首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定向诱导小鼠ES细胞向心肌细胞的分化   总被引:4,自引:0,他引:4  
为了提高体外诱导ES细胞向心肌细胞分化的效率 ,对以往的诱导方法加以改进 ,采用直接悬浮培养和 0 8%DMSO诱导 ,建立了简便、高效的定向诱导ES细胞向心肌细胞分化的体系 .诱导第 9d起可见自发性、有节律跳动的类胚体出现 ,第 14d达到高峰 ,约有 70 %的拟胚体产生跳动 .用RT PCR的方法在跳动的拟胚体中检测到心肌细胞特异性标志物的表达 ,采用免疫荧光染色的方法在蛋白水平检测到心肌特异的α辅肌动蛋白 (α actinin)的表达 ,并可见清晰肌小节 ,表明在改进的体外诱导条件下ES细胞可分化为成熟的心肌细胞 .  相似文献   

2.
It is well known that protein kinase C (PKC) plays an important role in regulation of TCR cell surface expression levels. However, eight different PKC isotypes are present in T cells, and to date the particular isotype(s) involved in TCR down-regulation remains to be identified. The aim of this study was to identify the PKC isotype(s) involved in TCR down-regulation and to elucidate the mechanism by which they induce TCR down-regulation. To accomplish this, we studied TCR down-regulation in the human T cell line Jurkat, in primary human T cells, or in the mouse T cell line DO11.10 in which we either overexpressed constitutive active or dominant-negative forms of various PKC isotypes. In addition, we studied TCR down-regulation in PKC knockout mice and by using small interfering RNA-mediated knockdown of specific PKC isotypes. We found that PKCalpha and PKCtheta were the only PKC isotypes able to induce significant TCR down-regulation. Both isotypes mediated TCR down-regulation via the TCR recycling pathway that strictly depends on Ser(126) and the di-leucine-based receptor-sorting motif of the CD3gamma chain. Finally, we found that PKCtheta was mainly implicated in down-regulation of directly engaged TCR, whereas PKCalpha was involved in down-regulation of nonengaged TCR.  相似文献   

3.
Abstract. A defined cultivation system was developed for the differentiation of pluripotent embryonic stem cells of the mouse into spontaneously beating cardiomyocytes, allowing investigations of chronotropic responses, as well as electrophysiological studies of different cardioactive drugs in vitro.
The β-adrenoceptor agonists (—)isoprenaline and clenbuterol, the mediators of cAMP metabolism, forsko-lin and isobutylmethylxanthine (IBMX), the α1-adreno-ceptor agonist (—)phenylephrine, and the heart glyco-side digitoxine induced a positive, the muscarinic cholin-oceptor agonist carbachol and L-type Ca2+ channel blockers nisoldipine, gallopamil and diltiazem induced a negative chronotropic response.
In early differentiated cardiomyocytes β1-, α1-, but not β2-adrenoceptors, cholinoceptors, as well as L-type Ca2+ channels participated in the chronotropic response. In terminally differentiated cardiomyocytes β2-adrenoceptors and digitoxine responses were also functionally expressed.
The contractions of spontaneously beating cardiomyocytes were concommitant with rhythmic action potentials very similar to those described for embryonic cardiomyocytes and sinusnode cells. We conclude that cardiomyocytes differentiating from pluripotent embryonic stem cells are able to develop adrenoceptors and cholinoceptors and signal transduction pathways as well as L-type Ca2+ channels as a consequence of cell-cell interactions during embryoid body formation in vitro, independent of the development in living organisms.
The cellular system described may be useful as in vitro assay for toxicological investigations of chronotropic drugs and a model system for studying commitment and cellular differentiation in vitro.  相似文献   

4.
Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.  相似文献   

5.
The function of the GTPase Rac1, a molecular switch transducing intracellular signals from growth factors, in differentiation of a specific cell type during early embryogenesis has not been investigated. To address the question, we used embryonic stem (ES) cells differentiated into cardiomyocytes, a model that faithfully recapitulates early stages of cardiogenesis. Overexpression in ES cells of a constitutively active Rac (RacV12) but not of an active mutant (RacL61D38), which does not activate the NADPH oxydase generating ROS, prevented MEF2C expression and severely compromised cardiac cell differentiation. This resulted in poor expression of ventricular myosin light chain 2 (MLC2v) and its lack of insertion into sarcomeres. Thus ES-derived cardiomyocytes featured impaired myofibrillogenesis and contractility. Overexpression of MEF2C or addition of catalase in the culture medium rescued the phenotype of racV12 cells. In contrast, RacV12 specifically expressed in ES-derived ventricular cells improved the propensity of cardioblasts to differentiate into beating cardiomyocytes. This was attributed to both a facilitation of myofibrillogenesis and a prolongation in their proliferation. The dominant negative mutant RacN17 early or lately expressed in ES-derived cells prevented myofibrillogenesis and in turn beating of cardiomyocytes. We thus suggest a stage-dependent function of the GTPase during early embryogenesis.  相似文献   

6.
Protein kinase C gamma (PKC gamma): function of neuron specific isotype   总被引:5,自引:0,他引:5  
The gamma isotype of protein kinase C (PKC gamma) is a member of the classical PKC (cPKC) subfamily which is activated by Ca(2+) and diacylglycerol in the presence of phosphatidylserine. Physiologically, PKC gamma is activated by a mechanism coupled with receptor-mediated breakdown of inositol phospholipid as other cPKC isotypes such as PKC alpha and PKC beta. PKC gamma is expressed solely in the brain and spinal cord and its localization is restricted to neurons, while PKC alpha and PKC beta are expressed in many tissues in addition to the brain. Within the brain, PKC gamma is the most abundant in the cerebellum, hippocampus and cerebral cortex, where the existence of neuronal plasticity has been demonstrated. Pharmacological and electrophysiological studies have shown that several neuronal functions, including long term potentiation (LTP) and long term depression (LTD), specifically require PKC gamma. Generation of mice deficient in PKC gamma provided more information regarding the physiological functions of this isotype. PKC gamma deficient mice (i) have modified long term potentiation (LTP) in hippocampus, (ii) exhibit mild deficits in spatial and contextual learning (iii) exhibit impaired motor coordination due to persistent multiple innervations of climbing fibers on Purkinje cells, (iv) show attenuation of opioid receptor activation, and (v) show decreased effects of ethanol on type A of gamma-aminobutyric acid (GABA) receptor. Furthermore, a point mutation in the PKC gamma gene may contribute to retinitis pigmentosa and Parkinsonian syndrome. This article reviews the specific functions of this neuron-specific isotype of PKC in neuronal signal transduction.  相似文献   

7.
长期培养小鼠胚胎干细胞拟胚体(EB)的观察   总被引:1,自引:0,他引:1  
杨科  董娟  徐兰  周桢宁  王沁  丁小燕 《生物工程学报》2008,24(10):1783-1789
胚胎干细胞在体外培养条件下能够维持自我更新,并具有向多种细胞类型分化的能力,因此被广泛用于研究细胞分化的分子机理以及药物筛选.形成拟胚体(Embryoid body,EB)是胚胎干细胞分化常用的技术手段.为了便于今后利用EB做进一步的药物筛选及分化研究,严格规范了形成EB的条件,得到了分化状态均一性很高的EB.利用这一条件,观察到在分化条件下长期培养(长达60 d)的EB中仍有表达各项多能性指标的细胞集落.有关这一现象的进一步分析工作正在进行中.  相似文献   

8.
Signaling from the retinoic acid receptors (RARs) and retinoid X receptors (RXRs) is essential for cardiovascular morphogenesis in vivo. RAR and/or RXR signaling can also enhance the in vitro induction of cardiomyocytes from murine embryonic stem (ES) cells in the presence of serum. The present study examined the effect of RXR agonist that was specifically bound to RXRs on the differentiation of mouse ES cells into cardiomyocytes in vitro in the absence of serum. The number of beating embryoid body-like spheres (EBSs) derived from the ES cells increased significantly following treatment with PA024, an RXR agonist. In contrast, when EBSs were treated with PA452, which was specifically bound to RXR and worked as an antagonist, the number of beating EBSs was decreased in a dose-dependent manner. These results suggest that RXR signaling regulates cardiomyocyte numbers during the differentiation of ES cells in vitro and probably in normal development.  相似文献   

9.
Contraction forces developed by cardiomyocytes are transmitted across the plasma membrane through end-to-end connections between the myocytes, called intercalated disks, which enable the coordinated contraction of heart muscle. A component of the intercalated disk, the adherens junction, consists of the cell adhesion molecule, N-cadherin. Embryos lacking N-cadherin die at mid-gestation from cardiovascular abnormalities. We have evaluated the role of N-cadherin in cardiomyogenesis using N-cadherin-null mouse embryonic stem (ES) cells grown as embryoid bodies (EBs) in vitro. Myofibrillogenesis, the spatial orientation of myofibers, and intercellular contacts including desmosomes were normal in N-cadherin-null ES cell-derived cardiomyocytes. The effect of retinoic acid (RA), a stage and dose-dependent cardiogenic factor, was assessed in differentiating ES cells. all-trans (at) RA increased the number of ES cell-derived cardiomyocytes by approximately 3-fold (at 3 x 10(-9) M) in wt EBs. However, this effect was lost in N-cadherin-null EBs. In the presence of supplemented at-RA, the emergence of spontaneously beating cardiomyocytes appeared to be delayed and slightly less efficient in N-cadherin-null compared with wt and heterozygous EBs (frequencies of EBs with beating activity at 5 days: 54+/-18% vs. 96+/-0.5%, and 93+/-7%, respectively; peak frequencies of EBs with beating activity: 83+/-8% vs. 96+/-0.5% and 100%, respectively). In conclusion, cardiomyoyctes differentiating from N-cadherin-null ES cells in vitro show normal myofibrillogenesis and intercellular contacts, but impaired responses to early cardiogenic effects mediated by at-RA. These results suggest that N-cadherin may be essential for RA-induced cardiomyogenesis in mouse ES cells in vitro.  相似文献   

10.
11.
Valproic acid (VPA), which has a wide range of therapeutic applications, is known as a potent teratogen that induces neural tube defects in vertebrates. Here, we have characterized the tissue-specific, embryotoxic effects of VPA on developmental processes using a novel system with differentiating mouse ES cells. Under our cultivating condition, ES cells differentiated into cardiomyocytes, although various cell types can be differentiated. VPA affected cell viability and differentiation from undifferentiated ES cells to cardiomyocytes in a dose-dependent manner. The analysis of tissue-specific markers also revealed that VPA potently inhibited mesodermal and endodermal development but promoted neuronal differentiation in a lineage-specific manner. Taking the in vivo teratogenicity of VPA into account, this assay system could be useful in predicting the degree of embryotoxicity of VPA. We, thus, propose that the in vivo embryotoxic effects of various medicines can be estimated fast and accurately using this in vitro cell differentiation system.  相似文献   

12.
Ascorbic acid has been reported to promote the differentiation of embryonic stem (ES) cells into cardiomyocytes; however, the specific functions of ascorbic acid have not been defined. A stable form of ascorbic acid, namely, l-ascorbic acid 2-phosphate (A2-P), significantly enhanced cardiac differentiation; this was assessed by spontaneous beating of cardiomyocytes and expression of cardiac-specific markers obtained from mouse ES cells. This effect of ascorbic acid was observed only when A2-P was present during the early phase of differentiation. Treatment with two types of collagen synthesis inhibitors, l-2-azetidine carboxylic acid and cis-4-hydroxy-d-proline, significantly inhibited the A2-P-enhanced cardiac differentiation, whereas treatment with the antioxidant N-acetyl cysteine showed no effect. These findings demonstrated that ascorbic acid enhances differentiation of ES cells into cardiomyocytes through collagen synthesis and suggest its potential in the modification of cardiac differentiation of ES cells.  相似文献   

13.
Adipose-derived stromal cells (ADSCs) represent a readily available abundant supply of mesenchymal stem cells and have the ability to differentiate into cardiomyocytes in mice and human, making ADSCs a promising source of cardiomyocytes for transplantation. However, there has been no report of differentiation of rat ADSCs into cardiomyocytes. In addition, signaling pathways in the differentiation process from ADSCs to cardiomyocytes are unknown. In this study, we first demonstrated that rat ADSCs spontaneously differentiated into cardiomyocytes in vitro, when cultured on a complete medium formulation MethoCult GF M3534. These differentiated cells possessed cardiomyocyte phenotype and expressed cardiac markers. Moreover, these cells showed open excitation-contracting coupling and Ca2+ transient and contracted spontaneously. The role of Rho-associated protein kinases (ROCKs) in the differentiation process was then studied by using ROCK-specific inhibitor Y-27632 and ROCK siRNAs. These agents changed the arrangement of cytoskeleton and diminished appearance of cardiomyocyte phenotype, accompanied by inhibition of c-Jun N-terminal kinase (JNK) phosphorylation and promotion of Akt phosphorylation. Collectively, this is the first study to demonstrate that rat ADSCs could spontaneously differentiate into cardiomyocytes in vitro and ROCKs play an important role in the differentiation of ADSCs into beating cardiomyocytes in conjunction of the PI3K/Akt pathway and the JNK pathway.  相似文献   

14.
15.
Culturing murine embryonic stem (ES) cells within embryoid bodies (EBs) has been reported to reproduce cardiomyocyte development from primitive precursor cells to highly specialized phenotypes of cardiac tissue. We show here that the specific inhibitor of phosphatidylinositol-3-kinase (PI-3-kinase), LY294002, blocks the growth and induces apoptosis as well as necrosis of D3 ES cells within early EBs. Treatment of EBs from day 3 to day 7 with 50 microM LY294002 resulted in a massive loss of alpha-actinin-stained cardiomyocytes after plating the EBs for additional 7 days. In parallel we observed a strong decrease in the number of EBs containing area(s) with beating cardiomyocytes. The specific action of the PI-3-kinase inhibitor on development of cardiomyocytes was demonstrated by the observation that formation of endothelial cells was not affected in the same EBs. Our results provide the first evidence that signal transduction via the PI-3-kinase pathway is essential for mammalian early cardiomyocyte development.  相似文献   

16.
Pluripotent murine embryonic stem (ES) cells can differentiate into all cell types both in vivo and in vitro. Based on their capability to proliferate and differentiate, these ES cells appear as a very promising tool for cell therapy. The understanding of the molecular mechanisms underlying the neural differentiation of the ES cells is a pre-requisite for selecting adequately the cells and conditions which will be able to correctly repair damaged brain and restore altered cognitive functions. Different methods allow obtaining neural cells from ES cells. Most of the techniques differentiate ES cells by treating embryoid bodies in order to keep an embryonic organization. More recent techniques, based on conditioned media, induce a direct differentiation of ES cells into neural cells, without going through the step of embryonic bodies. Beyond the fact that these techniques allow obtaining large numbers of neural precursors and more differentiated neural cells, these approaches also provide valuable information on the process of differentiation of ES cells into neural cells. Indeed, sequential studies of this process of differentiation have revealed that globally ES cells differentiating into neural cells in vitro recapitulate the molecular events governing the in vivo differentiation of neural cells. Altogether these data suggest that murine ES cells remain a highly valuable tool to obtain large amounts of precursor and differentiated neural cells as well as to get a better understanding of the mechanisms of neural differentiation, prior to a potential move towards the use of human ES cells in therapy.  相似文献   

17.
Inefficient cardiomyocyte differentiation limits the therapeutic use of embryonic stem (ES) cell-derived cardiomyocytes. While large collections of proprietary chemicals had been screened to improve ES cell differentiation into cardiomyocytes, the natural product library remained unexplored. Using a mouse ES cell line transfected with a cardiomyocyte-specific α-myosin heavy chain promoter-driven enhanced green fluorescent protein (EGFP) reporter, we screened 24 natural products with known cardioprotective actions. Salvianolic acid B (saB), while produced minimal effect on its own, concentration-dependently synergized with vitamin C in inducing cardiomyocyte differentiation, as demonstrated by an increase in EGFP+ cells, beating area in embryoid bodies, and expression of cardiomyocyte maturity markers. This synergy is specific to cardiomyocyte differentiation, and is involved with collagen synthesis. The present study demonstrates the saB-vitamin C synergy in inducing ES cell differentiation into matured and functional cardiomyocytes, and this may lead to a practicable cocktail approach to generate ES cell-derived cardiomyocytes for cardiac stem cell therapy.  相似文献   

18.
Embryonic stem (ES) cell lines, derived from the inner cell mass (ICM) of blastocyst-stage embryos, are pluripotent and have a virtually unlimited capacity for self-renewal and differentiation into all cell types of an embryoproper. Both human and mouse ES cell lines are the subject of intensive investigation for potential applications in developmental biology and medicine. ES cells from both sources differentiate in vitro into cells of ecto-, endoand meso-dermal lineages, and robust cardiomyogenic differentiation is readily observed in spontaneously differentiating ES cells when cultured under appropriate conditions. Molecular, cellular and physiologic analyses demonstrate that ES cell-derived cardiomyocytes are functionally viable and that these cell derivatives exhibit characteristics typical of heart cells in early stages of cardiac development. Because terminal heart failure is characterized by a significant loss of cardiomyocytes, the use of human ES cell-derived progeny represents one possible source for cell transplantation therapies. With these issues in mind, this review will focus on the differentiation of pluripotent embryonic stem cells into cardiomyocytes as a developmental model, and the possible use of ES cell-derived cardiomyocytes as source of donor cells.  相似文献   

19.
Cl- transport proteins expressed in a Calu-3 airway epithelial cell line were differentiated by function and regulation by protein kinase C (PKC) isotypes. mRNA expression of Cl- transporters was semiquantitated by RT-PCR after transfection with a sense or antisense oligonucleotide to the PKC isotypes that modulate the activity of the cystic fibrosis transmembrane conductance regulator [CFTR (PKC-epsilon)] or of the Na/K/2Cl (NKCC1) cotransporter (PKC-delta). Expression of NKCC1 and CFTR mRNAs and proteins was independent of antisense oligonucleotide treatment. Transport function was measured in cell monolayers grown on a plastic surface or on filter inserts. With both culture methods, the antisense oligonucleotide to PKC-epsilon decreased the amount of PKC-epsilon and reduced cAMP-dependent activation of CFTR but not alpha(1)-adrenergic activation of NKCC1. The antisense oligonucleotide to PKC-delta did not affect CFTR function but did block alpha(1)-adrenergic activation of NKCC1 and reduce PKC-delta mass. These results provide the first evidence for mRNA and protein expression of NKCC1 in Calu-3 cells and establish the differential regulation of CFTR and NKCC1 function by specific PKC isotypes at a site distal to mRNA expression and translation in airway epithelial cells.  相似文献   

20.
BACKGROUND: Pluripotent embryonic stem (ES) cells offer a unique possibility to monitor the differentiation of several cell types in vitro. This study attempts to identify marker genes during in vitro cell differentiation of murine ES cells and allow a prediction of chemical effects on cell differentiation of specific target tissues. The study focused on the expression pattern of key genes involved in cardiomyocyte and osteoblast differentiation: Oct-4, Brachyury, Nkx2.5, alpha myosin heavy chain, Cbfa1, and Osteocalcin. METHODS: Methotrexate was selected due to its well-characterized teratogenic effects. Several in vivo studies have demonstrated the specific interactions of methotrexate with bone formation whereas the cardiovascular system is not specifically affected after exposure to low concentration. The capability of murine ES cells to differentiate in vitro into cardiomyocytes as well as into osteoblasts have been used to demonstrate the target cell specificity in vitro, at non-cytotoxic concentration. RESULTS: Exposure of differentiating ES cells did not result in any gene profile modification of the selected cardiomyocyte specific genes, whereas the expression of osteoblast specific key genes, Cbfa1 and Osteocalcin, decreased. At the latter stages of skeletal differentiation we observed a 30% decrease in gene expression for Cbfa1 and a 60% decrease for Osteocalcin, with reference to the control. Early marker genes for undifferentiated cells and mesodermal cells were not modified after methotrexate treatment. CONCLUSIONS: These results show the possibility to integrate specific in vitro tests for teratogenicity in a test strategy for developmental toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号