首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90,000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37 degrees C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37 degrees C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei as well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

2.
In order to determine the ratio of phosphates to hormone-binding sites on nonactivated (non-DNA-binding) glucocorticoid receptors in WEHI-7 mouse thymoma cells, we have extracted these receptors from cells grown to a steady state with 32P, labeled them with a saturating concentration of [3H]dexamethasone 21-mesylate, purified them using a monoclonal antibody, and analyzed them by polyacrylamide gel electrophoresis under denaturing and reducing conditions. The complexes contained approximately 5 mol of phosphate/mol of bound steroid. Only half of the phosphates were associated with the approximately 100-kDa protein which is labeled with [3H]dexamethasone 21-mesylate. The remaining phosphates were associated with the approximately 90-kDa non-steroid-binding component of the nonactivated complex. Dual label studies, using [35S]methionine to measure receptor protein and 32P to measure receptor phosphates, have enabled us to determine the phosphate content, relative to receptor protein, of both nonactivated and activated cytosolic complexes generated in intact WEHI-7 cells exposed to triamcinolone acetonide at 37 degrees C. The total amount of phosphate associated with the activated complex is roughly half of that associated with the nonactivated complex, the decrease being accounted for by dissociation of the approximately 90-kDa phosphoprotein which accompanies activation. However, the ratio of 32P to 35S counts associated with the approximately 100-kDa steroid-binding protein is the same for the activated and nonactivated complexes. These results indicate that there is no net change in the phosphorylation of the approximately 100-kDa steroid-binding component of the cytosolic glucocorticoid-receptor complex upon activation in the intact cell.  相似文献   

3.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90 000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37°C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37°C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei aas well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

4.
D B Tully  J A Cidlowski 《Biochemistry》1989,28(5):1968-1975
Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing [3H]triamcinolone acetonide [( 3H]TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, [3H]TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins prior to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. When similar experiments were conducted under conditions of large receptor excess, using 3' [32P]-MMTV LTR DNA, the trace quantity of DNA formed a stable 10-14S complex with DNA-cellulose pretreated cytosols or with untreated cytosols in the presence of excess Escherichia coli competitor DNA. If trace quantities of the 3' [32P]-MMTV LTR DNA were incubated with untreated crude cytosols, much larger complexes were formed, indicating the association of other cytosolic proteins with the MMTV LTR DNA fragment. Activated [3H]TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA, but with lower apparent affinities in the order MMTV LTR DNA fragment much greater than pBR322 fragment containing a single GRE DNA consensus sequence greater than non-GRE-containing pBR322 fragment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Glucocorticoid receptors in the IM-9 human lymphoblastoid cell line were affinity labeled with [3H]dexamethasone 21-mesylate and activated to a DNA-binding form by filtration through a Bio-Gel A-1.5m column. The 90 kDa heat shock protein, HSP90, was identified by labeling IM-9 cells with 35S-methionine at both 37 degrees C and 42 degrees C and purified to near homogeneity by sequential chromatography through DE52 and hydroxyapatite. Addition of purified HSP90 to activated, affinity labeled glucocorticoid receptors in a molecular ratio of 16 to 1 inhibited the binding of the receptors to DNA-cellulose. HSP90 did not affect the binding of other proteins to DNA-cellulose, indicating that the inhibitory effect of HSP90 was specific for the glucocorticoid receptor. These results suggest that HSP90 may associate with the glucocorticoid receptor, masking its DNA-binding site and thereby inhibiting receptor interaction with DNA.  相似文献   

6.
Two rapid and high yield purification methods for the rat liver glucocorticoid receptor based on differential DNA affinity (method A) and ligand affinity (method B) chromatography are described. In method A, the amount of receptor in rat liver cytosol that can be activated and subsequently eluted from a DNA-cellulose column has been increased to 80% by introducing a second heat activation step. Using this method, 1.5 nmol of 25% pure glucocorticoid receptor can be routinely obtained per day from 15-20 rat livers. Method B yields about 2.2 nmol of 60% pure receptor with an overall yield of congruent to 60%. The quality of these purifications has been controlled by affinity labeling. In each case, more than 95% of purified binding activity represented the intact 92,000 +/- 400-Da glucocorticoid receptor polypeptide as shown by sodium dodecyl sulfate-gel electrophoresis and fluorography. No difference in the labeling pattern was observed using either [3H]triamcinolone acetonide (photoaffinity labeling) or [3H]dexamethasone 21-mesylate (electrophilic labeling). The electrophilic labeling step was performed in the cytosol prior to purification by method A to compare the labeled components thus purified with those obtained when the photoaffinity labeling was performed after the purification. Using this approach, distinct breakdown products of the glucocorticoid receptor were revealed, co-purifying during DNA affinity chromatography. Cross-linked receptor obtained by method A has been further purified to homogeneity by preparative sodium dodecyl sulfate-gel electrophoresis and successfully used as immunogen to raise glucocorticoid receptor antibodies in rabbits. These antibodies raised against glucocorticoid receptor, as well as those previously obtained using affinity chromatography-purified receptor, react with the receptor molecules irrespective of their method of purification. Glucocorticoid receptors purified by methods A and B have been analyzed for specific DNA-binding properties by the nitrocellulose filter binding assay.  相似文献   

7.
The cytosolic glucocorticoid receptor of 21st gestational day rat epiphyseal chondrocytes has been evaluated. The receptor, a single class of glucocorticoid binding component approached saturation, utilizing [3H]triamcinolone acetonide ([3H]TA) as the radiolabeled ligand, at approximately 1.8-2.0 x 10(-8) M. The dissociation constant (Kd) reflected high-affinity binding, equaling 4.0 +/- 1.43 x 10(-9) M (n = 7) for [3H]TA. The concentration of receptor estimated from Scatchard analysis was approximately 250 fmol/mg cytosolic protein and when calculated on a sites/cell basis equalled 5800 sites/cell. The relative binding affinities of steroid for receptor were found to be triamcinolone acetonide greater than corticosterone greater than hydrocortisone greater than progesterone greater than medroxyprogesterone acetate much greater than 17 alpha-hydroxyprogesterone much greater than testosterone greater than 17 beta-estradiol. Cytosolic preparations activated in vitro by warming (25 degrees C for 20 min) were shown to exhibit an increased affinity for DNA-cellulose. 46% of the total specifically bound activated ligand-receptor complex was bound to DNA-cellulose. Cytosol maintained at 0-4 degrees C in the presence of 10 mM molybdate or activated in vitro in the presence of molybdate, bound to DNA-cellulose at 8 and 10% respectively. DEAE-Sephadex elution profiles of the nonactivated receptor were indicative of a single binding moiety which eluted from the columns at 0.4 M KCl. Elution profiles of activated receptor were suggestive of an activation induced receptor lability. The 0.4 M KCl peak was diminished, while a concomitant increase in the 0.2 M KCl peak was only modestly discernible. Evaluation of endogenous proteolytic activity in chondrocyte cytosol using [methyl-14C]casein as substrate show a temperature-dependent proteolytic activity with a pH optimum of 5.9-6.65. The proteolytic activity was susceptible to heat inactivation and was inhibitable, by 20 mM EDTA. The sedimentation coefficient of the nonactivated receptor was 9.3s (n = 6) on sucrose density gradients and exhibited steroid specificity and a resistance to activation induced molecular alterations when incubated in the presence of 10 mM molybdate. Receptor activation in vitro, in the absence of molybdate induced an increased receptor susceptibility to proteolytic attack and/or enhanced ligand receptor dissociation as evidenced by a diminution of the 9.3s binding form without a concomitant increase in 5s or 3s receptor fragments.  相似文献   

8.
Steroid receptor antagonists are important biochemical probes for understanding the mode of steroid hormone action. We have studied the interaction between rat liver glucocorticoid receptor and a newly synthesized antisteroid ZK98299 (13-antigestagen; [11-beta-(4-dimethylaminophenyl)-17a-hydroxy-17 beta-(3- hydroxypropyl)-13 alpha-methyl-4,9-gonadien-3-one]). Glucocorticoid receptor from freshly prepared hepatic cytosol bound [3H]ZK98299 with affinity approximately equal to that of [3H]triamcinolone acetonide. The binding of both steroids reached a maximum at 4 h at 0 degrees C. Both ligands were able to compete for the steroid binding site but progesterone, estradiol and dihydrotestosterone (DHT) failed to compete for the [3H]ZK98299 and [3H]triamcinolone acetonide binding. While [3H]ZK98299 binding to glucocorticoid receptor could occur in the presence of iodoacetamide and N-ethylmaleimide (NEM), [3H]triamcinolone acetonide binding capacity was completely abolished following such treatments. The [3H]ZK98299-receptor complexes sedimented as 9 S and 4 S molecules under control (4 degrees C) and receptor transforming (23 degrees C) conditions, and exhibited a faster rate of dissociation at 23 degrees C when compared with [3H]triamcinolone acetonide-receptor complexes. These results indicate that ZK98299 interacts with hepatic glucocorticoid receptor. The differential effects of iodoacetamide and NEM on the interaction of glucocorticoid receptor with ZK98299 and triamcinolone acetonide, and the faster rate of dissociation of [3H]ZK98299-receptor complexes suggest that treatment with these agents (NEM and iodoacetamide) results in distinct conformational changes in glucocorticoid receptor structure with respect to triamcinolone acetonide and ZK98299 binding. Alternatively, ZK98299 may be interacting with a site which is distinct from one which accepts triamcinolone acetonide.  相似文献   

9.
Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. We have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with [3H]dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified approximately 100-kDa steroid-binding subunit was eluted from gel slices and subjected to enzymatic digestion. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single [3H]dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the [3H]dexamethasone 21-mesylate was located at position 5 from the amino terminus. Dual-isotope labeling studies with [3H]dexamethasone 21-mesylate and [35S]methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of [3H]dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, our data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Binding studies with [3H]dexamethasone identified a class of binding sites on male rat liver microsomes. The binding sites were glucocorticoid-dependent and specific for glucocorticoids and progestins. Scatchard binding parameters, competition studies with triamcinolone acetonide, a synthetic glucocorticoid which competes well for the glucocorticoid receptor, and immunoblotting with an antiglucocorticoid receptor antibody indicated that these sites are distinct from the cytosolic glucocorticoid receptor. Affinity labelling experiments with [3H]dexamethasone 21-mesylate revealed two specifically labelled peptides, one at approx. 66 kDa and a doublet at 45 kDa. The 66 kDa peptide had been previously identified in serum and may be present as a result of serum contamination of the microsomal preparation. The 45 kDa doublet, on the other hand, had been shown to be absent from rat serum. The characteristics of the 45 kDa peptide(s) were identical to those of the dexamethasone binding site identified in the binding studies. [3H]Dexamethasone binding characteristics and affinity labelling of microsomal subfractions, separated by isopycnic centrifugation, showed that the binding sites are located in the endoplasmic reticulum. The identification and role of the 45 kDa peptide doublet remain to be determined.  相似文献   

11.
Neoplastic epithelial duct cell line from human salivary gland (HSG cell) contained cytosol glucocorticoid receptor. Scatchard analysis of cytosol indicated that the dissociation constant (Kd) was 5.6-6.5 nmol/l and the number of binding sites was 83-92 fmol/mg protein. A competitive assay showed that the binding sites for [3H]triamcinolone acetonide were specific to glucocorticoid. Glycerol density gradient centrifugation displayed that the [3H]triamcinolone acetonide receptor complexes sedimented in the 8.5 S region under low salt conditions and in the 4.2 S region under high salt condition (0.4 M KCl). The same high salt conditions induced an increased binding of [3H]triamcinolone acetonide complexes for DNA-cellulose.  相似文献   

12.
Purified rat liver glucocorticoid receptor was covalently charged with [3H]glucocorticoid by photoaffinity labeling (UV irradiation of [3H]triamcinolone acetonide-glucocorticoid receptor) or affinity labeling (incubation with [3H]dexamethasone mesylate). After labeling, separate samples of the denatured receptor were cleaved with trypsin (directly or after prior succinylation), chymotrypsin, and cyanogen bromide. Labeled residues in the peptides obtained were identified by radiosequence analysis. The peaks of radioactivity corresponded to Met-622 and Cys-754 after photoaffinity labeling with [3H]triamcinolone acetonide and Cys-656 after affinity labeling with [3H]dexamethasone mesylate. The labeled residues are all positioned within hydrophobic segments of the steroid-binding domain. The patterns of hydropathy and secondary structure for the glucocorticoid receptor are highly similar to those for the progestin receptor and similar but less so to those for the estrogen receptor and to those for c-erb A.  相似文献   

13.
The glucocorticoid antagonist 17 alpha-methyltestosterone inhibits binding of the agonist [3H]triamcinolone acetonide ot the glocucorticoid receptor in cytosol prepared from rat pituitary tumor GH1 cells. Competitive binding studies indicate that the dissociation constant for 17 alpha-methyltestosterone is about 1 microM. After incubation of intact GH1 cells with 10 nM [3H]triamcinolone acetonide at 37 C and subsequent cell fractionation at 4 C, three glucocorticoid receptor forms are observed: cytosolic 10 S receptor, cytosolic 4 S receptor, and nuclear receptor. Concurrent incubation with 17 alpha-methyltestosterone reduces the amount of [3H]triamcinolone acetonide bound to each of these receptor forms. Ligand-exchange assays performed at 0 C in intact cells using [3H]triamcinolone acetonide show that the exchangeable antagonist is associated predominantly with cytosolic 10 S receptor. Immunochemical analysis using monoclonal antibody BuGR2 indicates that 17 alpha-methyltestosterone does not cause substantial accumulation of glucocorticoid receptors in GH1 cell nuclei and, when present together with agonist, reduces nuclear accumulation of receptor seen with agonist alone. Results from dense amino acid labeling studies show that unlike [3H]triamcinolone acetonide, 17 alpha-methyltestosterone does not reduce the total amount of cellular glucocorticoid receptor and does not reduce receptor half-life. These results are consistent with a model for glucocorticoid receptor transformation in which binding of agonist promotes the dissociation of an oligomeric 10 S cytosolic receptor protein to its DNA-binding 4 S subunit. The antagonist 17 alpha-methyltestosterone competes with agonist for binding to the 10 S cytosolic receptor but does not appear to promote dissociation of the oligomer, thus inhibiting agonist-mediated nuclear actions of the glucocorticoid receptor.  相似文献   

14.
The synthetic antiglucocorticoid RU 38486 interacts with cardiac cytoplasmic glucocorticoid receptors and competes for in vitro binding with the potent agonist triamcinolone acetonide. In addition to binding to receptors with high affinity, RU 38486 also facilitates the in vitro conformational change in the receptor which is a consequence of the physiologically relevant activation step during which the receptor is converted from a non DNA- to a DNA-binding form. This ability of RU 38486 to promote receptor activation is reflected by both the appropriate shift in the elution profile of [3H]RU 38486-receptor complexes from DEAE-cellulose as well as by an increased binding of these complexes to DNA-cellulose. Although less effective than triamcinolone acetonide, RU 38486 promotes in vitro receptor activation under a variety of experimental conditions, including incubation of labeled cardiac cytosols at 25 degrees C for 30 min or at 15 degrees C for 30 min in the presence of 5 mM pyridoxal 5'-phosphate. Once thermally activated, the cardiac [3H]triamcinolone acetonide and [3H]RU 38486-receptor complexes bind to nonspecific DNA-cellulose with the same relative affinities, as evidenced by the fact that 50% of both activated complexes are eluted at approx. 215-250 mM NaCl. Thus, this pure antiglucocorticoid does promote, at least to some extent, many of the crucial in vitro events including high-affinity binding, activation, and DNA binding which have been shown to be required to elicit a physiological response in vivo.  相似文献   

15.
The synthetic antiglucocorticoid RU 38486 interacts with cardiac cytoplasmic glucocorticoid receptors and competes for in vitro binding with the potent agonist triamcinolone acetonide. In addition to binding to receptors with high affinity, RU 38486 also facilitates the in vitro conformational change in the receptor which is a consequence of the physiologically relevant activation step during which the receptor is converted from a non DNA- to a DNA-binding form. This ability of RU 38486 to promote receptor activation is reflected by both the appropriate shift in the elution profile of [3H]RU 38486-receptor complexes from DEAE-cellulose as well as by an increased binding of these complexes to DNA-cellulose. Although less effective than triamcinolone acetonide, RU 38486 promotes in vitro receptor activation under a variety of experimental conditions, including incubation of labeled cardiac cytosols at 25°C for 30 min or at 15°C for 30 min in the presence of 5 mM pyridoxal 5′-phosphate. Once thermally activated, the cardiac [3H]triamcinolone acetonide and [3H]RU 38486-receptor complexes bind to nonspecific DNA-cellulose with the same relative affinities, as evidenced by the fact that 50% of both activated complexes are eluted at approx. 215–250 mM NaCl. Thus, this pure antiglucocorticoid does promote, at least to some extent, many of the crucial in vitro events including high-affinity binding, activation, and DNA binding which have been shown to be required to elicit a physiological response in vivo.  相似文献   

16.
We characterized the glucocorticoid receptor fragments produced by neutrophil elastase and compared these receptor fragments to nuclear transfer increased (nti) mutant receptors. Neutrophil elastase and chymotrypsin digested [3H]dexamethasone 21-mesylate labeled receptors at different sites to produce 52 kDa and 42 kDa fragments respectively. Both the 52 kDa elastolytic receptor fragments and 42 kDa chymotryptic receptor fragments bound to DNA-cellulose and were immunoadsorbed by anti-glucocorticoid receptor monoclonal antibodies (BUGR2). More extensive digestion of labeled receptors by neutrophil elastase produced 29 kDa receptor fragments that did not bind to DNA-cellulose and did not react with BUGR2 antibodies. The size of nti mutant receptors from S49 mouse lymphoma cell variants is intermediate between that of the 52 kDa elastolytic receptor fragments and 42 kDa chymotryptic receptor fragments. The nti receptors bound to DNA-cellulose with the same affinity as the 52 kDa elastolytic receptor fragments. However, the nti receptors were not immunoadsorbed by BUGR2 antibodies and did not react with these antibodies on Western blot analysis of denatured cellular proteins. The results indicate that 52 kDa elastolytic receptor fragments, 42 kDa chymotryptic receptor fragments and nti mutant receptors correspond to the same region of the receptor molecule. The failure of nti receptors to react with BUGR2 antibodies suggests that the nti receptors may have an altered sequence compared to the corresponding region of normal receptors.  相似文献   

17.
The relationship between glucocorticoid receptor subunit dissociation and activation was investigated by DEAE-cellulose and DNA-cellulose chromatography of monomeric and multimeric [3H]triamcinolone acetonide ([3H]TA)-labeled IM-9 cell glucocorticoid receptors. Multimeric (7-8 nm) and monomeric (5-6 nm) complexes were isolated by Sephacryl S-300 chromatography. Multimeric complexes did not bind to DNA-cellulose and eluted from DEAE-cellulose at a salt concentration (0.2 M KCl) characteristic of unactivated steroid-receptor complexes. Monomeric [3H]TA-receptor complexes eluted from DEAE-cellulose at a salt concentration (20 mM KCl) characteristic of activated steroid-receptor complexes. However, only half of these complexes bound to DNA-cellulose. This proportion could not be increased by heat treatment, addition of bovine serum albumin, or incubation with RNase A. Incubation of monomeric complexes with heat inactivated cytosol resulted in a 2-fold increase in DNA-cellulose binding. Unlike receptor dissociation, this increase was not inhibited by the presence of sodium molybdate. Fractionation of heat inactivated cytosol by Sephadex G-25 chromatography demonstrated that the activity responsible for the increased DNA binding of monomeric [3H]TA-receptor complexes was macromolecular. These results are consistent with a two-step model for glucocorticoid receptor activation, in which subunit dissociation is a necessary but insufficient condition for complete activation. They also indicate that conversion of the steroid-receptor complex to the low-salt eluting form is a reflection of receptor dissociation but not necessarily acquisition of DNA-binding activity.  相似文献   

18.
Glucocorticoid receptors in wild type and mutant S49 mouse lymphoma cells were affinity labeled with [3H]dexamethasone 21-mesylate and analyzed directly by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of receptors in cytosol from wild type cells and nuclear transfer decreased (nt-) mutants was 97,000 (97 kDa). The molecular weight of receptors in cytosol from nuclear transfer increased (nti) mutants was 48 kDa. The 97 kDa receptor in cytosol from wild type cells was digested by chymotrypsin to a 40 kDa steroid-binding receptor fragment but the 48 kDa receptor in cytosol from nti mutants was resistant to digestion by chymotrypsin. In addition to the 48 kDa receptor, cytosol from nti mutants contained 40 and 18 kDa receptor fragments. Cytosol from the nt- mutants also contained 18 kDa receptor fragments. The 40 and 18 kDa receptor fragments were present in multiple subclones of a nti mutant cell line. Formation of these receptor fragments was not prevented by protease inhibitors and was not increased by extended incubation of cytosol samples. Both 48 and 40 kDa forms of the receptor, but not the 18 kDa form, could be activated and bound by DNA-cellulose.  相似文献   

19.
J E Goral  J L Wittliff 《Biochemistry》1975,14(13):2944-2952
Kinetic and molecular properties of components binding [3H]triamcinolone acetonide were studied using 105,000g supernatants of lactating mammary gland, R3230AC, and dimethylbenz[a]anthracene (DMBA) induced mammary tumors of the rat. Using a dextran-coated charcoal adsorption procedure, the relationship between specific glucocorticoid binding and protein concentration was linear in the range of 0.5-4.0 mg/reaction. These cytoplasmic macromolecules bound [3H]triamcinolone acetonide with limited capacity (50-400 fmol/mg of cytosol protein) and high affinity, Kd approximately 10(-8)-10(-9) M. Optimal binding was obtained when homogenizations were made in Tris buffers, at pH 7.4, containing monothioglycerol. Time course of association of [3H]triamcinolone acetonide and its binding sites showed maximal binding by 6-8 hr at 3 degrees which remained unchanged up to 24 hr. The rate constant of association at 3 degrees was in the range of 2-4 x 10(5) M-1 min-1. The rate constant of dissociation of bound [3H]triamcinolone acetonide could not be calculated accurately since the reaction was essentially irreversible for 5 hr at 3 degrees. Estimation of the half-life of the steroid-binding protein complexes from the Kd and the rate constant for association gave a value of 11-12 hr. From ligand specificity studies, the glucocorticoids, triamcinolone acetonide, corticosterone, cortisol, and dexamethasone competed well for [3H]triamcinolone acetonide binding sites. Progesterone, aldosterone, and the anti-glucocorticoid, cortexolone, were also good competitors while androgens and estrogens were weak inhibitors of binding. The binding compenents sedimented at 7-8 S in sucrose gradients of low ionic strength and dissociated into lower molecular weight components sedimenting at 4-5S in high ionic strength gradients. Studies in vivo using animals bearing the DMBA-induced tumor demonstrated that [3H]triamcinolone acetonide binding complexes were present in cytoplasmic and nuclear compartments. Sedimentation coefficients of the cytoplasmic and nuclear forms of these receptors labeled in vivo were 7-8S and 4-5S, respectively. These studies suggest that the molecular and kinetic binding properties of glucocorticoid receptors in neoplastic mammary tissues are similar to those of the normal mammary gland.  相似文献   

20.
Rat-liver glucocorticoid receptor was incubated with either [3H]triamcinolone acetonide or [3H]RU 486, a well known antiglucocorticoid. Once formed, the steroid-receptor complexes were analyzed by isoelectric focusing in agarose gel slabs. A careful slicing of the receptor tracks revealed the presence of three distinct radioactive peaks focused at the following pI values: 5.3 +/- 0.2 (n = 17) and 4.4 +/- 0.1 (n = 17). All these peaks correspond with receptor isoforms as suggested by control experiments. The receptor state was analyzed after focusing by a chromatographic assay on DNA-cellulose, DEAE-trisacryl and hydroxyapatite minicolumns. The peak of pI 4.4 apparently corresponded to the non-transformed receptor and was greatly stabilized in the presence of RU 486, whereas the peaks of pI 4.8 and 5.3 were probably made of transformed receptor and meroreceptor. These results were confirmed by autoradiographic studies after isoelectric focusing of receptor molecules covalently labelled with [3H]dexamethasone mesylate. Thus, the rat-liver glucocorticoid receptor appeared to be a rather acidic protein which became less acidic after transformation by heat, displaying a pI shift which was strongly reduced in case of steroid-receptor complexes formed with the antiglucocorticoid RU 486.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号