首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mariner/ Tc1 superfamily of transposable elements is widely distributed in animal genomes and is especially prevalent in insects. Their wide distribution results from their ability to be disseminated among hosts by horizontal transmission and also by their ability to persist in genomes through multiple speciation events. Although a great deal is known about the molecular mechanisms of transposition and excision, very little is known about the mechanisms by which transposition is controlled within genomes. The issue of mariner/Tc1 regulation is critical in view of the great interest in these elements as vectors for germline transformation of insect pests and vectors of human disease. Several potentially important regulatory mechanisms have been identified in studies of genetically engineered mariner elements. One mechanism is overproduction inhibition, in which excessive wild-type transposase reduces the rate of excision of a target element. A second mechanism is mediated by certain mutant transposase proteins, which antagonize the activity of the wild-type transposase. The latter process may help explain why the vast majority of MLEs in nature undergo ‘vertical inactivation’ by multiple mutations and, eventually, stochastic loss. Another potential mechanism of regulation may result from transposase titration by defective elements that retain their DNA binding sites and ability to transpose. There is also evidence that some mariner/Tc1 elements can be mobilized in a type of hybrid dysgenesis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Aberrant repair products of mariner transposition occur at a frequency of approximately 1/500 per target element per generation. Among 100 such mutations in the nonautonomous element peach, most had aberrations in the 5' end of peach (40 alleles), in the 3' end of peach (11 alleles), or a deletion of peach with or without deletion of flanking genomic DNA (29 alleles). Most mariner mutations can be explained by exonuclease "nibble" and host-mediated repair of the double-stranded gap created by the transposase, in contrast to analogous mutations in the P element. In mariner, mutations in the 5' inverted repeat are smaller and more frequent than those in the 3' inverted repeat, but secondary mutations in target elements with a 5' lesion usually had 3' lesions resembling those normally found at the 5' end. We suggest that the mariner transposase distinguishes between the 5' and 3' ends of the element, and that the 5' end is relatively more protected after strand scission. We also find: (1) that homolog-dependent gap repair is a frequent accompaniment to mariner excision, estimated as 30% of all excision events; and (2) that mariner is a hotspot of recombination in Drosophila females, but only in the presence of functional transposase.  相似文献   

3.
A. R. Lohe  D. L. Hartl 《Genetics》1996,143(3):1299-1306
Germline mobilization of the transposable element mariner is severely inhibited by the insertion of a 4.5- to 11.9-kb fragment of exogenous DNA into a unique SacI site approximately in the middle of the 1286-bp element. In the presence of transposase driven by the germline-specific hsp26-sgs3 promoter, mobilization of the MlwB construct (containing a 11.9-kb insertion) is detected at low frequency. Analysis of a mobilized MlwB element indicated that mobilization is mediated by the mariner transposase. However, transposed MlwB elements are also defective in germline mobilization. Rare, transposase-induced germ-line excision events were also recovered for such vectors. The estimated rate of excision is <0.1% per chromosome per generation. Excision appears to be accompanied by gap repair if a suitable template is available. The data imply that the reduced mobility of mariner vectors with exogenous DNA in the SacI site results from disruption of sequences necessary for efficient mobilization. The relative stability may be a valuable property in the uses of mariner-like elements in genetic engineering of insects of economic importance.  相似文献   

4.
Michel K  O'Brochta DA  Atkinson PW 《Gene》2002,298(2):141-146
Donor cleavage and strand transfer are two functions performed by transposases during transposition of class II transposable elements. Within transposable elements, the only active center described, to date, facilitating both functions, is the so-called DDE motif. A second motif, R-K-H/K-R-H/W-Y, is found in the site-specific recombinases of the tyrosine recombinase family. While present in many bacterial insertion sequences as well as in the eukaryotic family of mariner/Tc1 elements, the DDE motif was considered absent in other classes of eukaryotic class II elements such as P, and hAT and piggyBac. Based on sequence alignments of a hobo-like element from the nematode Caenorhabditis elegans, to a variety of other hAT transposases and several members of the mariner/Tc1 group, Bigot et al. [Gene 174 (1996) 265] proposed the presence of a DSE motif in hAT transposases. In the present study we tested if each of these three residues is required for transposition of the Hermes element, a member of the hAT family commonly used for insect transformation. While D402N and E572Q mutations lead to knock-out of Hermes function, mutations S535A and S535D did not affect transposition frequency or the choice of integration sites. These data give the first experimental support that D402 and E572 are indeed required for transposition of Hermes. Furthermore, this study indicates that the active center of the Hermes transposase differs from the proposed DSE motif. It remains to be shown if other residues also form the active site of this transposase.  相似文献   

5.
The Synechocystis sp. PCC6803 insertion sequence ISY100 (ISTcSa) belongs to the Tc1/mariner/IS630 family of transposable elements. ISY100 transposase was purified and shown to promote transposition in vitro. Transposase binds specifically to ISY100 terminal inverted repeat sequences via an N-terminal DNA-binding domain containing two helix-turn-helix motifs. Transposase is the only protein required for excision and integration of ISY100. Transposase made double-strand breaks on a supercoiled DNA molecule containing a mini-ISY100 transposon, cleaving exactly at the transposon 3' ends and two nucleotides inside the 5' ends. Cleavage of short linear substrates containing a single transposon end was less precise. Transposase also catalysed strand transfer, covalently joining the transposon 3' end to the target DNA. When a donor plasmid carrying a mini-ISY100 was incubated with a target plasmid and transposase, the most common products were insertions of one transposon end into the target DNA, but insertions of both ends at a single target site could be recovered after transformation into Escherichia coli. Insertions were almost exclusively into TA dinucleotides, and the target TA was duplicated on insertion. Our results demonstrate that there are no fundamental differences between the transposition mechanisms of IS630 family elements in bacteria and Tc1/mariner elements in higher eukaryotes.  相似文献   

6.
G. Bryan  D. Garza    D. Hartl 《Genetics》1990,125(1):103-114
The transposable element mariner is active in both germline and somatic cells of Drosophila mauritiana. Activity of the element is greatly enhanced in the presence of Mos1, a genetic factor identified as an autonomous copy of mariner. A strain of D. mauritiana containing Mos1 and other copies of mariner was used to initiate a screen for visible mutations. More than 20 mutations were obtained, including alleles of white, yellow and vermilion. Six alleles were characterized at the molecular level, and all were found to contain a mariner element inserted into the affected gene. Four insertions into the white locus were sequenced to determine the exact site of insertion of mariner. There appears to be little sequence specificity requirement for mariner insertion, other than an absolute requirement for the dinucleotide TA, which is duplicated upon insertion. Sequences of phenotypically wild-type germline and somatic revertants obtained from various white alleles, including the previously isolated wpch allele, were obtained using the polymerase chain reaction. Mariner excision is imprecise in both germline and soma, and the most frequent excision events are the same in the two tissues. Mutant derivatives of wpch were also studied, and were found to exhibit a wide range of molecular structures and phenotypes.  相似文献   

7.
The genome of the cyanobacterium Synechocystis sp. strain PCC6803 has nine kinds of insertion sequence (IS) elements, of which ISY100 in 22 copies is the most abundant. A typical ISY100 member is 947 bp long and has imperfect terminal inverted repeat sequences. It has an open reading frame encoding a 282-amino-acid protein that appears to have partial homology with the transposase encoded by a bacterial IS, IS630, indicating that ISY100 belongs to the IS630 family. To determine whether ISY100 has transposition ability, we constructed a plasmid carrying the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible transposase gene at one site and mini-ISY100 with the chloramphenicol resistance gene, substituted for the transposase gene of ISY100, at another site and introduced the plasmid into an Escherichia coli strain already harboring a target plasmid. Mini-ISY100 transposed to the target plasmid in the presence of IPTG at a very high frequency. Mini-ISY100 was inserted into the TA sequence and duplicated it upon transposition, as do IS630 family elements. Moreover, the mini-ISY100-carrying plasmid produced linear molecules of mini-ISY100 with the exact 3' ends of ISY100 and 5' ends lacking two nucleotides of the ISY100 sequence. No bacterial insertion elements have been shown to generate such molecules, whereas the eukaryotic Tc1/mariner family elements, Tc1 and Tc3, which transpose to the TA sequence, have. These findings suggest that ISY100 transposes to a new site through the formation of linear molecules, such as Tc1 and Tc3, by excision. Some Tc1/mariner family elements leave a footprint with an extra sequence at the site of excision. No footprints, however, were detected in the case of ISY100, suggesting that eukaryotes have a system that repairs a double strand break at the site of excision by an end-joining reaction, in which the gap is filled with a sequence of several base pairs, whereas prokaryotes do not have such a system. ISY100 transposes in E. coli, indicating that it transposes without any host factor other than the transposase encoded by itself. Therefore, it may be able to transpose in other biological systems.  相似文献   

8.
The piggyBac transposable element, originally isolated from a virus in an insect cell line, is a valuable molecular tool for transgenesis and mutagenesis of invertebrates. For heterologous transgenesis in a variety of mammals, transfer of the piggyBac transposable element from an ectopic plasmid only requires expression of piggyBac transposase. To determine if piggyBac could function in dicotyledonous plants, a two-element system was developed in tobacco (Nicotiana tabacum) to test for transposable element excision and insertion. The first transgenic line constitutively expressed piggyBac transposase, while the second transgenic line contained at least two non-autonomous piggyBac transposable elements. Progeny from crosses of the two transgenic lines was analyzed for piggyBac excision and transposition. Several progeny displayed excision events, and all the sequenced excision sites exhibited evidence of the precise excision mechanism characteristic of piggyBac transposase. Two unique transposition insertion events were identified that each included diagnostic duplication of the target site. These data indicate that piggyBac transposase is active in a dicotyledonous plant, although at a low frequency.  相似文献   

9.
Sleeping Beauty (SB) is the most active Tc1/mariner-type transposable element in vertebrates, and is therefore a valuable vector for transposon mutagenesis in vertebrate models and for human gene therapy. We have analyzed factors affecting target site selection of SB in mammalian cells, by generating transposition events from extrachromosomal plasmids to chromosomes. In contrast to the local hopping observed when transposition is induced from a chromosomal context, mapping of 138 unique SB insertions on human chromosomes showed a fairly random genomic distribution, and a 35% occurrence of transposition into genes. Inspection of the DNA flanking the sites of element integration revealed significant differences from random DNA in both primary sequence and physical properties. The consensus sequence of SB target sites was found to be a palindromic AT-repeat, ATATATAT, in which the central TA is the canonical target site. We found however, that target site selection is determined primarily on the level of DNA structure, and not by specific base-pair interactions. Computational analyses revealed that insertion sites tend to have a bendable structure and a palindromic pattern of potential hydrogen-bonding sites in the major groove of the DNA. These features appear conserved in the Tc1/mariner family of transposons and in other, distantly related elements that share a common catalytic domain of the transposase, and integrate fairly randomly. No similar target site preference was found for non-randomly integrating elements. Our results suggest common factors influencing target site selection of a wide range of transposable elements.  相似文献   

10.
11.
We present the crystal structure of the catalytic domain of Mos1 transposase, a member of the Tc1/mariner family of transposases. The structure comprises an RNase H-like core, bringing together an aspartic acid triad to form the active site, capped by N- and C-terminal alpha-helices. We have solved structures with either one Mg2+ or two Mn2+ ions in the active site, consistent with a two-metal mechanism for catalysis. The lack of hairpin-stabilizing structural motifs is consistent with the absence of a hairpin intermediate in Mos1 excision. We have built a model for the DNA-binding domain of Mos1 transposase, based on the structure of the bipartite DNA-binding domain of Tc3 transposase. Combining this with the crystal structure of the catalytic domain provides a model for the paired-end complex formed between a dimer of Mos1 transposase and inverted repeat DNA. The implications for the mechanisms of first and second strand cleavage are discussed.  相似文献   

12.
D. A. Lidholm  A. R. Lohe    D. L. Hartl 《Genetics》1993,134(3):859-868
A vector for germline transformation in Drosophila melanogaster was constructed using the transposable element mariner. The vector, denoted pMlwB, contains a mariner element disrupted by an insertion containing the wild-type white gene from D. melanogaster, the β-galactosidase gene from Escherichia coli and sequences that enable plasmid replication and selection in E. coli. The white gene is controlled by the promoter of the D. melanogaster gene for heat-shock protein 70, and the β-galactosidase gene is flanked upstream by the promoter of the transposable element P as well as that of mariner. The MlwB element was introduced into the germline of D. melanogaster by co-injection into embryos with an active mariner element, Mos1, which codes for a functional transposase and serves as a helper. Two independent germline insertions were isolated and characterized. The results show that the MlwB element inserted into the genome in a mariner-dependent manner with the termini of the inverted repeats inserted at a TA dinucleotide. Both insertions exhibit an unexpected degree of germline and somatic stability, even in the presence of an active mariner element in the genetic background. These results demonstrate that the mariner transposable element, which is small (1286 bp) and relatively homogeneous in size among different copies, is nevertheless capable of promoting the insertion of the large (13.2 kb) MlwB element. Because of the widespread phylogenetic distribution of mariner among insects, these results suggest that mariner might provide a wide hostrange transformation vector for insects.  相似文献   

13.
T Jarvik  K G Lark 《Genetics》1998,149(3):1569-1574
Mariner elements, a family of DNA-mediated transposable elements with short, inverted terminal repeats, have been reported in a wide variety of arthropods, as well as planarians, nematodes, and humans. No such element has been reported in a plant. Here we report a mariner element in the plant soybean (Glycine max (L.) Merr.). Although this sequence belongs to the mariner family, it is clearly distinct from previously reported mariner-like elements, as well as from the Tc1 transposon family. Novel aspects of its sequence could be useful as a starting point to identify mariner-like elements in new organisms, and it may prove useful in creating a transformation vector for plants.  相似文献   

14.
Mariner transposable elements encoding a D,D34D motif-bearing transposase are characterized by their pervasiveness among, and exclusivity to, animal phyla. To date, several hundred sequences have been obtained from taxa ranging from cnidarians to humans, only two of which are known to be functional. Related transposons have been identified in plants and fungi, but their absence among protists is noticeable. Here, we identify and characterize Tvmar1, the first representative of the mariner family to be found in a species of protist, the human parasite Trichomonas vaginalis. This is the first D,D34D element to be found outside the animal kingdom, and its inclusion in the mariner family is supported by both structural and phylogenetic analyses. Remarkably, Tvmar1 has all the hallmarks of a functional element and has recently expanded to several hundred copies in the genome of T. vaginalis. Our results show that a new potentially active mariner has been found that belongs to a distinct mariner lineage and has successfully invaded a nonanimal, single-celled organism. The considerable genetic distance between Tvmar1 and other mariners may have valuable implications for the design of new, high-efficiency vectors to be used in transfection studies in protists.  相似文献   

15.
The beta-glucuronidase reporter gene has been used to develop a sensitive assay for the excision of transposable elements introduced into transgenic plants. The reporter gene, inactivated by the insertion of the maize transposable element Activator (Ac) into the 5'-untranslated leader, was introduced into the genome of tobacco by Agrobacterium-mediated transformation. Reactivation of the beta-glucuronidase gene was detected in transgenic plants using a fluorometric or histochemical assay. Reactivation of the reporter gene was dependent on the presence of the transposase of Ac, and resulted from the excision of the Ac element. This assay, together with the improved methods for visualization, will provide a valuable and rapid method for studying the basic mechanism of transposition in plants and for developing modified transposable element systems suitable for gene tagging in transgenic plants.  相似文献   

16.
Detection of de novo insertion of the medaka fish transposable element Tol2   总被引:2,自引:0,他引:2  
Koga A  Hori H 《Genetics》2000,156(3):1243-1247
Tol2 is a terminal-inverted-repeat transposable element of the medaka fish Oryzias latipes. It is a member of the hAT (hobo/Activator/Tam3) transposable element family that is distributed in a wide range of organisms. We here document direct evidence for de novo insertion of this element. A Tol2 clone marked with the bacterial tetracycline-resistance gene was microinjected into fertilized eggs together with a target plasmid, and the plasmid was recovered from embryos. The screening of plasmid molecules after transformation into Escherichia coli demonstrated transposition of tet into the plasmid and, by inference, precise insertion of Tol2 in medaka fish cells. De novo excision of Tol2 has previously been demonstrated. The present study provides direct evidence that the Tol2 element has the entire activity necessary for cut-and-paste transposition. Some elements of the mariner/Tc1 family, another widespread group, have already been applied to development of gene tagging systems in vertebrates. The Tol2 element of the hAT family, having different features from mariner/Tc1 family elements, also has potential as an alternative gene tagging tool in vertebrates.  相似文献   

17.
Members of the Tc1/mariner superfamily of transposable elements isolated from vertebrate species are inactive due to the accumulation of mutations. A representative of a subfamily of fish elements estimated to be last active > 10 million years ago has been reconstructed, and named Sleeping Beauty(SB). This element opened up new avenues for studies on DNA transposition in vertebrates, and for the development of transposon tools for genetic manipulation in important model species and in humans. Multiple transposase binding sites within the terminal inverted repeats, a transpositional enhancer sequence, unequal affinity of the transposase to the binding sites and the activity of the cellular HMGB1 protein all contribute to a highly regulated assembly of SB synaptic complexes, which is likely a requirement for the subsequent catalytic steps. Host proteins involved in double-strand DNA break repair are limiting factors of SB transposition in mammalian cells, underscoring evolutionary, structural and functional links between DNA transposition, retroviral integration and V(D)J recombination. SB catalyzes efficient cut-and-paste transposition in a wide range of vertebrate cells in tissue culture, and in somatic tissues as well as the germline of the mouse and zebrafish in vivo, indicating its usefulness as a vector for transgenesis and insertional mutagenesis.  相似文献   

18.
Tc3 is a member of the Tc1/mariner family of transposable elements. All these elements have terminal inverted repeats, encode related transposases and insert exclusively into TA dinucleotides. We have studied the DNA binding properties of Tc3 transposase and found that an N-terminal domain of 65 amino acids binds specifically to two regions within the 462 bp Tc3 inverted repeat; one region is located at the end of the inverted repeat, the other is located approximately 180 bp from the end. Methylation interference experiments indicate that this N-terminal DNA binding domain of the Tc3 transposase interacts with nucleotides on one face of the DNA helix over adjacent major and minor grooves.  相似文献   

19.
Mariner-like elements are widespread eukaryotic transposons, but Mos-1 is the only natural element that is known to be active. Little is known about the biochemistry of mariner transposition. The first step in the process is the binding of the transposase to the 5' and 3' inverted terminal repeats (ITRs) of the element. Using the 3' ITR of the element, we have determined the binding properties of a recombinant Mos-1 transposase produced in bacteria, and we have used deletion derivatives to localize the minimal ITR binding domain between amino acids 1 and 141. Its features and structure indicate that it differs from the ITR binding domain of the transposase encoded by Tc1-related elements.  相似文献   

20.
The Tc5 Family of Transposable Elements in Caenorhabditis Elegans   总被引:2,自引:0,他引:2       下载免费PDF全文
J. J. Collins  P. Anderson 《Genetics》1994,137(3):771-781
We have identified Tc5, a new family of transposable genetic elements in the nematode Caenorhabditis elegans. All wild-type varieties of C. elegans that we examined contain 4-6 copies of Tc5 per haploid genome, but we did not observe transposition or excision of Tc5 in these strains. Tc5 is active, however, in the mut-2 mutant strain TR679. Of 60 spontaneous unc-22 mutations isolated from strain TR679, three were caused by insertion of Tc5. All three Tc5-induced mutations are unstable; revertants result from precise or nearly precise excision of Tc5. Individual Tc5 elements are similar to each other in size and structure. The 3.2-kb element is bounded by inverted terminal repeats of nearly 500 bp. Eight of the ten terminal nucleotides of Tc5 are identical to the corresponding nucleotides of Tc4. Further, both elements recognize the same target site for insertion (CTNAG) and both cause duplication of the central TNA trinucleotide upon insertion. Other than these similarities to Tc4, Tc5 is unrelated to the three other transposon families (Tc1, Tc3 and Tc4) that transpose and excise at high frequency in mut-2 mutant strains. Mechanisms are discussed by which four apparently unrelated transposon families are all affected by the same mut-2 mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号