首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heineke D  Bykova N  Gardeström P  Bauwe H 《Planta》2001,212(5-6):880-887
Potato (Solanum tuberosum L. cv. Desiré) plants with reduced amounts of P-protein, one of the subunits of glycine decarboxylase (GDC), have been generated by introduction of an antisense transgene. Two transgenic lines, containing about 60–70% less P-protein in the leaves compared to wild-type potato, were analysed in more detail. The reduction in P-protein amount led to a decrease in the ability of leaf mitochondria to decarboxylate glycine. Photosynthetic and growth rates were reduced but the plants were viable under ambient air and produced tubers. Glycine concentrations within the leaves were elevated up to about 100-fold during illumination. Effects on other amino acids and on sucrose and hexoses were minor. Nearly all of the glycine accumulated during the day was metabolised during the following night. The data suggest that the GDC operates far below substrate saturation under normal conditions thus allowing a flexible and fast response to changes in the environment. Received: 4 March 2000 / Accepted: 26 July 2000  相似文献   

2.
在0%、0.3%、0.6%NaCl胁迫下,检测转BADH基因马铃薯及其受体亲本‘甘农薯2号’的盆栽植株耐盐性的结果表明:BADH基因的遗传性稳定且转基因植株的耐盐性比非转基因的强。  相似文献   

3.
Previously, it was shown that low temperature (≤ 15 °C) inhibits RNA silencing-mediated defence by the control of siRNA generation. In contrast, we have found nine antisense potato lines out of 24 in which RNA silencing was not inhibited at low temperature. In these lines, the extent of endogenous repression varied in leaves and was found to be different in roots and tubers. In order to address the contribution of gene dosage and repetitive structure of the transgene loci to the temperature dependence/independence of antisense-mediated gene-silencing DNA gel blot analysis was performed. Interestingly, none of the studied features correlated with the observed silencing effect. In addition, the insertion of vector backbone sequences into the potato genome did not influence the temperature dependence. RNA-directed DNA methylation was detected in the majority of antisense lines, however, it was also independent of the type of RNA silencing. Thus, it is feasible that chromosomal flanking sequences or the chromatin structure surrounding the insertion determine which silencing pathway is activated.  相似文献   

4.
The production of biodegradable polymers in transgenic plants in order to replace petrochemical compounds is an important challenge for plant biotechnology. Polyaspartate, a biodegradable substitute for polycarboxylates, is the backbone of the cyanobacterial storage material cyanophycin. Cyanophycin, a copolymer of l-aspartic acid and l-arginine, is produced via non-ribosomal polypeptide biosynthesis by the enzyme cyanophycin synthetase. A gene from Thermosynechococcus elongatus BP-1 encoding cyanophycin synthetase has been expressed constitutively in tobacco and potato. The presence of the transgene-encoded messenger RNA (mRNA) correlated with changes in leaf morphology and decelerated growth. Such transgenic plants were found to produce up to 1.1% dry weight of a polymer with cyanophycin-like properties. Aggregated material, able to bind a specific cyanophycin antibody, was detected in the cytoplasm and the nucleus of the transgenic plants.  相似文献   

5.
    
Rhamnogalacturonan (RG) I is a branched pectic polysaccharide in plant cell walls. Rhamnogalacturonan lyase (eRGL) from Aspergillus aculeatus is able to cleave the RG I backbone at specific sites. Transgenic potato (Solanum tuberosum L.) plants were made by the introduction of the gene encoding eRGL, under the control of the granule-bound starch synthase promoter. The eRGL protein was successfully expressed and translated into an active form, demonstrated by eRGL activity in the tuber extracts. The transgenic plants produced tubers with clear morphological alterations, including radial swelling of the periderm cells and development of intercellular spaces in the cortex. Sugar compositional analysis of the isolated cell walls showed a large reduction in galactosyl and arabinosyl residues in transgenic tubers. Immunocytochemical studies using the LM5 (galactan) and LM6 (arabinan) antibodies also showed a large reduction in galactan and arabinan side-chains of RG I. Most of the remaining LM5 epitopes were located in the expanded middle lamella at cell corners of eRGL tubers, which is in contrast to their normal location in the primary wall of wild type tubers. These data suggest that RG I has an important role in anchoring galactans and arabinans at particular regions in the wall and in normal development of the periderm.  相似文献   

6.
Gas chromatographic measurements demonstrated that the content of endogenous gibberellic acid increased and that of abscisic acid decreased during storage of potato seeds, suggesting that the dormancy of the seeds is controlled by the balance between these two hormones. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
马铃薯晚疫病抗病基因研究进展   总被引:1,自引:0,他引:1  
马铃薯晚疫病是马铃薯和番茄等茄科植物中最主要的病害之一,每年都引起巨大的经济损失。基因工程技术的发展为马铃薯晚疫病的防治工作提出了新的契机,从晚疫病抗性品种中筛选出具有高持久抗性的抗病基因,并将其转化到栽培品种中去,无疑是我们开发持久性晚疫病抗性的最快捷的手段。到目前为至,已经有十几个晚疫病抗性基因从S.demissum,S. bulbocastanum,S.berthauhii,S.mochiquense和S.pinnatisectum等抗性马铃薯品种中鉴定出来并已定位在马铃薯染色体基因组上,并有4个被克隆出来(R1,R3a,Rpi—blb1/RB和Rpi—blb2)。主要概述了马铃薯晚疫病抗病基因的研究现状和发展前景。  相似文献   

9.
  总被引:4,自引:0,他引:4  
A mutant (LaPr 87/30) of barley (Hordeum vulgare L.) deficient in glycine decarboxylase (GDC; EC 2.1.2.10) was crossed with wild-type plants to generate heterozygous plants with reduced GDC activities. Plants of the F2 generation were grown in air and analysed for reductions in GDC proteins and GDC activity. The leaves of heterozygous plants contained reduced amounts of H-protein, and when the content of H-protein was lower than 60% of the wild-type, the P-protein was also reduced. The contents of the other two proteins of the GDC complex, T-protein and L-protein were not affected. Glycine decarboxylase activities, measured as the decarboxylation of [1-14C]glycine by intact mitochondria released from protoplasts, were between 47% and 63% of the wild-type activity in heterozygous plants and between 86% and 100% in plants with normal contents of H-protein. The enzyme activity was linearly correlated with the relative content of H-protein. Plants with reduced GDC activities developed normally and did not show major pleiotropic effects. In air, the reduction in GDC activity had no effect on the leaf metabolite content or photosynthesis, but under conditions of enhanced photorespiration (low CO2 and high light), glycine accumulated and the rates of photosynthesis decreased compared to the wild-type. The accumulation of glycine did not lead to a depletion of amino donors or to the accumulation of glyoxylate. The lower rates of photosynthesis were probably caused by an impaired recycling of carbon in the photorespiratory pathway. It is concluded that GDC has no control over CO2 assimilation under normal growth conditions, but appreciable control by GDC becomes apparent under conditions leading to higher rates of photorespiration. Received: 24 November 1996 / Accepted: 23 January 1997  相似文献   

10.
    
We studied the effect of ectopic AtCBF over-expression on physiological alterations that occur during cold exposure in frost-sensitive Solanum tuberosum and frost-tolerant Solanum commersonii . Relative to wild-type plants, ectopic AtCBF1 over-expression induced expression of COR genes without a cold stimulus in both species, and imparted a significant freezing tolerance gain in both species: 2 °C in S. tuberosum and up to 4 °C in S. commersonii . Transgenic S. commersonii displayed improved cold acclimation potential, whereas transgenic S. tuberosum was still incapable of cold acclimation. During cold treatment, leaves of wild-type S. commersonii showed significant thickening resulting from palisade cell lengthening and intercellular space enlargement, whereas those of S. tuberosum did not. Ectopic AtCBF1 activity induced these same leaf alterations in the absence of cold in both species. In transgenic S. commersonii , AtCBF1 activity also mimicked cold treatment by increasing proline and total sugar contents in the absence of cold. Relative to wild type, transgenic S. commersonii leaves were darker green, had higher chlorophyll and lower anthocyanin levels, greater stomatal numbers, and displayed greater photosynthetic capacity, suggesting higher productivity potential. These results suggest an endogenous CBF pathway is involved in many of the structural, biochemical and physiological alterations associated with cold acclimation in these Solanum species.  相似文献   

11.
菠菜叶片过氧体可转变甘油酸或羟基丙酮酸成为丝氨酸。以甘氨酸为氨基供体时,完整过氧体的转变活性比破碎的约高2.5倍,这不是由于完整的膜包被使有效的羟基丙酮酸浓度增加,或由于膜破碎使辅助因子损失,也不是由于过氧体膜的甘氨酸主动运输系统的作用。结果显示,在过氧体中存在甘氨酸转氨酶,完整过氧体中高的转氨速度可能是由于甘氨酸转氨酶在完整的和破碎的过氧体中的构象或构型不同。  相似文献   

12.
13.
    
Five Kunitz protease inhibitor group B genes were isolated from the genome of the diploid non-tuber-forming potato species Solanum palustre. Three of five new genes share 99% identity to the published KPI-B genes from various cultivated potato accessions, while others exhibit 96% identity. Spls-KPI-B2 and Spls-KPI-B4 proteins contain unique substitutions of the most conserved residues usually involved to trypsin and chymotrypsin-specific binding sites of Kunitz-type protease inhibitor (KPI)-B, respectively. To test the inhibition of trypsin and chymotrypsin by Spls-KPI proteins, five of them were produced in E. coli purified using a Ni-sepharose resin and ion-exchange chromatography. All recombinant Spls-KPI-B inhibited trypsin; K(i) values ranged from 84.8 (Spls-KPI-B4), 345.5 (Spls-KPI-B1), and 1310.6 nM (Spls-KPI-B2) to 3883.5 (Spls-KPI-B5) and 8370 nM (Spls-KPI-B3). In addition, Spls-KPI-B1 and Spls-KPI-B4 inhibited chymotrypsin. These data suggest that regardless of substitutions of key active-center residues both Spls-KPI-B4 and Spls-KPI-B1 are functional trypsin-chymotrypsin inhibitors.  相似文献   

14.
Transgenic potatoes expressing reduced levels of granule-bound starch synthase I (GBSSI) have been used to investigate whether the synthesis of amylose occurs at the surface of the starch granule or within the matrix formed by the synthesis and organization of amylopectin. Amylose in these potatoes is wholly or largely confined to a central region of the granule. Consequently this core region stains blue with iodine whereas the peripheral zone stains red. By making extensive measurements of the relative sizes of the granules and their blue-staining cores in tubers over a range of stages of development, we have established that the blue core increases in size as the granule grows. The extent of the increase in size of the blue core is greater in potatoes with higher levels of GBSSI. These data show that amylose synthesis occurs within the matrix of the granule, and are consistent with the idea that the space available in the matrix may be an important determinant of the amylose content of storage starches.  相似文献   

15.
Alternative pathways of electron transport involving photosystem I (PSI) only were studied in leaves of potato plants (Solanum tuberosum L., cv. Desiree), modified by yeast invertase gene, controlled by tuber-specific class I patatin B33 promoter with proteinase II signal peptide for apoplastic localization of the enzyme. Nontransformed (wild-type) potato cultivar Desiree was used as a source of control plants. Phototrophic cultures grown in vitro on the sucrose-free Murashige and Skoog medium, as well as plants grown on the medium with 4% sucrose were examined. Various PSI-dependent alternative pathways of electron transport were discriminated by quantitative analysis of kinetic curves of dark reduction of P700+, the primary electron donor of PSI, oxidized by far-red light known to excite selectively PSI. In potato plants with two different genotypes, four exponentially decaying kinetic components were found, which suggests the existence of multiple alternative routes for electron input to PSI. Inhibitor analysis (with diuron and antimycin A) allowed identification of each route. A minor ultra-fast component originated from weak residual excitation of PSII by far-red light and represented electron flow from PSII to PSI. Ferredoxin-dependent cyclic electron flow around PSI accounted for the middle component, and two slower components were assigned to donation of electrons to PSI from reductants localized in the chloroplast stroma. The rates of all components were somewhat higher in leaves of the transformed plants than in the wild-type plants. However, relative contributions of separate components to the kinetics of dark P700+ reduction in leaves of both potato genotypes were similar. Growing plants on the medium with sucrose dramatically increased the amplitude of absorbance change at 830 nm in the transformed (but not in wild type) plants, which indicated a drastic increase in P700 concentration in their leaves.  相似文献   

16.
The effects of concanavalin A (ConA), a glucose/mannose-specific lectin from jackbean (Canavalia ensiformis), on insect crop pests from two different orders, Lepidoptera and Homoptera, were investigated. When fed to larvae of tomato moth (Lacanobia oleracea) at a range of concentrations (0.02–2.0% of total protein) in artificial diet, ConA decreased survival, with up to 90% mortality observed at the highest dose level, and retarded development, but had only a small effect on larval weight. When fed to peach-potato aphids (Myzus persicae) at a range of concentrations (1–9μM) in liquid artificial diet, ConA reduced aphid size by up to 30%, retarded development to maturity, and reduced fecundity (production of offspring) by >35%, but had little effect on survival. With both insects, there was a poor correlation between lectin dose and the quantitative effect. Constitutive expression of ConA in transgenic potatoes driven by the CaMV 35S promoter resulted in the protein accumulating to levels lower than predicted, possibly due to potato not being able to adequately reproduce the post-translational processing of this lectin which occurs in jackbean. However, the expressed lectin was functionally active as a haemagglutinin. Bioassay of L. oleracea larvae on ConA-expressing potato plants showed that the lectin retarded larval development, and decreased larval weights by >45%, but had no significant effect on survival. It also decreased consumption of plant tissue by the larvae. In agreement with the diet bioassay results, ConA-expressing potatoes decreased the fecundity of M. persicae by up to 45%. ConA thus has potential as a protective agent against insect pests in transgenic crops. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
  总被引:2,自引:0,他引:2  
Canopy expansion, growth and yield were examined in 19 genotypes of potato (Solanurn tuberosum L.) grown either with irrigation or droughted from the time of plant emergence. In the irrigated treatment, genotypes differed both in the maximum leaf area index (Lai) achieved and in the duration the canopy was maintained. Drought reduced both the rate of canopy expansion and the maximum Lai achieved. In the droughted treatment, biomass production was correlated with leaf area duration. The relation between the effect of drought on the growth of individual leaves and biomass or yield is examined. It is concluded that selection for early leaf appearance combined with the ability to sustain leaf growth with increasing soil moisture deficit (SMD) would improve productivity in the presence of drought.  相似文献   

18.
Potato plants ( Solanum tuberosum L. ev. Ostara) were grown in water culture and the growth rate of individual tubers was measured daily or at two day intervals. Tubers of different growth rate and/or different age (days after tuberization) were harvested and analysed for indolylacetic acid (IAA) and abscisic acid (ABA). Within individual tubers the IAA content decreases from the apical to the basal part of the tuber. Tuber age and corresponding fresh weight are negatively correlated with the endogenous IAA content. If, however, individual tubers of comparable age but different growth rates are compared, a significant positive correlation between growth rate and IAA content is revealed, while ABA showed a significant negative correlation with growth rate. Removal of all fast-growing tubers from individual plants causes an increase in the growth rate of the remaining tubers within 3–4 days. This coincides with a particularly steep increase in IAA content. The data support the idea that endogenous IAA content may be one factor responsible for controlling the growth rate ("sink-activity ") of individual tubers.  相似文献   

19.
    
Cytokinin-like activity was assayed in stolons and tubers of Solanum tuberosum L. ssp. andigena (Juz. et Buk.) Hawkes cv. 165 grown in pots under controlled environment conditions. The plants were allowed to tuberise without the application of environmental or other external stimuli. The soluble sugar and starch contents of stolon tips and tubers were measured. Starch accumulation was a precise indicator of tuber initiation. Cytokinin-like activity began to increase in tubers with a diameter greater than 7.5 mm and, as assessed on a per tuber basis, was greatest in the largest size-category analysed. However, expressed as a function of fresh and dry weight, activity was greatest in tubers of 15–20 mm in diameter. Increases in cytokinin-like activity occurred subsequent to tuber formation, indicating that the tuberisation stimulus is unlikely to be cytokinin-like in nature.  相似文献   

20.
In potato (Solatium tuberosum L. cv. Bintje and Doré) callus a very active hydrox-amate-stimulated NADH-dependent O2-uptake develops during the growth of the callus, which is caused by a peroxidase. More than 95% of the peroxidase activity is found in the 40000 g supernatant. The total activity may be as high as 1000 times the respiratory acitivity of the callus tissue. At least two fractions, obtained by Sephadex gel filtration, can be distinguished showing this peroxidase activity, one of about 15 kDa and one > 50 kDa. The main properties of both fractions are: a) Hydroxamate at 0.2–0.5 mM gives half-maximal stimulation. Maximal stimulation is observed with 1–3 mM benzhydroxamate (BHAM) and 1–15 mM salicylhydroxamate (SHAM). Higher concentrations, especially of BHAM, give less or no stimulation. b) Hydroxamates are not consumed during the reaction. c) Both NADH and NADPH can serve as the electron donor for the reaction. The affinity for NAD(P)H is very low (Km near 10 mM). In the absence of hydroxamates NAD(P)H is only slowly oxidized, with an even lower affinity. d) The peroxidase can carry out two reactions: an O2-consuming and a H2O2-consuming reaction. In both reactions one NAD(P)H is consumed. In the first reaction H2O2 is formed which can be consumed in the second reaction, resulting in an overall stoichiometry of 2 NADH consumed for each O2 molecule and in the production of H2O. e) The reaction is completely blocked by cyanide, superoxide dismutase (EC 1.15.1.1) and (excess) catalase (EC 1.11.1.6), but not by antimycin A or azide. This peroxidase-mediated O2-uptake might interfere with respiratory measurements. In experiments with isolated mitochondria this interference can be prevented by the addition of catalase to the reaction mixture. The use of high concentrations of hydroxamate is not allowed because of inhibitory effects on the cytochrome pathway. In intact callus tissue hydroxamates only stimulate O2-uptake in the presence of exogenous NADH. In vivo the peroxidase does not appear to function in O2-uptake, probably because of its localization (at least partly in the cell wall) and/or its low affinity for NADH. The use of hydroxamates in the determination of cytochrome and alternative pathway activity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号