首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In maize (Zea mays L.), chloroplast development progresses from the basal meristem to the mature leaf tip, and light is required for maturation to photosynthetic competence. During chloroplast greening, it was found that chloroplast DNA (cpDNA) is extensively degraded, falling to undetectable levels in many individual chloroplasts for three maize cultivars, as well as Zea mexicana (the ancestor of cultivated maize) and the perennial species Zea diploperennis. In dark-grown maize seedlings, the proplastid-to-etioplast transition is characterized by plastid enlargement, cpDNA replication, and the retention of high levels of cpDNA. When dark-grown seedlings are transferred to white light, the DNA content per plastid increases slightly during the first 4 h of illumination and then declines rapidly to a minimum at 24 h during the etioplast-to-chloroplast transition. Plastid autofluorescence (from chlorophyll) continues to increase as cpDNA declines, whereas plastid size remains constant. It is concluded that the increase in cpDNA that accompanies plastid enlargement is a consequence of cell and leaf growth, rather than illumination, whereas light stimulates photosynthetic capacity and cpDNA instability. When cpDNA from total tissue was monitored by blot hybridization and real-time quantitative PCR, no decline following transfer from dark to light was observed. The lack of agreement between DNA per plastid and cpDNA per cell may be attributed to nupts (nuclear sequences of plastid origin).  相似文献   

2.
López-Juez E  Bowyer JR  Sakai T 《Planta》2007,227(1):113-123
Leaf palisade cell development and the composition of chloroplasts respond to the fluence rate of light to maximise photosynthetic light capture while minimising photodamage. The underlying light sensory mechanisms are probably multiple and remain only partially understood. Phototropins (PHOT1 and PHOT2) are blue light receptors regulating responses which are light quantity-dependent and which include the control of leaf expansion. Here we show that genes for proteins in the reaction centres show long-term responses in wild type plants, and single blue photoreceptor mutants, to light fluence rate consistent with regulation by photosynthetic redox signals. Using contrasting intensities of white or broad-band red or blue light, we observe that increased fluence rate results in thicker leaves and greater number of palisade cells, but the anticlinal elongation of those cells is specifically responsive to the fluence rate of blue light. This palisade cell elongation response is still quantitatively normal in fully light-exposed regions of phot1 phot2 double mutants under increased fluence rate of white light. Plants grown at high light display elevated expression of RBCS (for the Rubisco small subunit) which, together with expected down-regulation of LHCB1 (for the photosynthetic antenna primarily of photosystem II), is also observed in phot double mutants. We conclude that an unknown blue light photoreceptor, or combination thereof, controls the development of a typical palisade cell morphology, but phototropins are not essential for either this response or acclimation-related gene expression changes. Together with previous evidence, our data further demonstrate that photosynthetic (chloroplast-derived) signals play a central role in the majority of acclimation responses.  相似文献   

3.
H. Hashimoto 《Protoplasma》1985,127(1-2):119-127
Summary Nucleoid distribution in chloroplasts and etioplasts at the different developmental stages was examined with the first leaves ofAvena sativa by using a DNA-specific fluorescent probe, 46-diamidino-2-phenylindole (DAPI). In light-grown first leaves, three types of plastid nucleoid distribution were recognized. 1. Peripheral distribution in undeveloped chloroplasts which contain only a few thylakoids in the middle region of the leaf sheath. 2. Ring-like arrangement along the rim of developing and dividing young chloroplasts, of which grana were composed of four to eight layers of thylakoids, at the base of the leaf blade. The plane of the nucleoids' ring is in parallel with the face of the thylakoids. 3. Scattered distribution of 10 to 20 discrete spherular nucleoids in the stroma of fully developed chloroplasts, of which grana were composed of up to 20 thylakoids, in the regions of the middle and the tip of the leaf blade. In dark-grown first leaves two types were recognized. 1. Peripheral distribution in developing and dividing young etioplasts in the leaf sheath and the base of the leaf blade. 2. Scattered distribution of 10 or more discrete spherular nucleoids in fully developed etioplasts, containing extended prothylakoids, in the regions of the middle and the tip of the leaf blade. Ring-like arrangement of nucleoids was not observed in any etioplasts. The results indicates that spatial arrangement of plastid nucleoids dynamically changes in close relationship with the development of the inner membrane systems of plastids.  相似文献   

4.
Summary The location of DNA containing nucleoids has been studied in greening bean (Phaseolus vulgaris L.) etioplasts using electron microscopy of thin sections and the staining of whole leaf cells with the fluorochrome DAPI. At 0 hours illumination a diffuse sphere of cpDNA surrounds most of the prolamellar body. It appears to be made up of a number of smaller nucleoids and can be asymmetric in location. The DNA appears to be attached to the outside of the prolamellar body and to prothylakoids on its periphery. With illumination the nucleoid takes on a clear ring-like shape around the prolamellar body. The maximum development of the ring-like nucleoid at 5 hours illumination is associated with the outward expansion of the prolamellar body and the outward growth of the prothylakoids. At 5 hours the electron transparent areas lie in between the prothylakoids radiating out from the prolamellar body. Between 5 hours and 15 hours observations are consistent with the growing thylakoids separating the nucleoids as the prolamellar body disappears and the chloroplast becomes more elongate. At 15 hours the fully differentiated chloroplast has discrete nucleoids distributed throughout the chloroplast with evidence of thylakoid attachment. This is the SN (scattered nucleoid) distribution ofKuroiwa et al. (1981) and is also evident in 24 hours and 48 hours chloroplasts which have more thylakoids per granum. The changes in nucleoid location occur without significant changes in DNA levels per plastid, and there is no evidence of DNA or plastid replication.The observations indicate that cpDNA partitioning in dividing SN-type chloroplasts could be achieved by thylakoid growth and effectively accomplish DNA segregation, contrasting with envelope growth segregating nucleoids in PS-type (peripheral scattered nucleoids) chloroplasts. The influence of plastid development on nucleoid location is discussed.  相似文献   

5.
We used pulsed-field gel electrophoresis and restriction fragment mapping to analyze the structure of Medicago truncatula chloroplast DNA (cpDNA). We find most cpDNA in genome-sized linear molecules, head-to-tail genomic concatemers, and complex branched forms with ends at defined sites rather than at random sites as expected from broken circles. Our data suggest that cpDNA replication is initiated predominantly on linear DNA molecules with one of five possible ends serving as putative origins of replication. We also used 4',6-diamidino-2-phenylindole staining of isolated plastids to determine the DNA content per plastid for seedlings grown in the dark for 3 d and then transferred to light before being returned to the dark. The cpDNA content in cotyledons increased after 3 h of light, decreased with 9 h of light, and decreased sharply with 24 h of light. In addition, we used real-time quantitative polymerase chain reaction to determine cpDNA levels of cotyledons in dark- and light-grown (low white, high white, blue, and red light) seedlings, as well as in cotyledons and leaves from plants grown in a greenhouse. In white, blue, and red light, cpDNA increased initially and then declined, but cpDNA declined further in white and blue light while remaining constant in red light. The initial decline in cpDNA occurred more rapidly with increased white light intensity, but the final DNA level was similar to that in less intense light. The patterns of increase and then decrease in cpDNA level during development were similar for cotyledons and leaves. We conclude that the absence in M. truncatula of the prominent inverted repeat cpDNA sequence found in most plant species does not lead to unusual properties with respect to the structure of plastid DNA molecules, cpDNA replication, or the loss of cpDNA during light-stimulated chloroplast development.  相似文献   

6.
Dark-grown radish seedlings (Raphanus sativus L.) were sprayed with 10-3 mol·l-1 2,4-dichlorophenoxyacetic acid and then were exposed to a 14:10 light: dark cycle. Cotyledon samples from these seedlings and unsprayed controls were taken for electron microscopy, chlorophyll determinations, and photosynthetic rate measurements at regular intervals for 72 h. A normal development of etioplasts to chloroplasts with formation of typical grana-fret work system was observed in the control cotyledons. The chloroplasts in the 2,4-D-treated cotyledons showed changes in the organization of the grana thylakoids; these thylakoids being more appressed to each other than in the controls. The chlorophyll content of treated plants was less than that of controls but the rate of chlorophyll biosynthesis was unaffected. The photosynthetic rate/mg chlorophyll was considerably higher for treated plants suggesting that 2,4-D treatment resulted in decreased size of the photosynthetic unit.  相似文献   

7.
We examined the DNA from chloroplasts obtained from young and fully expanded leaves of tobacco (Nicotiana tabacum L.), Medicago truncatula, pea (Pisum sativum L.), and maize (Zea mays L.). The changes in plastid DNA content and structure were monitored by four independent methods: 4′,6-diamidino-2-phenylindole (DAPI) staining with intact chloroplasts, in situ DAPI staining of cytological sections, ethidium bromide staining at the single-molecule level after exhaustive deproteinization of lysed chloroplasts, and pulsed-field gel electrophoresis. During leaf development, we found a decline of chloroplast DNA (cpDNA) in all four plants. For tobacco, for which plants can readily be regenerated from somatic cells, cpDNA persisted longer than in the other three plants. We also found a striking progression from complex multigenomic DNA molecules to simple subgenomic molecules during plastid development. Although the decrease in molecular size and complexity paralleled the decrease in DNA content per plastid, 6% of the chloroplasts in a fully expanded tobacco leaf still contained DNA in complex branched structure, whereas no such complex structures were found in mature leaves for the hard-to-regenerate maize.  相似文献   

8.
Replication of Arabidopsis nuclear, mitochondrial and chloroplast DNA (ncDNA, mtDNA, cpDNA) was assayed by measuring respective changes in copies per leaf, employing quantitative PCR (QPCR) analysis with genome-specific primer pairs. All three genomes showed parallel increases during growth of cotyledons and 5th leaves in planta, maintaining approximately 13 mtDNA copies and 280 cpDNA copies per haploid nuclear genome. Detached 5th leaves, which showed good growth and DNA replication on agar plates, were irradiated at (DNA-effective) UV-B fluences of 1.3-5.0 kJ m-2 and incubated under blue (photorepair-active) plus gold light or gold light only. Under blue light, replication of all genomes after all UV fluences was approximately as efficient as replication in unirradiated leaves. UV-irradiated leaves showed little growth under gold light only; 5 kJ m-2 stopped replication of all three genomes, 2.5 kJ m-2 stopped only cpDNA replication, and 1.3 kJ m-2 only delayed cpDNA replication. Immunoassays showed that 5 kJ m-2 induced about 1.2 cyclobutane pyrimidine dimers and 0.1 [6-4]photoproducts per kbp of bulk DNA, and that both photoproducts were completely removed during 2-3 days under blue light, suggesting efficient photorepair of at least ncDNA and cpDNA. The evidence for efficient photorepair of organellar DNA contrasts with previous studies of irradiated 5-day-old seedlings, and with the apparent absence of Arabidopsis photolyases bearing transit peptides.  相似文献   

9.
10.
Five different regions of the first foliage leaf of etiolated barley seedlings were studied with respect to leaf growth, plastid growth and replication, differentiation of etioplasts, and conversion of etioplasts into chloroplasts upon illumination. Ultrastructural changes of the plastids were correlated with chlorophyll synthesis and development of photosynthetic activity as measured by (14)CO(2) incorporation and O(2) evolution. The first foliage leaf has greater linear growth over a longer period of time in the dark than in the light. Only the bottom two regions (4 and 5) are still growing in the 5-day etiolated leaf. Region 4 grows by cell elongation, and region 5 grows by both cell division and elongation. Plastids in all five regions of the leaf are capable of enlarging when exposed to light. This is true both for the intact plant and for excised sections. Plastid replication occurs predominantly in the younger regions of the leaf (regions 3, 4, and 5). The amount of chlorophyll synthesized by different regions in the intact plant is significantly higher (3-40 times) than that made by excised sections. Ultrastructural changes occurring in each region when excised sections are illuminated were classified into five stages involving increased membrane synthesis and appression into grana, and these changes were correlated with the first appearance of photosynthetic activity. The earliest detectable photosynthetic activity occurs in region 1 after 2 hours of illumination when chloroplasts show only a few overlaps in the thylakoids. Plastids in younger regions of the leaf require up to 24 hours of light to form grana and develop photosynthetic activity. Plastids in each region of the leaf are in different stages of development when photosynthesis is initiated, indicating that development of photosynthetic activity is not strictly correlated with a certain stage of plastid development. Membrane appression is not indicative of photosynthetic activity since overlaps are formed in the dark, but it was always present when photosynthetic activity was detectable. Likewise, there does not appear to be any strict correlation between the presence of chlorophyll and membrane appression. These results show that the particular structural and functional correlations that can be made depend to a large degree on age of the tissue.  相似文献   

11.
Summary Ultrastructural surveys, carried out into an olive necrotic maize mutant (Neuffer E 283 B) grown under a 16 hours photoperiod, have shown remarkable morphological alterations in the plastids. Such alterations, affecting both the mesophyll and the bundle sheath plastids, appear to be photodependent. Quite normal etioplasts are present in dark-grown mutant seedlings. Moreover, light appears also to inhibit the overall growth of mutant plants. 12-day-old mutant plants grown under illumination are 4 cm in comparison with the 10 cm of the wild type, while corresponding dark-grown seedlings of both types are 12 cm high.Supported by a grant of C.N.R.  相似文献   

12.
Summary Each wild-typeChlamydomonas reinhardtii cell has one large chloroplast containing several nuclei (nucleoids). We used DNA insertional mutagenesis to isolate Chlamydomonas mutants which contain a single, large chloroplast (cp) nucleus and which we namedmoc (monokaryotic chloroplast). DAPI-fluorescence microscopy and microphotometry observations revealed thatmoc mutant cells only contain one cp-nucleus throughout the cell division cycle, and that unequal segregation of cpDNA occurred during cell division in themoc mutant. One cell with a large amount of cpDNA and another with a small amount of cpDNA were produced after the first cell division. Unequal segregation also occurred in the second cell division, producing one cell with a large amount (about 70 copies) of cpDNA and three other cells with a small amount (only 2–8 copies) of cpDNA. However, most individualmoc cells contained several dozen cpDNA copies 12 h after the completion of cell division, suggesting that cpDNA synthesis was activated immediately after chloroplast division. In contrast to the cpDNA, the mitochondrial (mt) DNA of themoc mutants was observed as tiny granules scattered throughout the entire cell. These segregated to each daughter cell equally during cell division. Electron-microscopic observation of the ultrastructure ofmoc mutants showed that a low-electron-density area, which was identified as the cp-nucleus by immunoelectron microscopy with anti-DNA antibody, existed near the pyrenoid. However, there were no other structural differences between the chloroplasts of wild-type cells andmoc mutants. The thylakoid membranes and pyrenoid were identical. Therefore, we propose that the novelmoc mutants are only defective in the dispersion and segregation of cpDNA. This strain should be useful to elucidate the mechanism for the segregation of cpDNA.Abbreviations DAPI 4,6-diamidino-2-phenylindole - VIMPCS video-intensified microscope photon-counting system  相似文献   

13.
Summary Synchronous cultures of the algaDunaliella salina were grown in blue or red light. The relationships between replication of chloroplast DNA, cell size, cell age and the number of chloroplast nucleoids were studied. The replication of chloroplast DNA and the division of chloroplast nucleoids occurred in two separate periods of the chloroplast cycle. DNA replication was concomitant with that in the nucleocytoplasmic compartment but nucleoid division occurred several hours earlier than nuclear division. Red-light-grown cells were bigger and grew more rapidly than those grown in blue light. In newly formed daughter cells, the chloroplast nucleoids were small and spherical and they were localized around the pyrenoid. During the cell cycle they spread to other parts of the chloroplast. The number of DNA molecules per nucleoid doubled during DNA replication in the first third of the cell cycle but decreased several hours later when the nucleoids divided. Their number was fairly constant independent of the different light quality. Cells grown in red light replicated their chl-DNA and divided their nucleoids before those grown in blue light and their daughter cells possessed about 25 nucleoids as opposed to 15.Abbreviations DAPI 4,6-diamidino-2-phenylindole - chl-DNA chloroplast DNA - PAR photosynthetically active radiation  相似文献   

14.
Chloroplasts of guard cells and coleoptiles have been implicated in the sensory transduction of blue light. The present study was aimed at establishing whether the chloroplast of the hypocotyl from Arabidopsis, another blue light-responding organ, has similar characteristics to that of sensory-transducing guard cell and coleoptile chloroplasts. Results showed that the phototropic curvature and arch length induced by blue light in Arabidopsis seedlings matched the distribution of mature chloroplasts in the bending hypocotyl. The bending arch consistently included the region of the hypocotyl containing mature chloroplasts, and never extended beyond that region. Manipulation of the extent of greening of dark-grown hypocotyls by varying red light pretreatments elicited blue light-stimulated curvatures and arch lengths that depended on the duration of the red light pretreatment and on the distribution of mature chloroplasts in the hypocotyl. Albino psd2 mutants of Arabidopsis, which lack mature chloroplasts, are devoid of phototropic sensitivity under conditions in which wild-type seedlings show large curvatures. The star mutant of Arabidopsis has a delayed greening and a delayed phototropic response as compared with wild type. Measurements of photosynthetic oxygen evolution and carbon fixation, dark respiration, and light-dependent zeaxanthin formation in the hypocotyl showed features similar to those of guard cells and coleoptiles, and distinctly different from those of mesophyll tissue. These results indicate that the hypocotyl chloroplast has characteristics similar to those associated with guard cell and coleoptile chloroplasts, and that phototropic bending of Arabidopsis hypocotyls appears to require mature chloroplasts.  相似文献   

15.
N. Inada  A. Sakai  H. Kuroiwa  T. Kuroiwa 《Protoplasma》1999,207(3-4):222-232
Summary Previously, we showed that all greening mesophyll cells in the coleoptiles of rice (Oryza sauva L. cv. Nippon-bare) follow the identical program of senescence, which features the early degradation of chloroplast DNA (cpDNA) and subsequent nuclear condensation and disorganization. Following the coleoptile study, we analyzed the senescence-associated changes in the blade of the second leaf of rice at the tissue and cellular levels. Under the experimental conditions, the second leaf started to elongate rapidly 2 days after sowing and emerged on day 3. The blade of the second leaf completed its growth on day 4, although the sheath continued to grow until day 7. The amount of soluble protein and chlorophyll (Chl) per blade reached a maximum on day 7, and then declined. When blades were divided into three parts (the tip, mid-region, and base), levels of both soluble protein and Chl in the tip segment peaked earlier and decreased at a faster rate than in the other parts, demonstrating a longitudinal gradient of senescence from the tip to the base of the blade. In cross sections through the center of the tip and base segments, all the mesophyll cells senesced synchronously. They passed through the following steps in order: (i) degradation of cpDNA, (ii) decrease in the size of the chloroplast with degeneration of the chloroplast inner membranes, and (iii) condensation and disorganization of the nuclei. Although some differences were shown between the coleoptile and the second leaf in the timing and rate of each event, the order of those senescence-related events was conserved, suggesting an identical program of senescence exists in rice leaves.Abbreviations Chl chlorophyll - cpDNA chloroplast DNA - cpnucleoid chloroplast nucleoid - DAPI 4,6-diamidino-2-phenylindole - DiOC7 3,3-dihexyloxacarbocyanine iodide - VB vascular bundle - VIMPCS video-intensified microscope photon-counting system  相似文献   

16.
不同光质对桑树幼苗生长和光合特性的影响   总被引:2,自引:0,他引:2  
胡举伟  代欣  宋涛  孙广玉 《植物研究》2019,39(4):481-489
光质可影响植物光合特性、形态以及生理过程。本试验研究了不同光质(白光W、红光R、红蓝混合光RB、蓝光B)对桑树植株生长、形态和光合作用的影响。结果表明:与白光对照相比,红光、蓝光和红蓝混合光处理下植株的生长、干物质积累受到抑制;红光处理下植株的株高、叶面积显著高于白光、红蓝混合光、蓝光处理;而白光、红蓝混合光、蓝光处理下植株的LMA、叶绿素a/b比值、可溶性蛋白含量、蔗糖、淀粉含量和叶片总N含量显著高于红光处理;红蓝混合光处理下植株的Pn、Gs、ΦPSⅡ与白光处理相近,红光、蓝光处理下植株的Pn、ΦPSⅡ低于白光、红蓝混合光处理,同时红光、红蓝混合光、蓝光处理下植株的抗氧化酶活性高于白光处理,而MDA含量低于白光处理;红光处理下植株的叶片厚度、栅栏组织和海绵组织厚度显著小于白光处理。因此,一定比例的红蓝混合光可以使桑树植株的生长、光合特性、生理特征和叶片解剖结构与白光下生长植株相近,并减少单质红光、单质蓝光对植株生长发育的不利影响。  相似文献   

17.
Protein synthesis in vitro by etioplasts and chloroplasts from Phaseolus vulgaris was examined to study the factors regulating the development of etioplasts into chloroplasts. The properties of incorporation of (14)C-leucine into protein by etioplasts from plants grown 6.5 days in darkness are similar to those of chloroplasts from plants of the same age that were illuminated for 12 hours. However, the rate of incorporation per plastid by chloroplasts is 4 times higher than the rate of amino acid incorporation by etioplasts. When 6-day-old plants are placed in light, this 4-fold increase occurs within 6 hours and is maintained up to 36 hours. The difference in rate of amino acid incorporation into protein between etioplasts and chloroplasts represents a real difference in the ability of etioplasts and chloroplasts to synthesize protein. A difference in pool size of leucine between etioplasts and chloroplasts does not account for the difference in amino acid incorporation between etioplasts and chloroplasts. Also the difference in photosynthetic capabilities of etioplasts and chloroplasts does not account for the difference in the ability to incorporate amino acid into protein. Furthermore, there are no factors in homogenates of etiolated leaves which inactivate amino acid incorporation into protein by chloroplasts. The difference in rates of amino acid incorporation between etioplasts and chloroplasts is correlated with the state of development of the plastids. The plastids have increased ability to incorporate amino acid into protein when the plastids are undergoing growth and differentiation.  相似文献   

18.
Summary Oenothera plants homozygous for a recessive allele at the plastome mutator (pm) locus show non-Mendelian mutation frequencies that are 1000-fold higher than spontaneous levels. Chloroplast DNA (cpDNA) was isolated from nine mutants and two green isolates of the plastome mutator line. cpDNA restriction patterns were compared to cpDNA from a representative of the progenitor Johansen strain, and cpDNAs from all eleven plastome mutator lines show changes of fragment mobility due to deletion events at five discrete regions of the plastome. Most of the mutants have cpDNA restriction patterns identical to that of one of the green isolates from the plastome mutator line, and therefore, most of the differences in fragment length are probably not responsible for the mutant phenotypes. In contrast to the plastome mutator line, cpDNA from several populations of a closely related wild-type Oenothera species have few restriction fragment length polymorphisms. This suggests that both mutation frequencies and site-specific cpDNA deletions are elevated in the plastome mutator line, and implicates a defect in the cpDNA repair or replication machinery.  相似文献   

19.
Summary Medicago sativa L. cv Regen S is heteroplasmic for chloroplast DNA (cpDNA). Previous analyses of regenerated plants have shown a predominance of one of the cpDNAs which we have designated type A (the other we have designated type B). Studies of the replication of the two cpDNAs in tissue culture were carried out using leaflet expiants with defined cpDNA types and a distinguishing probe. The explants obtained showed a bias toward type A cpDNA during tissue culture. The data suggest that chloroplasts with different DNAs in a common nuclear background can multiply at different rates.  相似文献   

20.
Mercedes Wrischer 《Planta》1989,177(1):18-23
The localization of photosynthetic activity in developing maize (Zea mays L.) chloroplasts was studied in situ by two electron-microscopic-cytochemical methods. The activity of photosystem I was detected by photooxidation of 3,3-diaminobenzidine (DAB) and the activity of the photosystem II by photoreduction of thiocarbamyl nitrotetrazolium blue (TCNBT). During the transformation of proplastids into chloroplasts, at the base of the leaf blade the DAB reaction appeared before the TCNBT reaction. A positive DAB reaction was observed in the single thylakoids of plastids in cells located only about 0.5 mm above the base. Dark, osmiophilic DAB polymers accumulated in the lumina of the thylakoids. Plastid envelopes and tubules of the prolamellar bodies in immature chloroplasts were DAB-negative. In fully differentiated leaf tissue the DAB reaction was intense in the thylakoids of bundle-sheath chloroplasts, as well as in the stroma thylakoids and the peripheral grana thylakoids of mesophyll chloroplats. The photoreduction of TCNBT started in leaf tissue about 1 mm above the base. Dark granular material of reduced TCNBT appeared mostly in the partitions of grana, i.e. interthylakoidally, but some granules were also attached to the stroma thylakoids. The membranes of plastid envelopes and the tubules of prolamellar bodies showed a negative TCNBT reaction. Young bundle-sheath chloroplasts contained some reduced TCNBT in their grana; these deposits largely disappeared in the course of further differentiation. In mature leaf tissue the photoreduction of TCNBT was conspicuous in the grana of mesophyll chloroplasts, but very weak in the single thylakoids and in the granal rudiments of bundle-sheath chloroplasts.Abbreviations DAB 3,3-diaminobenzidine·4 HCl - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PS(I,II) photosystem (I,II) - TCNBT thiocarbamyl nitrotetrazolium blue chloride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号