首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The leafhopper Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae) is the most important vector of sugarcane white leaf (SCWL) phytoplasma that significantly affects the sugarcane crop in Asia. Here, we aimed to study the characteristics of SCWL phytoplasma transmission by M. hiroglyphicus. To this end, the stylet penetration activities performed during the acquisition access period (AAP) and inoculation access period (IAP) were investigated by the direct current electrical penetration graph technique and confirmed by quantitative polymerase chain reaction (qPCR). Additionally, the latent period (LP) of SCWL phytoplasma in the vector was determined by qPCR and localised by fluorescent in situ hybridisation. The results indicated that the acquisition of SCWL phytoplasma occurred during phloem ingestion (waveform D), whereas its inoculation was associated with salivation into the phloem sieve element (waveform C). The minimum AAP was 15 min and the minimum duration of phloem ingestion was 2.35 min. The minimum LP of SCWL phytoplasma in the vector was at least 14 days; then, SCWL phytoplasma moved to the salivary glands of the insect, enabling the transmission of the pathogen to the host plants. The minimum IAP for a successful transmission of SCWL phytoplasma to the host plants was 11–12 min, with a minimum duration of salivation into phloem of 1.35 min. The female vectors had higher SCWL phytoplasma copy numbers than the male vectors, and displayed faster AAP, IAP, and LP. Overall, our findings provide important information related to the feeding behaviour of M. hiroglyphicus and its effect on the transmission of SCWL phytoplasma.  相似文献   

2.
Phytoplasma strain was detected in leaves of sugarcane in India exhibiting symptoms of yellowing of midribs. A phytoplasma characteristic 1.2 kb rDNA PCR product was amplified from DNAs of all diseased samples but not in healthy sugarcane plants tested using phytoplasma universal primer pairs P1/P7 and f5U/r3U. Restriction fragment length polymorphism (RFLP) analysis of amplified 16S rDNA indicated that diseased sugarcane was infected by phytoplasma. The 16S rDNA sequence of the Indian sugarcane yellow leaf phytoplasma (SCYLP) showed the closest identity (99%) to that of SCYLP in Cuba identified as Macroptilium lathyroides (AY725233), which belongs to 16SrXII (Stolbur group). This is the first record of the detection of SCYLP, and identification of the 16SrXII group of phytoplasma associated with yellow leaf syndrome (YLS) in India.  相似文献   

3.
We have developed a method for the accelerated production of fertile transgenic wheat (Triticum aestivum L.) that yields rooted plants ready for transfer to soil in 8–9 weeks (56–66 days) after the initiation of cultures. This was made possible by improvements in the procedures used for culture, bombardment, and selection. Cultured immature embryos were given a 4–6 h pre-and 16 h post-bombardment osmotic treatment. The most consistent and satisfactory results were obtained with 30 g of gold particles/bombardment. No clear correlation was found between the frequencies of transient expression and stable transformation. The highest rates of regeneration and transformation were obtained when callus formation after bombardment was limited to two weeks in the dark, with or without selection, followed by selection during regeneration under light. Selection with bialaphos, and not phosphinothricin, yielded more vigorously growing transformed plantlets. The elongation of dark green plantlets in the presence of 4–5 mg/l bialaphos was found to be reliable for identifying transformed plants. Eighty independent transgenic wheat lines were produced in this study. Under optimum conditions, 32 transformed wheat plants were obtained from 2100 immature embryos in 56–66 days, making it possible to obtain R3 homozygous plants in less than a year.  相似文献   

4.
A technique was developed for differentiating the activity of microbes solely within sol gels by using the contribution of biomass outgrowth. Streptomyces rimosus was immobilised in colloidal silica gels and biomass growth, oxytetracycline synthesis, pH and carbohydrate consumption were compared for UV surface-sterilised gels, untreated gels, and liquid cultures. Absolute and biomass specific oxytetracycline yields were higher for non-sterile gels than for liquid culture. Biomass solely within colloidal silica gels (1.7 mg ml–1), and gels obtained from colloidal silica modified by addition of larger silica particles (1.2 mg ml–1) yielded 27 and 21 g ml–1 oxytetracycline compared with 97 and 104 g ml–1 for unsterilised gels (3.6 and 5.2 mg ml–1 biomass) displaying outgrowth. It was therefore apparent that biomass and antibiotic production within the gels was limited and that optimisation requires gel modification.  相似文献   

5.
For the simultaneous production of protease and oxytetracycline, mycelium and protoplasts of Streptomyces rimosus TM-55 were cultivated in basal medium containing soluble starch, corn steep liquid, ammonium sulphate, calcium carbonate, sodium chloride and soybean oil. Protease and oxytetracycline production increased with decreasing in ratio of culture broth to vessel volume from 1:2 to 1:5. Each ml of broth with 0.286 mg fresh mycelia yielded 168–204 units of protease and 785–972 g of oxytetracycline after replacement of corn steep liquor, sodium chloride and soybean oil with beef extract and sunflower oil, while each ml of broth with 7.5 × 107 protoplasts produced 141–153 units of protease and 504–615 g of oxytetracycline. Protease and oxytetracycline production were low when the pH was 5.1 or 9.0. Soluble starch and ammonium sulphate were the best carbon and nitrogen sources, respectively. Supplementation with calcium carbonate enhanced protease and oxytetracycline production. The productivity of protoplasts decreased sharply when the incubation temperature increased from 28 to 34 °C, while the productivity of mycelium was almost unchanged.  相似文献   

6.
A study was undertaken to develop a protoplast regeneration system for pinellia. A yield of 19 29 x 105 protoplasts/g F. W. could be obtained from cell suspension cultures incubated in a digestion enzyme solution with 2% cellulase Onzuka R-10, 10% pectinase (Sigma), 0.01% pectolyase Y23. K8P and modified MS media were used to culture protoplasts in: a) liquid, b) liquid-solid double layer, or c) agarose embedded protoplast culture. The former two were conducive to colony formation from protoplast-derived cells. The frequency of cell division was about 8% after 3 days in culture. Gradually adding fresh medium of lower osmotic pressure into the medium for protoplast culture favored cell division. Calli (1–2 mm in diameter) formed after 30–40 days in culture. The calli transferred onto medium supplemented with KT (0.5 mg 1–1) and NAA (0.2 mg 1)–1) could regenerate plants after 40–50 days. Of 47 plantlets transplanted into plots, 29 flowered and were fertile.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - KT kinetin - CH casein hydrolysate  相似文献   

7.
The control of in vitro direct main stem formation by culturing receptacles, and a protocol for the micropropagation of Lilium longiflorum using in vitro main stem nodes derived from receptacle culture were developed. Receptacles from flowers cultured on MS medium containing 1.0 mg l–1 gibberellic acid (GA3) and 0.5 mg l–1 6-benzyladenine (BA) resulted in direct main stem formation after 3 months culture. These stems were isolated and cut into nodal stem segments, which were then cultured on MS medium supplemented with 0.2 mg l–1 BA. Shoots formed on each node after one month culture. These shoots were subcultured on MS medium containing 0.5 mg l–1 BA for their mass propagation. An average of 30 vigorous and uniform shoots were formed per single shoot after each subculture. A cyclic and continuous system of propagation by multiplication of shoots was developed. Shoots were rooted on 1/2 MS medium containing 0.2 mg l–1-naphthaleneacetic acid (NAA). One hundred plantlets that were acclimatized in the greenhouse had a 100% survival. A comparison was made with the traditional culture of explants derived from bulb-scales and with that from main stems.  相似文献   

8.
Heat therapy and meristem tip culturing were used in various cultivars of banana (Musa acuminata AAA cvs Grande Naine and Valary), and plantain (Musa acuminata x M. balbisiana AAB cvs Maricongo, Common Dwarf and Super Plantain) for rapid clonal propagation of mosaic disease-free plants. Suckers were subjected to heat therapy at 38–40°C for 14 days prior to the culture of their meristem tips (1.5–2.0 mm long having 6–8 vertical incisions) on modified MS medium containing 1.0 mg l-1 thiamine HCl, 0.5 mg l-1 nicotinic acid, 0.5 mg l-1 pyridoxine HCl, 25 mg l-1 ascorbic acid (filter sterilized), 0.7 mg l-1 BA and 0.7 mg l-1 kinetin. This culture medium alone was effective in preventing the oxidation of phenolic compounds present in explants, and in producing up to 13 rooted plantlets from a single meristem within 10 to 12 weeks. Plants derived from heat-treated meristems of infected plants were free from the disease, as determined by visual inspection, mechanical inoculation to Cucumis sativus, and electron microscopy.  相似文献   

9.
Embryogenic callus was developed from young leaves of sugarcane (Saccharum spp.hybrid, cv. CoL-54). A good embryogenic callus response was achieved using MS basal medium containing 2.0 mol (0.5 mg l-1) picloram under dark conditions at 27±1°C. Initiation of fast growing homogeneous cell suspension cultures was achieved in MS and AA media, both supplemented with g mol (2 mg l-1) 2,4-d and 500 mg l-1 CH. Embryogenic callus was reinitiated from embryogenic cell suspension cultures using MS medium containing 30 g l-1 sucrose, 500 mg l-1 CH and 2.26 mol (0.5 mg l-1) 2,4-d after 4–6 weeks of culture under 16-h photoperiod conditions. Plant regeneration was achieved after about 4 weeks in MS medium lacking growth regulators but containing CH (500 mg l-1) and sucrose (60 g l-1). Rooting was enhanced by transferring regenerated plantlets to half strength MS basal medium.Totipotent protoplasts with an average yield of 2.0×107 to 1.0×108 ml-1 were obtained from embryogenic cell suspension cultures at log phase, i.e., 4–5 days after transfer to fresh media. The best growth response was achieved when protoplasts were cultured in a modifed KM8P medium at the density of 2.0×105 m l-1. Protoplasts were mainly embedded in 0.8% sea plaque agarose. Division efficiency of 22.2% was achieved after 20 days of culture and 0.26% of microcolonies continued growth and formed microcalluses after 30 days of culture under dark conditions. Microcalluses were proliferated in MS medium having 2,4-d (2 mg l-1) under 16-h photoperiod. Transferring these embryogenic calluses in MS medium +9.29 mol kinetin (2 mg l-1) +5.37 mol NAA (1.0 mg l-1) + activated charcoal (200 mg l-1) for 5 weeks favoured plant regeneration. Shoots and roots were further proliferated in half strength MS basal medium for 2–4 weeks. Regenerated plants were transferred to autoclaved sand for 2 weeks under 16-h photoperiod in growth room and transferred to soil in a greenhouse to raise to maturity.Abbreviations MS salts of Murashige & Skoog (1962) basal medium - AA salts of Muller & Grafe (1978) basal medium - N6 saits of Chuet al. (1975) basal medium - 2,4-d 2,4-dichlorophenoxyacetic acid - CH casein hydrolysate - KM8P protoplast culture medium of Kao & Michayluk (1975) - KPR protoplast culture medium of Kao (1977) - P9 protoplast culture medium (Chen & Shih, 1983) - BA Benzyladenine - Picloram 4-amino-3,5,6-trichloropicolinic acid - NAA Naphthalene acetic acid  相似文献   

10.
Plantlets were regenerated from cultured seed explants of the forage grass Caucasian bluestem [Bothriochloa caucasica (Trin.) C.E. Hubbard] via somatic embryogenesis. Embryogenic callus was produced in four weeks when surface sterilized seeds were cultured on a medium containing MS-salts, B-5 vitamins, 12 mM L-proline, 2% sucrose, 0.8% agar and 5M 2,4-D. Plantlets were regenerated in 6–8 weeks after culture initiation. Healthy root and shoot systems were produced within three weeks after the plantlets were transferred to a medium lacking 2,4-D. Approximately 95% of the plantlets survived greenhouse acclimation and produced healthy plants and viable seeds. Caucasian bluestem callus cultures exhibit natural resistance to kanamycin. High levels of kanamycin (up to 800 mg/l) did not completely inhibit callus growth. However, the regeneration of healthy-plantlets was completely inhibited by kanamycin even at low levels (50 mg/l).  相似文献   

11.
Evidence is presented for the association of a phytoplasma, provisionally named sugarcane yellows phytoplasma (ScYP), in sugarcane affected by a yellow leaf syndrome. The phytoplasma was consistently detected in leaves of more than 40 varieties from eight African countries. It was present in all symptomatic as well as some asymptomatic field grown cane samples but not in plants grown from true seed, and it was also observed in phloem sieve tubes by transmission electron microscopy. Phytoplasma 16S rDNA was confirmed by PCR, and restriction fragment analysis using Rsal and Haelll confirmed that PCR-amplified products were of phytoplasma rather than of plant or of other pathogen origin. Sequences obtained from the intergenic spacer region, between the 16S and 23S rDNA genes, confirmed the identity of the phytoplasma as belonging to the western X group of phytoplasmas.  相似文献   

12.
A wheat regeneration system was developed using mature embryos. Embryos were removed from surface-sterilised mature caryopses (winter wheat Odeon cultivar and spring wheat Minaret cultivar) and ground to pieces through a sterile nylon mesh. The fragments were characterised by means of the image analysis technique. They were 500 M mean diameter and most of them were elongated. They were used as explants to initiate embryogenic calli on solid medium supplemented with 10 M 2,4-dichlorophenoxyacetic acid. The morphogenic pathway of the initiated calli was followed for a 40-day culture period. Active cellular division occurred within 24 hours of cultivation. Several hundred calli were produced from 100 fragmented embryos within 3 days. A 90% callus induction rate was achieved and proembryos appeared by the 8th day of culture. The highest embryogenic calli induction rate of 47% was obtained when 2,4-dichlorophenoxyacetic acid was suppressed after a 3–4 week induction period. Two regeneration methods were finally compared. A total of 513 plantlets were produced. The optimal protocol produced 25–30 plants per 100 embryos. This regeneration method may be suitable for transformation applications.  相似文献   

13.
Adventitious buds or protocorm-like bodies were regenerated directly from excised explants without intervening callus. Differences in the ability of regeneration were observed among different plant organs with bulbils showing the highest regenerative ability followed by leaf blade and petiole. Ability of vegetative propagation of bulbil could be maintained by alternate solid-and liquid-medium culture. Theoretically, 1.7×1027 plantlets could be produced from a single bulbil by this technique within one year based on the production and rapid growth of protocorm-like bodies and adventitious buds. Concentration of MS salts, NAA and sucrose influenced not only root formation from the differentiated adventitious buds, but also root number and length. For root formation, the best combination was one-half strength MS salts with 3–5% sucrose and 1 mg/l NAA. The high survival rate of 96% was recorded when plantlets were transplanted into a mixture of vermiculite:loam soil:peat moss (1:2:1). Plants from in vitro culture were morphological similar to field-grown plants. The acute toxicity of crude extracts from protocorm-like bodies was about one-fourth that of extracts from tubers of field-grown plants when tested with white mice. Tissue culture has potential for clonal propagation of Pinellia ternata plants for commercial use.Abbreviations MS Murashige and Skoog (1962) - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - BA 6-benzylaminopurine  相似文献   

14.
Culture conditions are described for sustained cell division and plant regeneration from protoplasts of rose (Rosa hybrida L. `Sumpath'). Protoplasts were enzymatically isolated from 2-week-old embryogenic cell suspension cultures. Freshly isolated protoplasts were plated as a thin layer onto protoplast culture medium (half-strength 21 Murashige and Skoog's medium containing 60 g l–1 myo-inositol, 4.4 M BA, and 1.4 M 2,4-D) at a density of 5×104 protoplasts ml–1. The plating efficiency reached 3.9% after 2 weeks of culture. However, few protoplasts underwent cell division when cultured in protoplast culture medium in which 60 g l–1 myo-inositol was replaced with the same osmolarity of 90 g l–1 mannitol, indicating that myo-inositol is essential for sustained cell division of protoplasts. Colonies were formed after 8 weeks of culture at a frequency of 0.2%. Colonies were then transferred to colony culture medium (0.4% Gelrite-solidified protoplast culture medium) and maintained by subculturing at 4-week intervals to form embryogenic calluses. Upon transfer to half-strength MS basal medium, embryogenic calluses gave rise to numerous somatic embryos. Somatic embryos were transferred to half-strength MS basal medium containing 48 mg l–1 ferric ethylenediamine di-(o-hydroxyphenylacetate), where they subsequently developed into plantlets at a frequency of 30.9%. The plantlets had the same chromosome number of 2n=3x=21 as the source plant. They were successfully transplanted to potting soil and grown to maturity in a greenhouse.  相似文献   

15.
Leaves from sugarcane were collected from Egyptian plantation fields and tested for phytoplasma (Sugarcane yellows phytoplasma, SCYP) and Sugarcane yellow leaf virus (SCYLV) using nested PCR (with different primers) and RT‐PCR, respectively. These results showed significant differences in the amplification of the PCR assays. The primer MLO‐X/MLO‐Y, which amplified the 16S‐23S rDNA spacer region, was the most precise to detect the phytoplasma in sugarcane plants. Sequencing and restriction fragment length polymorphism analysis revealed that all tested phytoplasmas belonged to the 16SrI (aster yellows phytoplasma) group, with the exception of cultivar G84‐47 belonged to the 16SrXI (Rice yellow dwarf phytoplasma) group. Three Egyptian sugarcane cultivars were phytoplasma free. Phylogenetic analyses of 34 screened accessions of 16S ribosomal DNA gene sequences of Candidatus phytoplasma including the ones collected from Egypt used in this study and those extracted from GenBank showed that they split into two distinct clusters. The phylogenetic analyses indicated that these phytoplasmas are closely related and share a common ancestor. All tested Egyptian sugarcane plants were infected by SCYLV with the exception of cultivar Phil‐8013 which was virus free.  相似文献   

16.
Efficient micropropagation, callus culture and root culture protocols were developed for the medicinal plant Phyllanthus urinaria(Euphorbiaceae) using single node explants. Maximum multiplication (16–20 shoots per explant) was achieved on Murashige and Skoog media supplemented with 5.0 M kinetin. Murashige and Skoog and Anderson Rhododendron media promoted significant shoot culture growth in terms of numbers of shoots and nodes produced per explant. Rooting was achieved with 93–100% of the microshoots on Murashige and Skoog medium without growth regulators, although 1.25–5.0 M -naphthaleneacetic acid significantly increased the number of roots per explant. Regenerated plants were successfully acclimatized and 91% of plantlets survived under ex vitro conditions. Flowering was observed on micropropagated plants after 3–4 weeks of acclimatization. High frequency callus initiation and growth was achieved when single node explants were inoculated in the horizontal position on Murashige and Skoog medium supplemented with 5.0 M indole-3-butyric acid. Other auxins such as 2,4-dichlorophenoxyacetic acid and -naphthaleneacetic acid promoted moderate callus fresh weight increase, when used separately. Root cultures were successfully established on Murashige and Skoog medium containing 1.1 M -naphthaleneacetic acid. The optimized micropropagation, callus culture and root culture protocols offer the possibility to use cell/root culture techniques for vegetative propagation and secondary metabolism studies.  相似文献   

17.
In vitro propagation of Amaryllis belladonna   总被引:3,自引:0,他引:3  
Amaryllis belladonna L. plants were multiplied successfully by means of tissue culture techniques. Different plant parts were tested as explant material, but plantlets could only be generated from the twin-scales and immature scapes. These in vitro-formed plantlets were divided into four parts and used for further multiplication. The twin-scale explants had the highest multiplication rate when a medium with 22.2 M benzyladenine and 0.54 M naphthaleneacetic acid was used. The sucrose concentration played an important role in the initiation of new plantlets, and the best results were obtained when a sucrose concentration of 2–3% was used. Anatomical observations were made during the initiation of the new plantlets.Abbreviations BA benzyladenine - NAA naphthaleneacetic acid - Benomyl (methyl [1-[(butylamino) carbonyl]-1H-benzimidazol-2-yl] carbamate) - Folpet (2-[(trichloromethyl)thio]-H-isoindole-1,3(2H)-dione phthalimide(I))  相似文献   

18.
The wheat x maize cross as a technique for haploid induction in wheat was evaluated in a replicated block design comprising 18 wheat F1 hybrids and five Zea mays L. parents. Haploid plants were regenerated at an average of 9.1 (4.4–14.7) plants per 100 florets processed. Genotypic differences for haploid production efficiency were recorded for both wheat and Zea mays L. Interaction between parents was significant for number of plants/100 florets. All 610 of the 1,703 regenerated plantlets that were analyzed by flow cytometry were haploid. At maturity, 70% (60–81 %) of the colchicinetreated haploid plants were fertile, but the frequency of fertile and sterile plants was not consistent over the wheat hybrids from which they were derived. Flow cytometry performed using the first tiller which arose following colchicine treatment enabled prediction of fertility. The 1BL-1RS chromosome was found at the expected ratios in the F2 and in the haploid progenies produced through the wheat x maize cross but deviated from the 11 ratio in the haploid progenies produced by anther culture.  相似文献   

19.
Park  Heum Gi  Lee  Kyun Woo  Cho  Sung Hwoan  Kim  Hyung Sun  Jung  Min-Min  Kim  Hyeung-Sin 《Hydrobiologia》2001,(1):369-374
The freshwater rotifer, Brachionus calyciflorus is one of the live food organisms used for the mass production of larval fish. In this study possibility of obtaining high density cultures of the freshwater rotifer B. calyciflorus were investigated. The two culture systems used differed in their air and dissolved oxygen supplies using three temperatures in each case: 24, 28 and 32 °C. Rotifers were batch-cultured using 5 l-vessels and fed with the freshwater Chlorella. The growth rate of rotifers significantly increased with an increase in temperature. The maximum density of the rotifers with air-supply at 24 °C, 6500 ind. ml–1, was significantly lower than those cultured at 28 and 32 °C, i.e. 8600 and 8100 ind. ml–1, respectively. Dissolved oxygen levels decreased with time and ranged from 0.8 to 1.4 mg l–1 when the density of freshwater rotifer was the highest at each temperature. The highest density (19200 ind. ml–1) of freshwater rotifer was obtained in cultures with a supply of oxygen at 28 °C. Densities of 13500 and 17200 ind. ml–1 were found at 24 and 32 °C, respectively. Levels of NH3-N increased with time and a dramatic increase of NH3-N was observed at high temperatures. Levels of NH3-N at 24, 28 and 32 °C were 13.2, 18.5 and 24.5 mg l–1, respectively. These levels coincided with the highest rotifer density at each of the three temperatures. When rotifers were cultured with an oxygen-supply and pH was adjusted to 7, the maximum density of rotifer reached 33500 ind. ml–1 at 32 °C . These results suggested that high density culture of freshwater rotifer, B. calyciflorus could be achieved under optimal conditions with DO value of exceeding 5 mg l–1 and NH3-N values of lower than 12.0 mg l–1.  相似文献   

20.
In this study, the effect of spraying mother plants with various levels of putrescine, spermidine, and cycocel (each at 0, 50, 500, and 5000 mg/l) were assessed on the frequency of haploid embryos produced from unfertilized ovaries and subsequent regeneration of derived embryos. Significantly higher haploid embryos were obtained when mother plants were sprayed with putrescine at 500 mg/l (5.2 embryos/fruit), spermidine at 50 mg/l (4.8 embryos/fruit), and cycocel at 50 mg/l (5.2 embryos/fruit) as compared to the control (without spraying, 3.2 embryos/fruit). However, embryogenesis induction was decreased drastically as the concentration of all the three compounds tested was increased and the lowest haploid embryos were observed when 5000 mg/l of spermidine (0.4 embryos/fruit) or cycocel (2.0 embryos/fruit) were applied. Only spermidine at 50 mg/l led to 100% regeneration into fully developed plantlets. The seed setting and size of fruits were also affected by polyamines and cycocel applications. Ploidy analysis using a flow cytometer indicated that all regenerated plantlets contain the gametic chromosome number (n?=?x?=?7) of parental plants and the results of chromosome counting also confirmed the haploid nature of regenerated plantlets. It can be concluded that the induction of haploid embryogenesis from unfertilized ovaries after pollination with irradiated pollen and subsequent conversion of derived embryos into the plantlets could be improved in Cucumis sativus L. by applying appropriate levels of putrescine, spermidine, and cycocel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号