首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have led to the proposal that working memory operates not as a gateway between sensory input and long-term memory but as a workspace. The core of argument is that access to acquired knowledge and prior learning occurs before information becomes available to working memory. This proposition is a way to accomodate Baddeley's multiple component working memory model and the view that considers that working memory is nothing other than temporary activations of representations and procedures in long-term memory. However, this ‘workspace’ conception of working memory raises the question of the relationships between the central executive system and long-term memory.  相似文献   

2.
Animals can store learned information in their brains through a series of distinct memory forms. Short-lasting memory forms can be followed by longer-lasting, consolidated memory forms. However, the factors determining variation in memory consolidation encountered in nature have thus far not been fully elucidated. Here, we show that two parasitic wasp species belonging to different families, Cotesia glomerata (Hymenoptera: Braconidae) and Trichogramma evanescens (Hymenoptera; Trichogrammatidae), similarly adjust the memory form they consolidate to a fitness-determining reward: egg-laying into a host-insect that serves as food for their offspring. Protein synthesis-dependent long-term memory (LTM) was consolidated after single-trial conditioning with a high-value host. However, single-trial conditioning with a low-value host induced consolidation of a shorter-lasting memory form. For Cotesia glomerata, we subsequently identified this shorter-lasting memory form as anesthesia-resistant memory (ARM) because it was not sensitive to protein synthesis inhibitors or anesthesia. Associative conditioning using a single reward of different value thus induced a physiologically different mechanism of memory formation in this species. We conclude that the memory form that is consolidated does not only change in response to relatively large differences in conditioning, such as the number and type of conditioning trials, but is also sensitive to more subtle differences, such as reward value. Reward-dependent consolidation of exclusive ARM or LTM provides excellent opportunities for within-species comparison of mechanisms underlying memory consolidation.  相似文献   

3.
A central goal of neuroscience is to understand how neural circuits encode memory and guide behavior changes. Many of the molecular mechanisms underlying memory are conserved from flies to mammals, and Drosophila has been used extensively to study memory processes. To identify new genes involved in long-term memory, we screened Drosophila enhancer-trap P(Gal4) lines showing Gal4 expression in the mushroom bodies, a specialized brain structure involved in olfactory memory. This screening led to the isolation of a memory mutant that carries a P-element insertion in the debra locus. debra encodes a protein involved in the Hedgehog signaling pathway as a mediator of protein degradation by the lysosome. To study debra's role in memory, we achieved debra overexpression, as well as debra silencing mediated by RNA interference. Experiments conducted with a conditional driver that allowed us to specifically restrict transgene expression in the adult mushroom bodies led to a long-term memory defect. Several conclusions can be drawn from these results: i) debra levels must be precisely regulated to support normal long-term memory, ii) the role of debra in this process is physiological rather than developmental, and iii) debra is specifically required for long-term memory, as it is dispensable for earlier memory phases. Drosophila long-term memory is the only long-lasting memory phase whose formation requires de novo protein synthesis, a process underlying synaptic plasticity. It has been shown in several organisms that regulation of proteins at synapses occurs not only at translation level of but also via protein degradation, acting in remodeling synapses. Our work gives further support to a role of protein degradation in long-term memory, and suggests that the lysosome plays a role in this process.  相似文献   

4.
History matters, and can be an active and dynamic component in the present. We explore social-ecological memory as way to diagnose and engage with urban green space performance and resilience. Rapidly changing cities pose a threat and a challenge to the continuity that has helped to support biodiversity and ecological functions by upholding similar or only slowly changing adaptive cycles over time. Continuity is perpetuated through memory carriers, slowly changing variables and features that retain or make available information on how different situations have been dealt with before. Ecological memory carriers comprise memory banks, spatial connections and mobile link species. These can be supported by social memory carriers, represented by collectively created social features like habits, oral tradition, rules-in-use and artifacts, as well as media and external sources. Loss or lack of memory can be diagnoses by the absence or disconnect between memory carriers, as will be illustrated by several typical situations. Drawing on a set of example situations, we present an outline for a look-up table approach that connects ecological memory carriers to the social memory carriers that support them and use these connections to set diagnoses and indicate potential remedies. The inclusion of memory carriers in planning and management considerations may facilitate preservation of feedbacks and disturbance regimes as well as species and habitats, and the cultural values and meanings that go with them.  相似文献   

5.
Semantic memory and the human hippocampus   总被引:12,自引:0,他引:12  
Manns JR  Hopkins RO  Squire LR 《Neuron》2003,38(1):127-133
It has been unclear whether the hippocampus is uniquely important for episodic memory (memory for events that are specific to time and place) or whether the hippocampus is also important for learning and remembering facts (semantic memory). In two studies, we assessed the capacity for semantic memory in patients with bilateral damage thought to be restricted primarily to the hippocampal region who developed memory impairment at a known time. Since the onset of their memory impairment, the patients have acquired less factual knowledge than controls. The patients also exhibit temporally limited retrograde amnesia for factual information from the several years preceding the onset of memory impairment. Remote memory for factual knowledge (from 11-30 years before amnesia) is intact. The results show that the hippocampal region supports semantic memory as well as episodic memory and that its role in the acquisition and storage of semantic knowledge is time limited.  相似文献   

6.
Phenomenologically inspired by dolphins’ unihemispheric sleep, we introduce a minimal model for random walks with physiological memory. The physiological memory consists of long-term memory which includes unconscious implicit memory and conscious explicit memory, and working memory which serves as a multi-component system for integrating, manipulating and managing short-term storage. The model assumes that the sleeping state allows retrievals of episodic objects merely from the episodic buffer where these memory objects are invoked corresponding to the ambient objects and are thus object-oriented, together with intermittent but increasing use of implicit memory in which decisions are unconsciously picked up from historical time series. The process of memory decay and forgetting is constructed in the episodic buffer. The walker’s risk attitude, as a product of physiological heuristics according to the performance of objected-oriented decisions, is imposed on implicit memory. The analytical results of unihemispheric random walks with the mixture of object-oriented and time-oriented memory, as well as the long-time behavior which tends to the use of implicit memory, are provided, indicating the common sense that a conservative risk attitude is inclinable to slow movement.  相似文献   

7.
8.
Milekic MH  Alberini CM 《Neuron》2002,36(3):521-525
Learning of new information is transformed into long-lasting memory through a process known as consolidation, which requires protein synthesis. Classical theory held that once consolidated, memory was insensitive to disruption. However, old memories that are insensitive to protein synthesis inhibitors can become vulnerable if they are recalled (reactivated). These findings led to a new hypothesis that when an old memory is reactivated, it again becomes labile and, similar to a newly formed memory, requires a process of reconsolidation in order to be maintained. Here, we show that the requirement for protein synthesis of a reactivated memory is evident only when the memory is recent. In fact, memory vulnerability decreases as the time between the original training and the recall increases.  相似文献   

9.
While the effects of cannabis use on retrospective memory have been extensively examined, only a limited number of studies have focused on the links between cannabis use and prospective memory. We conducted two studies to examine the links between cannabis use and both time-based and event-based prospective memory as well as potential mechanisms underlying these links. For the first study, 805 students completed an online survey designed to assess cannabis consumption, problems with cannabis use indicative of a disorder, and frequency of experiencing prospective memory failures. The results showed small to moderate sized correlations between cannabis consumption, problems with cannabis use, and prospective memory. However, a series of mediation analyses revealed that correlations between problems with cannabis use and prospective memory were driven by self-reported problems with retrospective memory. For the second study, 48 non-users (who had never used cannabis), 48 experimenters (who had used cannabis five or fewer times in their lives), and 48 chronic users (who had used cannabis at least three times a week for one year) were administered three objective prospective memory tests and three self-report measures of prospective memory. The results revealed no objective deficits in prospective memory associated with chronic cannabis use. In contrast, chronic cannabis users reported experiencing more internally-cued prospective memory failures. Subsequent analyses revealed that this effect was driven by self-reported problems with retrospective memory as well as by use of alcohol and other drugs. Although our samples were not fully characterized with respect to variables such as neurological disorders and family history of substance use disorders, leaving open the possibility that these variables may play a role in the detected relationships, the present findings indicate that cannabis use has a modest effect on self-reported problems with prospective memory, with a primary problem with retrospective memory appearing to underlie this relationship.  相似文献   

10.
Uttl B 《PloS one》2008,3(2):e1568
Prospective memory (ProM) refers to our ability to become aware of a previously formed plan at the right time and place. After two decades of research on prospective memory and aging, narrative reviews and summaries have arrived at widely different conclusions. One view is that prospective memory shows large age declines, larger than age declines on retrospective memory (RetM). Another view is that prospective memory is an exception to age declines and remains invariant across the adult lifespan. The present meta-analysis of over twenty years of research settles this controversy. It shows that prospective memory declines with aging and that the magnitude of age decline varies by prospective memory subdomain (vigilance, prospective memory proper, habitual prospective memory) as well as test setting (laboratory, natural). Moreover, this meta-analysis demonstrates that previous claims of no age declines in prospective memory are artifacts of methodological and conceptual issues afflicting prior research including widespread ceiling effects, low statistical power, age confounds, and failure to distinguish between various subdomains of prospective memory (e.g., vigilance and prospective memory proper).  相似文献   

11.
Against memory systems   总被引:9,自引:0,他引:9  
The medial temporal lobe is indispensable for normal memory processing in both human and non-human primates, as is shown by the fact that large lesions in it produce a severe impairment in the acquisition of new memories. The widely accepted inference from this observation is that the medial temporal cortex, including the hippocampal, entorhinal and perirhinal cortex, contains a memory system or multiple memory systems, which are specialized for the acquisition and storage of memories. Nevertheless, there are some strong arguments against this idea: medial temporal lesions produce amnesia by disconnecting the entire temporal cortex from neuromodulatory afferents arising in the brainstem and basal forebrain, not by removing cortex; the temporal cortex is essential for perception as well as for memory; and response properties of temporal cortical neurons make it impossible that some kinds of memory trace could be stored in the temporal lobe. All cortex is plastic, and it is possible that the same rules of plasticity apply to all cortical areas; therefore, memory traces are stored in widespread cortical areas rather than in a specialized memory system restricted to the temporal lobe. Among these areas, the prefrontal cortex has an important role in learning and memory, but is best understood as an area with no specialization of function.  相似文献   

12.
13.
How are memories stored and retrieved? It was one of the most discussed questions in the past century by neuroscientists. Leading studies of the period brought two different explanations to this question: The first statement considers memory as a physiological change in the brain and suggest that the retrieval of memory is only occurred by the same physiologic changes observed during the memory formation, while the second suggests that memory is a psychic mood stored in mind and the retrieval of memory is occurred by mystical energy fluctuations. Although the exact reason and the pathogenesis of Alzheimer's disease have not yet been fully understood, the approaches that centered the retrieval strategy of lost memory constitutes the basis of the treatment strategies in Alzheimer's disease today. The majority of treatment studies has based on the manipulation of the cholinergic system; however, although serotonin has mnemonic effects, its role in the pathogenesis of Alzheimer's disease has not been investigated as much as the cholinergic system. Here we show how serotonin affects the pathogenesis of Alzheimer's disease in a comprehensive perspective and we suggest that the optogenetics manipulation of serotonin nuclei retrieve the lost memory by closing the inward-rectifier potassium channel Kir2 on the memory engram cells. Also, we raise the possible effects of serotonin on the memory engram cells and the interactions between the amyloid-centric hypothesis of Alzheimer's disease and the memory engram hypothesis to explain the pathophysiology of memory loss in Alzheimer's disease.  相似文献   

14.
The neurobiological substrate of learning process and persistent memory storage involves multiple brain areas. The neocortex and hippocampal formation are known as processing and storage sites for explicit memory, whereas the striatum, amygdala, neocortex and cerebellum support implicit memory. Synaptic plasticity, long-term changes in synaptic transmission efficacy and transient recruitment of intracellular signaling pathways in these brain areas have been proposed as possible mechanisms underlying short- and long-term memory retention. In addition to the classical neurotransmitters (glutamate, GABA), experimental evidence supports a role for neuropeptides in modulating memory processes. This review focuses on the role of the Melanin-Concentrating Hormone (MCH) and receptors on memory formation in animal studies. Possible mechanisms may involve direct MCH modulation of neural circuit activity that support memory storage and cognitive functions, as well as indirect effect on arousal.  相似文献   

15.
Building on Dor’s theory of language as a social technology for the instruction of imagination, I suggest that autobiographical memory evolved culturally as a response to the problems of false memory and deliberate deceit that were introduced by that technology. I propose that sapiens’ linguistic communication about past and future events initially occurred in small groups, and this helped to correct individual memory defects. However, when human groups grew in size and became more socially differentiated, and movement between groups prevented story-verification, misattributions of events became more common. In such conditions individuals with better autobiographical memory had an advantage because they could evaluate their own contents and sources of information, as well as that of others, more accurately; this not only benefitted them directly, but also improved their reliability as social partners. Autobiographical memory thus evolved in the context of human linguistic communication through selection for communicative reliability. However, the advantages of imagination, which enables forward-planning and decision-Making, meant that memory distortions, although controlled and moderated by autobiographical memory, could not be totally eradicated. This may have driven the evolution of additional forms of memory control involving social and linguistic norms. I interpret the language and the social norms of the Pirahã as the outcome of the cultural-evolutionary control of memory distortions. Some ways of testing aspects of this proposal are outlined.  相似文献   

16.
The initial steps that determine development of memory in CD4 cells are unknown. To distinguish an intrinsic capacity of effectors to become memory cells from contributions of as yet undefined survival factors, we analyzed the effects of withdrawal of signals via TCR, costimulation, and cytokines from Th1 or Th2 primary effectors induced in vitro from TCR-transgenic CD4 cells. Withdrawal of stimulation caused the transition of effectors to resting populations with a memory phenotype that did not undergo division following transfer to normal syngeneic recipients. The return of effectors to rest was accompanied by acquisition of the capacity to function as memory cells in vivo as defined by extended persistence and a more rapid response to Ag in vivo than naive cells in adoptive hosts. Upon challenge with Ag, these in vitro-rested Th1 and Th2 cells were similar to long-term in vivo-rested memory cells, but distinct from in vitro-generated primary effectors and in vivo-restimulated memory effectors by their ability to resist apoptosis. Cessation of stimulation may occur when activated CD4 cells exit lymphoid tissues after priming and transition to memory may be initiated if effectors either fail to gain access to Ag in peripheral tissues where restimulation can lead to activation-induced cell death or do not receive sufficient stimuli to continue a response. Our results suggest that the first stage leading to stable CD4 memory could occur stochastically and independently of instructional processes and as such, the development of memory may be a default pathway when signals that direct responses are not received.  相似文献   

17.
The memory T cell pool is characterized by a substantial degree of heterogeneity in phenotype and function as well as anatomical distribution, but the underlying mechanisms remain unclear. In this study we confirm that the memory CD4(+) T cell pool in wild-type and TCR-transgenic mice consists of heterogeneous subsets, as defined by surface marker expression or cytokine production. Extralymphoid sites contain significant numbers of memory CD4(+) T cells, which are phenotypically and functionally distinct from their lymphoid counterparts. However, we show in this study that the phenotype of lymphoid and extralymphoid memory T cells is not stable. Instead, the unique properties of extralymphoid memory T cells are acquired upon migration into extralymphoid sites and are lost when memory T cells migrate back into lymphoid organs. Thus, at least some of the extralymphoid properties may represent a transient activation state that can be adopted by T cells belonging to a single memory T cell pool. Furthermore, such intermittent activation during or after migration into extralymphoid sites could provide an important signal, promoting the survival and functional competence of memory T cells in the absence of Ag.  相似文献   

18.
19.
Theories of episodic memory need to specify the encoding (representing), storage, and retrieval processes that underlie this form of memory and indicate the brain regions that mediate these processes and how they do so. Representation and re-representation (retrieval) of the spatiotemporally linked series of scenes, which constitute an episode, are probably mediated primarily by those parts of the posterior neocortex that process perceptual and semantic information. However, some role of the frontal neocortex and medial temporal lobes in representing aspects of context and high-level visual object information at encoding and retrieval cannot currently be excluded. Nevertheless, it is widely believed that the frontal neocortex is mainly involved in coordinating episodic encoding and retrieval and that the medial temporal lobes store aspects of episodic information. Establishing where storage is located is very difficult and disagreement remains about the role of the posterior neocortex in episodic memory storage. One view is that this region stores all aspects of episodic memory ab initio for as long as memory lasts. This is compatible with evidence that the amygdala, basal forebrain, and midbrain modulate neocortical storage. Another view is that the posterior neocortex only gradually develops the ability to store some aspects of episodic information as a function of rehearsal over time and that this information is initially stored by the medial temporal lobes. A third view is that the posterior neocortex never stores these aspects of episodic information because the medial temporal lobes store them for as long as memory lasts in an increasingly redundant fashion. The last two views both postulate that the medial temporal lobes initially store contextual markers that serve to cohere featural information stored in the neocortex. Lesion and functional neuroimaging evidence still does not clearly distinguish between these views. Whether the feeling that an episodic memory is familiar depends on retrieving an association between a retrieved episode and this feeling, or by an attribution triggered by a priming process, is unclear. Evidence about whether the hippocampus and medial temporal lobe cortices play different roles in episodic memory is conflicting. Identifying similarities and differences between episodic memory and both semantic memory and priming will require careful componential analysis of episodic memory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号