首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect on renal function of replacing maternal drinking water with a solution containing 0.17 M NaCl was studied in 9 ewes and their chronically catheterised fetuses over a period of 9 days. Maternal sodium intake increased from control values of 2.19 +/- 0.09 mmol/h to 44.3 +/- 7.4 (P less than 0.001) and 46.3 +/- 6.5 mmol/h (P less than 0.001) on the 3rd and 6th days of salt ingestion. Maternal plasma sodium levels were not affected, but the urinary sodium/potassium ratio increased from 0.15 +/- 0.07 to 2.26 +/- 0.34 (P less than 0.001) after 6 days and plasma renin activity fell from 2.87 +/- 0.76 to 1.00 +/- 0.25 ng/ml per h (P less than 0.05). The changes in maternal sodium intake had no effect on fetal plasma sodium levels nor on fetal plasma renin activity. Sodium excretion and fetal urinary sodium/potassium ratio did not change. However, 3 days after the ewes returned to drinking water fetal plasma renin activity was significantly higher than it was prior to maternal ingestion of 0.17 M NaCl. Fetal plasma renin activity was inversely related to fetal plasma sodium levels (P less than 0.01). The results show that changes in maternal sodium intake had no long term effect on fetal plasma sodium levels nor on fetal renal sodium excretion. The fall in maternal plasma renin activity in the absence of any change in the fetal renin activity, indicates that the fetal renin angiotensin system is controlled by factors other than those influencing the maternal renin angiotensin system. Since fetal urinary sodium/potassium ratios remained unchanged it would suggest that fetal sodium excretion is not influenced by maternal levels of aldosterone.  相似文献   

2.
Renal function was studied in unanaesthetized fetal sheep aged 112-120 and 126-132 days and in adult nonpregnant ewes. The clearance of lithium was used to measure proximal and distal fractional sodium reabsorption. In five nonpregnant adult sheep, 80.6 +/- 1.7% (SE) of the filtered sodium load was reabsorbed proximally and 18.2 +/- 1.53% distally. This was different from all groups of fetal sheep (p less than 0.001). In younger fetuses, proximal fractional sodium reabsorption was less (51.3 +/- 2.3% (SE), p less than 0.05) and distal fractional sodium reabsorption greater (42.4 +/- 2.3% (SE), p less than 0.05) than older fetuses (126-132 days old) in which 61.4 +/- 2.4% (SE) was reabsorbed proximally and 33.6 +/- 2.5% (SE) distally. In another group of fetuses aged 125-137 days, in which proximal tubular sodium reabsorption was measured after distal tubular blockade, proximal fractional sodium reabsorption was 57.8 +/- 2.95% (SE) and distal fractional sodium reabsorption, 38.7 +/- 2.64% (SE). In adult sheep there was no relationship between distal tubular sodium reabsorption and glomerular filtration rate, i.e., proximal tubular function was responsible for glomerulotubular balance. However, in the fetuses, both proximal and distal tubular sodium reabsorption contributed to glomerulotubular balance. Thus in fetal life, the proximal tubule participates to a lesser extent in reabsorbing the filtered sodium load possibly because its function is suppressed by its relatively "volume-expanded" state or because it is functionally immature. Therefore, a greater proportion is reabsorbed distally and the distal nephron participates under physiological conditions in glomerulotubular balance.  相似文献   

3.
In the adult, insulin-like growth factor I (IGF-I) increases glomerular filtration rate (GFR) and renal blood flow (RBF) during both acute and chronic treatment. To study its effects on the developing kidney, chronically catheterized fetal sheep (120 +/- 1 days gestation) were infused intravenously for up to 10 days with 80 microgram/h IGF-I (n = 5) or vehicle (0.1% BSA in saline, n = 6). In contrast to previous acute studies in adult rats and humans, after 4 h of IGF-I fetal GFR and RBF were unchanged. Fractional sodium reabsorption increased (P < 0.05). However, by 4 days, GFR per kilogram had risen by 35 +/- 13% (P < 0.05), whereas RBF remained unchanged. Tubular growth and maturation may have occurred, as proximal tubular sodium reabsorption increased by ~35% (P < 0.005). Therefore, despite a marked increase in filtered sodium (~30%, P < 0.05), fractional sodium reabsorption did not change. Although the effects of IGF-I on renal function were delayed, plasma renin activity and concentration were both elevated after 4 h and remained high at 4 days (P < 0.05). Despite this, arterial pressure and heart rate did not change. Kidneys of IGF-I-infused fetuses weighed ~30% more (P = 0.05) and contained ~75% more renin than control fetuses (P < 0.005). Thus, in the fetus, the renal effects of long-term IGF-I infusion are very different from the adult, possibly because IGF-I stimulated kidney growth.  相似文献   

4.
These experiments examined whether renal growth and the fetal renin-angiotensin system could be stimulated by infusion of amino acids and whether chronic amino acid infusions restored glomerulotubular balance, which had been disrupted during 4-h infusions. Five fetal sheep aged 122 +/- 1 days gestation received an infusion of alanine, glycine, proline and serine in 0.15 M saline at 0.22 mmol/min for 7 days. Six control fetuses were given saline at the same rate (5 ml/h). Kidney wet weights after amino acid infusion were 28% larger than control fetuses (P < 0.05), and renal angiotensinogen mRNA levels were approximately 2.6-fold higher (P < 0.005). Circulating renin levels and renal renin mRNA levels were suppressed (P < 0.05), and renal renin protein levels tended to be lower. Arterial pressure was increased, and there was a marked, sustained natriuresis and diuresis. Glomerular filtration rate and filtered sodium were approximately two-fold higher throughout infusion (P < 0.05). Fractional proximal sodium reabsorption, suppressed at 4 h (from 73.4 +/- 6.5 to 53.7 +/- 10.2%), did not return to control levels (36.1 +/- 3.4% on day 7, P < 0.05). Distal sodium reabsorption was markedly increased (from 79 +/- 25 to 261 +/- 75 mumol/min by day 7, P < 0.005), but this was not sufficient to restore glomerulotubular balance. The resultant high rates of sodium excretion led to hyponatremia and polyhydramnios. In conclusion, long-term amino acid infusions increased renal angiotensinogen gene expression, kidney weight, and distal nephron sodium reabsorptive capacity but failed to restore proximal and total glomerulotubular balance.  相似文献   

5.
The actions of cortisol on fetal renal function   总被引:1,自引:0,他引:1  
Renal function was studied in 6 fetal sheep, aged 126-135 days, before and after 3 injection of 15 mg of cortisol given at intervals of 12 h. Cortisol caused a significant rise in both renal blood flow (P less than 0.05) and glomerular filtration rate (P less than 0.005), and in urine flow rate (P less than 0.02) but it did not consistently cause a natriuresis. The urinary pH was unchanged following cortisol treatment, but bicarbonate excretion increased. Urinary phosphate excretion was increased (P less than 0.005) because of a rise in filtered phosphate and a fall in phosphate reabsorption. The titratable acid excretion increased (P less than 0.005) but urinary ammonium excretion did not. The total amount of sodium reabsorbed increased after cortisol but the amount of sodium reabsorbed in the proximal tubule did not increase, so fractional reabsorption in the proximal tubule decreased from 61.7 +/- 4.1% to 47.3 +/- 4.2% (P = 0.01). The total amount of sodium reabsorbed in the distal tubule increased and distal fractional reabsorption increased from 33.3 +/- 2.4% to 47.3 +/- 4.2% (P less than 0.01). Cortisol may increase the capacity of the immature kidney to play a role in fluid and electrolyte homeostasis by increasing glomerular filtration rate and delivering more sodium and water to the distal nephron where the reabsorption of sodium and water can be modified independently and in accordance with need.  相似文献   

6.
Human epidemiological and animal experimental studies suggest that maternal undernutrition during pregnancy may alter cardiovascular development of the offspring. The extent to which these effects involve changes in fetal cardiovascular function and whether they are necessarily linked to reduced fetal growth is unknown. In sheep, we investigated the effect of a 15% reduction in maternal global nutrition for the first 70 days of gestation (term = 147 days) on fetal blood pressure development, baroreflex control of fetal heart rate (FHR), and cardiovascular responses to acute hypoxemia in late gestation. Basal mean arterial pressure (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and rate-pressure product (P < 0.001) were significantly lower in fetuses of nutritionally restricted ewes (R) compared with controls (C). FHR was not altered. The operating point for the fetal baroreflex was significantly lower in R fetuses compared with C (P < 0.01), but there was no difference between the groups in the cardiovascular response to hypoxemia. We conclude that mild maternal undernutrition alters fetal cardiovascular development, producing low blood pressure and resetting of baroreflex control mechanisms. This effect occurs without any changes in fetal growth or blood gas status.  相似文献   

7.
The influence of relative maternal undernutrition on growth, endocrinology, and metabolic status in the adolescent ewe and her fetus were investigated at Days 90 and 130 of gestation. Singleton pregnancies to a single sire were established, and thereafter ewes were offered an optimal control (C; n = 14) or low (L [0.7 x C]; n = 21) dietary intake. Seven ewes receiving the L intake were switched to the C intake on Day 90 of gestation (L-C). At Day 90, live weight and adiposity score were reduced (P < 0.001) in L versus C dams. Plasma insulin and IGF1 concentrations were decreased (P < 0.02), whereas glucose concentrations were preserved in L relative to C intake dams. Fetal and placental mass was independent of maternal nutrition at this stage. By Day 130 of gestation, when compared to C and L-C dams, maternal adiposity was further depleted in L intake dams; concentrations of insulin, IGF1, and glucose were reduced; and nonesterified fatty acids increased. At Day 130, placental mass remained independent of maternal nutrition, but body weight was reduced (P < 0.01) in L compared with C fetuses (3555 g vs. 4273 g). Body weight was intermediate (3836 g) in L-C fetuses. Plasma glucose (P < 0.03), insulin (P < 0.07), and total liver glycogen content (P < 0.04) were attenuated in L fetuses. Fetal carcass analyses revealed absolute reductions (P < 0.05) in dry matter, crude protein, and fat, and a relative (g/kg) increase in carcass ash (P < 0.01) in L compared with C fetuses. Thus, limiting maternal intake during adolescent pregnancy gradually depleted maternal body reserves, impaired fetal nutrient supply, and slowed fetal soft tissue growth.  相似文献   

8.
Twenty-one pregnant ewe lambs (nine superovulated and 12 non-superovulated) were used to study the effects of superovulation (injecting 700 IU PMSG at the end of diestrus) on maternal serum progesterone concentrations, uterine and fetal weights at weeks 7 and 15 of pregnancy. In the ewes sacrificed at week 7 of pregnancy, superovulation increased the mean number of corpora lutea (P<0.01), fetuses (P<0.01), maternal mean serum progesterone concentration (P<0.01), mean uterine weight (P<0.05), total fetal weight (P<0.01), and average fetal weight (P<0.01) by 133%, 69%, 354%, 66%, 150% and 40%, respectively, when compared to non-superovulated ewes. In the ewes sacrificed at week 15 of pregnancy, superovulation increased the number of corpora lutea (P<0.01), fetuses (P<0.05), maternal serum progesterone concentration (P<0.01), uterine weight (P<0.05), total fetal weight (P>0.05), and average fetal weight (P<0.05) by 207%, 20%, 84%, 37%, 29% and 24%, respectively, compared to those non-superovulated ewes. It was concluded that the increased number of corpora lutea and, therefore, their hormonal secretions by superovulation could increase uterine and fetal growth and development.  相似文献   

9.
To examine the effects of intrauterine growth restriction and acute severe oxygen deprivation on renal blood flow (RBF), renovascular resistance (RVR), and renal excretory functions in newborns, studies were conducted on 1-day-old anesthetized piglets divided into groups of normal weight (NW, n = 14) and intrauterine growth-restricted (IUGR, n = 14) animals. Physiological parameters, RBF, RVR, and urinary flow, were similar in NW and IUGR piglets, but glomerular filtration rate (GFR) and filtration fraction were significantly less in IUGR animals (P < 0.05). An induced 1-h severe hypoxia (arterial PO(2) = 19 +/- 4 mmHg) resulted in, for both groups, a pronounced metabolic acidosis, strongly reduced RBF, and increased fractional sodium excretion (FSE; P < 0.05) with a less-pronounced increase of RVR and arterial catecolamines in IUGR piglets. Of significance was a smaller decrease in RBF for IUGR piglets (P < 0.05). Early recovery showed a transient period of diuresis with increased osmotic clearance and elevated FSE in both groups (P < 0.05). However, GFR and renal O(2) delivery remained reduced in NW piglets (P < 0.05). We conclude that, in newborn IUGR piglets, RBF is maintained, although GFR is compromised. Severe hypoxemia induces similar alterations of renal excretion in newborn piglets. However, the less-pronounced RBF reduction during hypoxemia indicates an improved adaptation of newborn IUGR piglets on periods of severely disturbed oxygenation. Furthermore, newborn piglets reestablish the ability for urine concentration and adequate sodium reabsorption early after reoxygenation so that a sustained acute renal failure was prevented.  相似文献   

10.
The effects of high salt intake on blood pressure and renal function were studied in nine subtotally nephrectomized pregnant ewes (STNxP) and seven intact pregnant ewes (IntP) in late gestation and in eight subtotally nephrectomized nonpregnant ewes (STNxNP) and seven intact nonpregnant ewes (IntNP). STNxP had higher mean arterial pressures (P < 0.02) and plasma creatinine levels (P < 0.001) than IntP. High salt (0.17 M NaCl as drinking water for 5 days) did not change blood pressure in either STNxP or IntP. STNxNP had higher mean arterial pressures (P = 0.03) and plasma creatinine levels (P < 0.001) than IntNP. In STNxNP, blood pressure increased with high salt intake and there was a positive relationship between diastolic pressure and sodium balance (r = 0.497, P = 0.05). This relationship was not present in IntNP, STNxP, or IntP. Because high salt intake did not cause an increase in blood pressure in STNxP, it is concluded that they were protected by pregnancy from further rises in blood pressure. The observed increase in glomerular filtration rate (P < 0.03) and depression of fractional proximal sodium reabsorption (P = 0.003) that occurred in STNxP, but not in STNxNP, in response to high salt may have contributed to this protection. As well, the increased production of vasorelaxants in pregnancy may selectively protect against the occurrence of salt-sensitive hypertension in pregnancy.  相似文献   

11.
The effect of maternal nutrition level during the periconception period on the muscle development of fetus and maternal–fetal plasma hormone concentrations in sheep were examined. Estrus was synchronized in 55 Karayaka ewes and were either fed ad libitum (well-fed, WF, n=23) or 0.5×maintenance (under-fed, UF, n=32) 6 days before and 7 days after mating. Non-pregnant ewes (WF, n=13; UF, n=24) and ewes carrying twins (WF, n=1) and female (WF, n=1; UF, n=3) fetuses were removed from the experiment. The singleton male fetuses from well-fed (n=8) and under-fed (n=5) ewes were collected on day 90 of gestation and placental characteristics, fetal BWs and dimensions, fetal organs and muscles weights were recorded. Maternal (on day 7 after mating) and fetal (on day 90 of pregnancy) blood samples were collected to analyze plasma hormone concentrations. Placental characteristics, BW and dimensions, organs and muscles weights of fetuses were not affected by maternal feed intake during the periconception period. Maternal nutrition level did not affect fiber numbers and the muscle cross-sectional area of the fetal longissimus dorsi (LD), semitendinosus (ST) muscles, but the cross-sectional area of the secondary fibers in the fetal LD and ST muscles from the UF ewes were higher than those from the WF ewes (P<0.05). Also, the ratio of secondary to primary fibers in the ST muscle were tended to be lower in the fetuses from the UF ewes (P=0.07). Maternal nutrition level during the periconception period did not cause any significant changes in fetal plasma insulin and maternal and fetal plasma IGF-I, cortisol, progesterone, free T3 and T4 concentrations. However, maternal cortisol concentrations were lower while insulin concentrations were higher in the WF ewes than those in the UF ewes (P<0.05). These results indicate that the reduced maternal feed intake during the periconception period may alter muscle fiber diameter without affecting fiber types, fetal weights and organ developments and plasma hormone concentrations in the fetus.  相似文献   

12.
Renal impairment is common in preterm infants, often after exposure to hypoxia/asphyxia or other circulatory disturbances. We examined the hypothesis that this association is mediated by reduced renal blood flow (RBF), using a model of asphyxia induced by complete umbilical cord occlusion for 25 min (n = 13) or sham occlusion (n = 6) in chronically instrumented preterm fetal sheep (104 days, term is 147 days). During asphyxia there was a significant fall in RBF and urine output (UO). After asphyxia, RBF transiently recovered, followed within 30 min by a secondary period of hypoperfusion (P < 0.05). This was mediated by increased renal vascular resistance (RVR, P < 0.05); arterial blood pressure was mildly increased in the first 24 h (P < 0.05). RBF relatively normalized between 3 and 24 h, but hypoperfusion developed again from 24 to 60 h (P < 0.05, analysis of covariance). UO significantly increased to a peak of 249% of baseline between 3 and 12 h (P < 0.05), with increased fractional excretion of sodium, peak 10.5 +/- 1.4 vs. 2.6 +/- 0.6% (P < 0.001). Creatinine clearance returned to normal after 2 h; there was a transient reduction at 48 h to 0.32 +/- 0.02 ml.min(-1).g(-1) (vs. 0.45 +/- 0.04, P < 0.05) corresponding with the time of maximal depression of RBF. No renal injury was seen on histological examination at 72 h. In conclusion, severe asphyxia in the preterm fetus was associated with evolving renal tubular dysfunction, as shown by transient polyuria and natriuresis. Despite a prolonged increase in RVR, there was only a modest effect on glomerular function.  相似文献   

13.
Reproductive performance and fetal growth was determined in GnRH (4 microg synthetic GnRH agonist, Receptal) administered (i.m.) to ewes on day 12 post-mating (n = 103) compared to control ewes (n = 97) during the breeding season. Plasma progesterone and LH concentrations were analyzed. A total of 13 ewes was slaughtered on day 45 of pregnancy (six from control, seven from GnRH treated groups). GnRH administration on day 12 post-mating increased plasma progesterone concentration (4.39+/-0.25 ng/ml) compared to control group (3.43+/-0.15 ng/ml) on days 13-15 post-mating (P < 0.01). GnRH administration also increased plasma LH concentration between 1 and 4 h after GnRH administration (P < 0.01). Pregnancy rate was higher in GnRH treated group (84%) than control (66%) group (P < 0.05). The ewes in GnRH administered group had more twins (P < 0.05) than those in control group. The ovarian weights (P < 0.05) and the number of corpora lutea (CL) (P < 0.01) were greater in ewes slaughtered on day 45 of pregnancy in GnRH treated group than those in control group. GnRH administration on day 12 post-mating did not have any effect on products of conception at day 45 of pregnancy except on crown-rump length (CRL) of fetuses and cotyledon weight. CRL of fetuses and cotyledon weight in GnRH treated group was higher than those in control group (P < 0.05). In conclusion GnRH administration improved reproductive performance of ewes when administered on day 12 post-mating probably through its beneficial effect on embryo survival by enhancing luteal function, but not through stimulating fetal growth.  相似文献   

14.
The aim of the present study was to investigate the effects of administering a high plane diet during early to mid-gestation on the uterine and placental insulin-like growth factor (IGF) system and on systemic IGF-I concentrations in pregnant adolescent ewes with restricted placental growth. Embryos recovered from superovulated ewes inseminated by a single sire were transferred in singleton to the uterus of adolescent recipients. After transfer ewes were offered a high (H) or moderate (M) amount of a complete diet calculated to promote rapid or normal maternal growth rates, respectively. Five ewes from each group were switched from either M to H or H to M diets at day 52 of gestation. Maternal and fetal blood samples and placental tissues were collected from all animals at day 104. Ewes on the high plane diet from mid-gestation (HH, MH groups) had restricted placental mass (P < 0.01) and tended to have smaller fetuses. This was associated with increased maternal plasma IGF-I concentrations (P < 0.001). The pattern of expression of components of the IGF system in the uterus and placenta was studied by in situ hybridization. IGF-I mRNA concentrations were below the limit of detection. IGF-II mRNA expression was high in the fetal mesoderm and present in maternal stroma, but was not influenced by nutritional treatment. In contrast, IGF binding protein 1 (IGFBP-1) mRNA expression was higher (P < 0.05) and IGFBP-3 mRNA expression was lower (P < 0.05) in the endometrial glands of ewes in HH and MH groups. In the fetal trophoblast, IGFBP-3 mRNA expression was higher in the MH group. Type 1 IGF receptor expression was increased (P < 0. 01) in the luminal epithelium of the HM group and IGFBP-2 mRNA expression was highest in the placentome capsule of ewes in the HH group. Together, these results indicate that reprogramming of the uterine and placental IGF axis by maternal nutrition could contribute to placental growth retardation in growing adolescent sheep.  相似文献   

15.
Maternal stress and undernutrition can occur together and expose the fetus to high glucocorticoid (GLC) levels during this vulnerable period. To determine the consequences of GLC exposure on fetal skeletal muscle independently of maternal food intake, groups of timed-pregnant Sprague-Dawley rats (n = 7/group) were studied: ad libitum food intake (control, CON); ad libitum food intake with 1 mg dexamethasone/l drinking water from embryonic day (ED)13 to ED21 (DEX); pair-fed (PF) to DEX from ED13 to ED21. On ED22, dams were injected with [(3)H]phenylalanine for measurements of fetal leg muscle and diaphragm fractional protein synthesis rates (FSR). Fetal muscles were analyzed for protein and RNA contents, [(3)H]phenylalanine incorporation, and MuRF1 and atrogin-1 (MAFbx) mRNA expression. Fetal liver tyrosine aminotransferase (TAT) expression was quantified to assess fetal exposure to GLCs. DEX treatment reduced maternal food intake by 13% (P < 0.001) and significantly reduced placental mass relative to CON and PF dams. Liver TAT expression was elevated only in DEX fetuses (P < 0.01). DEX muscle protein masses were 56% and 70% than those of CON (P < 0.01) and PF (P < 0.05) fetuses, respectively; PF muscles were 80% of CON (P < 0.01). Muscle FSR decreased by 35% in DEX fetuses (P < 0.001) but were not different between PF and CON. Only atrogin-1 expression was increased in DEX fetus muscles. We conclude that high maternal GLC levels and inadequate maternal food intake impair fetal skeletal muscle growth, most likely through different mechanisms. When combined, the effects of decreased maternal intake and maternal GLC intake on fetal muscle growth are additive.  相似文献   

16.
The purpose of the present investigation was to study the effects of inhibition of monoamine oxidase (MAO) and/or catechol-O-methyltransferase (COMT), enzymes involved in the degradation of dopamine (DA) and serotonin (5-HT), on intrarenal DA and 5-HT, as reflected in the renal interstitial fluid (RIF) microdialysate and urine, and on renal function. Inhibition of MAO selectively increased RIF 5-HT from 3.16 +/- 0.38 to 8.03 +/- 1.83 pg/min (n = 7, P < 0.05), concomitant with decreases in mean arterial blood pressure and glomerular filtration rate (2.09 +/- 0. 18 to 1.57 +/- 0.22 ml/min, n = 7, P < 0.05). Inhibition of COMT significantly increased RIF DA (3.47 +/- 0.70 to 8.68 +/- 1.96 pg/min, n = 9, P < 0.05), urinary DA (2.00 +/- 0.16 to 2.76 +/- 0.26 ng/min, n = 9, P < 0.05), and absolute excretion of sodium (6.42 +/- 2.00 to 9.82 +/- 1.62 micromol/min, n = 10, P < 0.05). Combined inhibition of MAO and COMT significantly increased RIF DA, urinary DA, and urinary 5-HT, which was accompanied with increases in urine flow rate, and absolute (3.03 +/- 0.59 to 8.40 +/- 1.61 micromol/min, n = 9, P < 0.01) and fractional excretion of sodium. We conclude that inhibition of MAO selectively increases RIF 5-HT. COMT appears to be more important than MAO in the metabolism of intrarenal DA. Physiological increases in intrarenal DA/5-HT induced by inhibition of their degrading enzymes are accompanied with significant alterations of renal function.  相似文献   

17.
We investigated the effect of an isocaloric maternal low-protein diet during pregnancy in rats on the proliferative capacity of cultured fetal hepatocytes. The potential roles of these changes on the IGF-IGF-binding protein (IGFBP) axis, and the role of insulin and glucocorticoids in liver growth retardation, were also evaluated. Pregnant Wistar rats were fed a control (C) diet (20% protein) or a low-protein (LP) diet (8%) throughout gestation. In primary culture, the DNA synthesis of hepatocytes derived from LP fetuses was decreased by approximately 30% compared with control hepatocytes (P < 0.05). In parallel, in vivo moderate protein restriction in the dam reduced the fetal liver weight and IGF-I level in fetal plasma (P < 0.01) and augmented the abundance of 29- to 32-kDa IGFBPs in fetal plasma (P < 0.01) and fetal liver (P < 0.01). By contrast, the abundance of IGF-II mRNA in liver of LP fetuses was unaffected by the LP diet. In vitro, the LP-derived hepatocytes produced less IGF-I (P < 0.01) and more 29- to 32-kDa IGFBPs (P < 0.01) than hepatocytes derived from control fetuses. These alterations still appeared after 3-4 days of culture, indicating some persistence in programming. Dexamethasone treatment of control-derived hepatocytes decreased cell proliferation (54 +/- 2.3%, P < 0.01) and stimulated 29- to 32-kDa IGFBPs, whereas insulin promoted fetal hepatocyte growth (127 +/- 5.5%, P < 0.01) and inhibited 29- to 32-kDa IGFBPs. These results show that liver growth and cell proliferation in association with IGF-I and IGFBP levels are affected in utero by fetal undernutrition. It also suggests that glucocorticoids and insulin may modulate these effects.  相似文献   

18.
Maternal alcohol consumption during pregnancy can affect fetal development, but little is known about the effects on the developing kidney. Our objectives were to determine the effects of repeated ethanol exposure during the latter half of gestation on glomerular (nephron) number and expression of key genes involved in renal development or function in the ovine fetal kidney. Pregnant ewes received daily intravenous infusion of ethanol (0.75 g/kg, n=5) or saline (control, n=5) over 1 h from 95 to 133 days of gestational age (DGA; term is approximately 147 DGA). Maternal and fetal arterial blood samples were taken before and after the start of the daily ethanol infusions for determination of blood ethanol concentration (BEC). Necropsy was performed at 134 DGA, and fetal kidneys were collected for determination of total glomerular number using the physical disector/fractionator technique; at this gestational age nephrogenesis is completed in sheep. Maximal maternal and fetal BECs of 0.12+/-0.01 g/dl (mean+/-SE) and 0.11+/-0.01 g/dl, respectively, were reached 1 h after starting maternal ethanol infusions. Ethanol exposure had no effect on fetal body weight, kidney weight, or the gene expression of members of the renin-angiotensin system, insulin-like growth factors, and sodium channels. However, fetal glomerular number was lower after ethanol exposure (377,585+/-8,325) than in controls (423,177+/-17,178, P<0.001). The data demonstrate that our regimen of fetal ethanol exposure during the latter half of gestation results in an 11% reduction in nephron endowment without affecting the overall growth of the kidney or fetus or the expression of key genes involved in renal development or function. A reduced nephron endowment of this magnitude could have important implications for the cardiovascular health of offspring during postnatal life.  相似文献   

19.
Exposure to long-term hypoxia (LTH) results in altered cortisol responses in the ovine fetus. The present study was designed to test the hypothesis that LTH alters adrenal responsiveness to fetal hypotension. Pregnant ewes were maintained at high altitude (3,820 meters) from day 30 of gestation. Normoxic control and LTH fetuses were catheterized on day 132 of gestation. In the LTH group, maternal Po(2) was maintained comparable to that observed at altitude ( approximately 60 mmHg) by nitrogen infusion through a tracheal catheter. On day 137, fetuses received a 5-h saline infusion followed by infusion of sodium nitroprusside to reduce fetal arterial pressure by 30-35% for 10 min. The study was repeated on day 139 of gestation with a continuous cortisol infusion (10 microg/min). Hypothalamic and pituitary tissues were collected from additional fetuses for assessment of glucocorticoid receptors. During the saline infusion in response to hypotension, plasma ACTH increased over preinfusion mean values in both groups (P < 0.05). Plasma cortisol concentrations increased in both groups concomitant with increased ACTH secretion. However, peak values in the LTH fetuses were significantly higher compared with controls (P < 0.05). During the cortisol infusion, the ACTH response was eliminated in both groups, with ACTH levels significantly lower in the LTH group (P < 0.05). Glucocorticoid receptor binding was not different between groups. These results demonstrate an enhanced cortisol response to hypotension in LTH fetuses that does not appear to be the result of an increase in negative feedback sensitivity of the hypothalamic-pituitary-adrenal axis.  相似文献   

20.

Background

Nearly 50% of U.S. women of child-bearing age are overweight or obese, conditions linked to offspring obesity and diabetes.

Methods

Utilizing the sheep, females were fed a highly palatable diet at two levels of overfeeding designed to induce different levels of maternal body weight increase and adiposity at conception, and from conception to midgestation. Fetal growth and organ development were then evaluated at midgestation in response to these two different levels of overfeeding. Ewes were fed to achieve: 1) normal weight gain (control, C), 2) overweight (125% of National Research Council [NRC] recommendations, OW125) or 3) obesity (150% of NRC recommendations, OB150) beginning 10 wks prior to breeding and through midgestation. Body fat % and insulin sensitivity were assessed at three points during the study: 1) diet initiation, 2) conception and 3) mid-gestation. Ewes were necropsied and fetuses recovered at mid-gestation (day 78).

Results

OB150 ewes had a higher % body fat than OW125 ewes prior to breeding (P = 0.03), but not at mid-gestation (P = 0.37). Insulin sensitivity decreased from diet initiation to mid-gestation (P = 0.04), and acute insulin response to glucose tended to be greater in OB150 ewes than C ewes (P = 0.09) and was greater than in OW125 ewes (P = 0.02). Fetal crown-rump length, thoracic and abdominal girths, and fetal perirenal fat were increased in the OW125 and OB150 versus C ewes at mid-gestation. However, only fetal heart, pancreas, and liver weights, as well as lipid content of fetal liver, were increased (P < 0.05) in OB150 ewes versus both C and OW125 ewes at midgestation.

Conclusions

These data demonstrate that different levels of overfeeding, resulting in differing levels of maternal weight gain and adiposity prior to and during pregnancy, lead to differential effects on fetal overgrowth and organ development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号