severely affected by cutting the tissue. The strong inhibition of methylamine uptake by ammonium and lesser inhibition by other alkylamines suggests that the uptake system functions as an “ammonium permease”. Uptake of 14C-methylamine can be used as a highly sensitive measure of NH4+ uptake activity and should be a useful tool for studying NH4+ uptake in the laboratory and field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号