首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SH2 domain containing inositol 5'-phosphatase (SHIP) was initially described as a 145-kDa protein phosphorylated on tyrosines upon growth factor and cytokine stimulation. It was shown to be phosphorylated after Fc and B cell receptor activation and plays a role in negative signaling. Different isoforms of the SHIP protein result from alternative mRNA splicing, proteolysis, or a combination of both. The expression of discrete SHIP isoforms changes with the potential developmental-dependent maturation state of myeloid cells, suggesting mechanisms for the regulation of SHIP interactions with other signaling molecules. A p135 (SHIPbeta) spliced isoform is known to be expressed in developing myeloid cells. Now we have identified a new SHIP isoform, SHIPdelta, which is the product of an out-of-frame splice with a deletion of 167 nucleotides in the C-terminal region, resulting in an approximately 110-kDa protein. Biochemically, SHIPdelta differs from SHIPalpha by exhibiting little or no tyrosine phosphorylation or association with the signaling protein Shc after M-CSF activation of FD-Fms cells. In addition, we have characterized the structure of the entire SHIP genomic locus, which provides a basis for understanding the alternative splicing events. SHIP is expressed in hematopoiesis and spermatogenesis, and we also describe the promoter for the SHIP gene, which has potential for explaining the tissue-specific expression pattern.  相似文献   

2.
Recently, we and others have demonstrated that negative signaling in B cells selectively induces the tyrosine phosphorylation of a novel inositol polyphosphate phosphatase, p145SHIP. In this study, we present data indicating that p145SHIP binds directly a phosphorylated motif, immunoreceptor tyrosine-based inhibition motif (ITIM), present in the cytoplasmic domain of Fc gammaRIIB1. Using recombinant SH2 domains, we show that binding is mediated via the Src homology region 2 (SH2)-containing inositol phosphatase (SHIP) SH2 domain. SHIP also bound to a phosphopeptide derived from CD22, raising the possibility that SHIP contributes to negative signaling by this receptor as well as Fc gammaRIIB1. The association of SHIP with the ITIM phosphopeptide was activation independent, while coassociation with Shc was activation dependent. Furthermore, experiments with Fc gammaRIIB1-deficient B cells demonstrated a genetic requirement for expression of Fc gammaRIIB1 in the induction of SHIP phosphorylation and its interaction with Shc. Based on these results, we propose a model of negative signaling in which co-cross-linking of surface immunoglobulin and Fc gammaRIIB1 results in sequential tyrosine phosphorylation of the ITIM, recruitment and phosphorylation of p145SHIP, and subsequent binding of Shc.  相似文献   

3.
The inhibitory Fc receptors function to regulate the antigen-driven activation and expansion of lymphocytes. In B cells, the Fc gammaRIIB1 is a potent inhibitor of B cell antigen receptor (BCR) signaling when coligated to the BCR by engagement of antigen-containing immune complexes. Inhibition is mediated by the recruitment of the inositol phosphatase, SHIP, to the Fc gammaRIIB1 phosphorylated tyrosine-based inhibitory motif (ITIM). Here we show that BCR-independent aggregation of the Fc gammaRIIB1 transduces an ITIM- and SHIP-independent proapoptotic signal that is dependent on members of the c-Abl tyrosine kinase family. These results define a novel Abl family kinase-dependent Fc gammaRIIB1 signaling pathway that functions independently of the BCR in controlling antigen-driven B cell responses.  相似文献   

4.
The inositol phosphatase SHIP binds to the FcgammaRIIB1 receptor and plays a critical role in FcgammaRIIB1-mediated inhibition of B-cell proliferation and immunoglobulin synthesis. The molecular details of SHIP function are not fully understood. While point mutations of the signature motifs in the inositol phosphatase domain abolish SHIP's ability to inhibit calcium flux in B cells, little is known about the function of the evolutionarily conserved, putative noncatalytic regions of SHIP in vivo. In this study, through a systematic mutagenesis approach, we identified the inositol phosphatase domain of SHIP between amino acids 400 and 866. Through reconstitution of a SHIP-deficient B-cell line with wild-type and mutant forms of SHIP, we demonstrate that the catalytic domain alone is not sufficient to mediate FcgammaRIIB1/SHIP-dependent inhibition of B-cell receptor signaling. Expression of a truncation mutant of SHIP that has intact phosphatase activity but lacks the last 190 amino acids showed that the noncatalytic region in the C terminus is essential for inhibitory signaling. Mutation of two tyrosines within this C-terminal region, previously identified as important in binding to Shc, showed a reduced inhibition of calcium flux. However, studies with an Shc-deficient B-cell line indicated that Shc-SHIP complex formation is not required and that other proteins that bind these tyrosines may be important in FcgammaRIIB1/SHIP-mediated calcium inhibition. Interestingly, membrane targeting of SHIP lacking the C terminus is able to restore this inhibition, suggesting a role for the C terminus in localization or stabilization of SHIP interaction at the membrane. Taken together, these data suggest that the noncatalytic carboxyl-terminal 190 amino acids of SHIP play a critical role in SHIP function in B cells and may play a similar role in several other receptor systems where SHIP functions as a negative regulator.  相似文献   

5.
CDw150, a receptor up-regulated on activated T or B lymphocytes, has a key role in regulating B cell proliferation. Patients with X-linked lymphoproliferative disease have mutations in a gene encoding a protein, DSHP/SAP, which interacts with CDw150 and is expressed in B cells. Here we show that CDw150 on B cells associates with two tyrosine-phosphorylated proteins, 59 kDa and 145 kDa in size. The 59-kDa protein was identified as the Src-family kinase Fgr. The 145-kDa protein is the inositol polyphosphate 5'-phosphatase, SH2-containing inositol phosphatase (SHIP). Both Fgr and SHIP interact with phosphorylated tyrosines in CDw150's cytoplasmic tail. Ligation of CDw150 induces the rapid dephosphorylation of both SHIP and CDw150 as well as the association of Lyn and Fgr with SHIP. CD95/Fas-mediated apoptosis is enhanced by signaling via CDw150, and CDw150 ligation can override CD40-induced rescue of CD95-mediated cell death. The ability of CDw150 to regulate cell death does not correlate with serine phosphorylation of the Akt kinase, but does correlate with SHIP tyrosine dephosphorylation. Thus, the CDw150 receptor may function to regulate the fate of activated B cells via SHIP as well as via the DSHP/SAP protein defective in X-linked lymphoproliferative disease patients.  相似文献   

6.
Immune complexes can trigger a SHIP-1-independent proapoptotic signal in mouse class-switched IgG(+) B cells and plasma cells by binding to Fc gammaRIIB, in the absence of concomitant coaggregation with BCR, hence regulating plasma cell survival and participating in the selection of B cells producing high affinity Abs during secondary Ab responses. By contrast, we demonstrate in the present study that the unique aggregation of Fc gammaRIIB on human peripheral IgM(+) B cells does not induce apoptosis but transiently inhibits B cell proliferation and calcium influx triggered by BCR cross-linking. Using human peripheral B cells and IIA1.6 lymphoma B cells expressing wild-type human Fc gammaRIIB (IIA1.6-Fc gammaRIIB), we also show that the unique aggregation of human Fc gammaRIIB induces ITIM phosphorylation. This aggregation provokes the recruitment of phosphorylated SHIP-1 by Fc gammaRIIB and inhibits the constitutive phosphorylation of Akt in human IIA1.6-Fc gammaRIIB cells. This inhibitory signaling pathway is abrogated in IIA1.6 cells expressing ITIM-mutated Fc gammaRIIB (Fc gammaRIIB(Y292G)), suggesting that ITIM phosphorylation is necessary for Fc gammaRIIB-induced B cell blockade. Overall, we demonstrate that the unique aggregation of Fc gammaRIIB on human peripheral IgM(+) B cells is sufficient to transiently down-regulate their activation without inducing apoptosis. Our results suggest that Fc gammaRIIB could negatively regulate IgM(+) B cells before class-switch occurrence and that its unique engagement by immune complexes represents a reversible checkpoint for peripheral IgM(+) B cells.  相似文献   

7.
CD22 is a cell surface molecule that regulates signal transduction in B lymphocytes. Tyrosine-phosphorylated CD22 recruits numerous cytoplasmic effector molecules including SHP-1, a potent phosphotyrosine phosphatase that down-regulates B cell antigen receptor (BCR)- and CD19-generated signals. Paradoxically, B cells from CD22-deficient mice generate augmented intracellular calcium responses following BCR ligation, yet proliferation is decreased. To understand further the mechanisms through which CD22 regulates BCR-dependent calcium flux and proliferation, interactions between CD22 and effector molecules involved in these processes were assessed. The adapter proteins Grb2 and Shc were found to interact with distinct and specific regions of the CD22 cytoplasmic domain. Src homology-2 domain-containing inositol polyphosphate-5'-phosphatase (SHIP) also bound phosphorylated CD22, but binding required an intact CD22 cytoplasmic domain. All three molecules were bound to CD22 when isolated from BCR-stimulated splenic B cells, indicating the formation of a CD22.Grb2.Shc.SHIP quaternary complex. Therefore, SHIP associating with CD22 may be important for SHIP recruitment to the cell surface where it negatively regulates calcium influx. Although augmented calcium responses in CD22-deficient mice should facilitate enhanced c-Jun N-terminal kinase (JNK) activation, BCR ligation did not induce JNK activation in CD22-deficient B cells. These data demonstrate that CD22 functions as a molecular "scaffold" that specifically coordinates the docking of multiple effector molecules, in addition to SHP-1, in a context necessary for BCR-dependent SHIP activity and JNK stimulation.  相似文献   

8.
The BCR/ABL oncogene causes chronic myelogenous leukemia (CML), a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and granulocyte lineage cells. The SH2-containing inositol-5-phosphatase SHIP is a 145-kDa protein which has been shown to regulate hematopoiesis in mice. Targeted disruption of the murine SHIP gene results in a myeloproliferative syndrome characterized by a dramatic increase in numbers of granulocyte-macrophage progenitor cells in the marrow and spleen. Also, hematopoietic progenitor cells from SHIP(-/-) mice are hyperresponsive to certain hematopoietic growth factors, a phenotype very similar to the effects of BCR/ABL in murine cells. In a series of BCR/ABL-transformed hematopoietic cell lines, Philadelphia chromosome (Ph)-positive cell lines, and primary cells from patients with CML, the expression of SHIP was found to be absent or substantially reduced compared to untransformed cell lines or leukemia cells lacking BCR/ABL. Ba/F3 cells in which expression of BCR/ABL was under the control of a tetracycline-inducible promoter showed rapid loss of p145 SHIP, coincident with induction of BCR/ABL expression. Also, an ABL-specific tyrosine kinase inhibitor, CGP57148B (STI571), rapidly caused reexpression of SHIP, indicating that BCR/ABL directly, but reversibly, regulates the expression of SHIP protein. The estimated half-life of SHIP protein was reduced from 18 h to less than 3 h. However, SHIP mRNA also decreased in response to BCR/ABL, suggesting that SHIP protein levels could be affected by more than one mechanism. Reexpression of SHIP in BCR/ABL-transformed Ba/F3 cells altered the biological behavior of cells in culture. The reduction of SHIP due to BCR/ABL is likely to directly contribute to the pathogenesis of CML.  相似文献   

9.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

10.
Coligation of FcgammaRIIb1 with the B cell receptor (BCR) or FcepsilonRI on mast cells inhibits B cell or mast cell activation. Activity of the inositol phosphatase SHIP is required for this negative signal. In vitro, SHIP catalyzes the conversion of the phosphoinositide 3-kinase (PI3K) product phosphatidylinositol 3,4, 5-trisphosphate (PIP3) into phosphatidylinositol 3,4-bisphosphate. Recent data demonstrate that coligation of FcgammaRIIb1 with BCR inhibits PIP3-dependent Btk (Bruton's tyrosine kinase) activation and the Btk-dependent generation of inositol trisphosphate that regulates sustained calcium influx. In this study, we provide evidence that coligation of FcgammaRIIb1 with BCR induces binding of PI3K to SHIP. This interaction is mediated by the binding of the SH2 domains of the p85 subunit of PI3K to a tyrosine-based motif in the C-terminal region of SHIP. Furthermore, the generation of phosphatidylinositol 3,4-bisphosphate was only partially reduced during coligation of BCR with FcgammaRIIb1 despite a drastic reduction in PIP3. In contrast to the complete inhibition of Tec kinase-dependent calcium signaling, activation of the serine/threonine kinase Akt was partially preserved during BCR and FcgammaRIIb1 coligation. The association of PI3K with SHIP may serve to activate PI3K and to regulate downstream events such as B cell activation-induced apoptosis.  相似文献   

11.
The activation of many hematopoietic cells via cytokine receptors, as well as B and T cell receptors, leads to the tyrosine phosphorylation of Shc and its association with both Grb2-Sos1 complexes and with a 145 kDa protein referred to as the SH2 containing inositol 5-phosphatase (SHIP1). In a search of putative 5-phosphatase isoenzymes, we have isolated a second SH2 domain containing inositol 5-phosphatase, referred to as (SHIP2). Both SHIP1 and SHIP2 are coexpressed in human T lymphocytes. This was shown at the protein level by Western blot analysis in transformed T cell lines and in peripheral blood T lymphocytes either unstimulated or after in vitro activation through TCR-CD3 complex. SHIP1 protein level was not modulated after activation of T lymphocytes, in contrast to SHIP2, which was increased after long-term stimulation. SHIP1 was tyrosine phosphorylated in resting naive T cells. This was not observed in the transformed T cell lines. T lymphocyte is therefore a model of coexpression of the two SH2-containing inositol 5-phosphatases SHIP1 and SHIP2.  相似文献   

12.
Biosynthesis of the receptor for epidermal growth factor was investigated in two human tumor-derived cell lines, Hep 3B and A431. When grown in the presence of tunicamycin, both cells expressed a receptor-related species p135, the presumptive aglycosylated form of the biosynthetic precursor, gp145, of the mature form of the receptor, gp165, expressed at the cell surface. Two additional receptor-related species, p115 and p70, were detected when A431, but not Hep 3B, cells were treated with tunicamycin. Furthermore, digestion of the A431 receptor-related proteins with endoglycosidase F resulted in the detection of these three aglycosylated species. P70 appears to be the aglycosylated form of gp95, the presumptive intracellular precursor of the receptor-related species gp120 that is secreted by A431 but not Hep 3B cells; gp120 has a complex pattern of N-linked glycosylation, with consequent molecular weight and charge heterogeneity. P115 may be the aglycosylated form of a third biosynthetic intermediate, possibly a gp135 species detected in the early time points of pulse-chase labeling. Alternatively, p115 and gp135 may be derived co- or post-translationally by Ca2+-mediated proteolysis from p135 and gp145, respectively. The implications of the complexity of the biosynthesis of this molecule with regard to the multiple opportunities it affords the cell to modulate cell proliferation are discussed.  相似文献   

13.
The inositol phosphatase SHIP has been implicated in signaling events downstream of a variety of receptors and is thought to play an inhibitory role in stimulated B cells. We and others have reported that SHIP is rapidly tyrosine phosphorylated upon B cell antigen receptor (BCR) cross-linking and forms a complex with the adapter protein Shc. Here, we report that cross-linking of the BCR induces association between Grb2 and SHIP as well as association between Shc and SHIP. We made use of a Grb2-deficient B cell line to demonstrate both in vitro and in vivo that Grb2 expression is required for the efficient association between Shc and SHIP. The results indicate that SHIP, Shc, and Grb2 form a ternary complex in stimulated B cells, with Grb2 stabilizing the interaction between Shc and SHIP. The interactions between Shc, Grb2, and SHIP are therefore analogous to the interactions between Shc, Grb2, and SOS. Shc and Grb2 may help to localize SHIP to the cell membrane, regulating SHIP's inhibitory function following BCR stimulation.  相似文献   

14.
CD150 (SLAM/IPO-3) is a cell surface receptor that, like the B cell receptor, CD40, and CD95, can transmit positive or negative signals. CD150 can associate with the SH2-containing inositol phosphatase (SHIP), the SH2-containing protein tyrosine phosphatase (SHP-2), and the adaptor protein SH2 domain protein 1A (SH2D1A/DSHP/SAP, also called Duncan's disease SH2-protein (DSHP) or SLAM-associated protein (SAP)). Mutations in SH2D1A are found in X-linked lymphoproliferative syndrome and non-Hodgkin's lymphomas. Here we report that SH2D1A is expressed in tonsillar B cells and in some B lymphoblastoid cell lines, where CD150 coprecipitates with SH2D1A and SHIP. However, in SH2D1A-negative B cell lines, including B cell lines from X-linked lymphoproliferative syndrome patients, CD150 associates only with SHP-2. SH2D1A protein levels are up-regulated by CD40 cross-linking and down-regulated by B cell receptor ligation. Using GST-fusion proteins with single replacements of tyrosine at Y269F, Y281F, Y307F, or Y327F in the CD150 cytoplasmic tail, we found that the same phosphorylated Y281 and Y327 are essential for both SHP-2 and SHIP binding. The presence of SH2D1A facilitates binding of SHIP to CD150. Apparently, SH2D1A may function as a regulator of alternative interactions of CD150 with SHP-2 or SHIP via a novel TxYxxV/I motif (immunoreceptor tyrosine-based switch motif (ITSM)). Multiple sequence alignments revealed the presence of this TxYxxV/I motif not only in CD2 subfamily members but also in the cytoplasmic domains of the members of the SHP-2 substrate 1, sialic acid-binding Ig-like lectin, carcinoembryonic Ag, and leukocyte-inhibitory receptor families.  相似文献   

15.
The B cell receptor (BCR)-elicited calcium flux results in activation of mature B cells. We have recently shown that the adaptor protein Swiprosin-1/EFhd2 (EFhd2) amplifies the BCR-induced calcium flux in B cell lines. EFhd2 is a calcium binding adaptor protein with two predicted EF-hands. Here we asked whether these domains are functional and control its function. Using a blot-overlay assay with radioactive calcium we show that both EF-hands of EFhd2 have an intrinsic capacity to bind calcium. Equilibrium centrifugation confirmed that EFhd2 binds 2 calcium ions, with an apparent Kd of 110 μM. Point mutations revealed that the conserved residues E116 and E152, which reside in the canonical calcium binding loop in EF-hands 1 and 2, are essential for calcium binding by EFhd2. These mutations as well as deletion of the EF-hands, in particular EF-hand 1, abolished the ability of EFhd2 to restore BCR-induced calcium signaling in EFhd2-deficient WEHI231 cells. N-terminal deletions, but not C-terminal deletions, acted similarly. Thus, the N-terminal part of EFhd2 as well as calcium binding to its EF-hands control the intracellular calcium concentration in response to BCR stimulation in WEHI231 cells. Hence, EFhd2 regulates the BCR-elicited calcium flux through a calcium-dependent positive feedback mechanism in WEHI231 cells.  相似文献   

16.
The inside-out signaling involved in the activation of LFA-1-mediated cell adhesion is still poorly understood. Here we examined the role of the SH2-containing inositol phosphatase (SHIP), a major negative regulator of intracellular signaling, in this process. Wild-type SHIP and a phosphatase-deficient mutant SHIP were overexpressed in the murine myeloid cell line, DA-ER, and the effects on LFA-1-mediated cell adhesion to ICAM-1 (CD54) were tested. Overexpression of wild-type SHIP significantly enhanced cell adhesion to immobilized ICAM-1, and PMA, IL-3, or erythropoietin further augmented this adhesion. In contrast, phosphatase dead SHIP had no enhancing effects. Furthermore, PMA-induced activation of LFA-1 on DA-ER cells overexpressing wild-type SHIP was dependent on protein kinase C but independent of mitogen-activated protein kinase activation, whereas cytokine-induced activation was independent of protein kinase C and mitogen-activated protein kinase activation but required phosphatidylinositol-3 kinase activation. These results suggest that SHIP may regulate two distinct inside-out signaling pathways and that the phosphatase activity of SHIP is essential for both of them.  相似文献   

17.
Membrane microdomains (lipid rafts) are enriched in selected signaling molecules and may compartmentalize receptor-mediated signals. Here, we report that in primary human B lymphocytes and in Ramos B cells B cell receptor (BCR) stimulation induces rapid and transient redistribution of a subset of engaged BCRs to lipid rafts and phosphorylation of raft-associated tyrosine kinase substrates. Cholesterol sequestration disrupted the lipid rafts, preventing BCR redistribution, but did not inhibit tyrosine kinase activation or phosphorylation of mitogen-activated protein kinase/extracellular regulated kinase. However, raft disruption enhanced the release of calcium from intracellular stores, suggesting that rafts may sequester early signaling events that down-regulate calcium flux. Consistent with this, BCR stimulation induced rapid and transient translocation of the Src homology 2 domain-containing inositol phosphatase, SHIP, into lipid rafts.  相似文献   

18.
Activation of the capsaicin receptor (VR1 or TRPV1) in bronchial epithelial cells by capsaicinoids and other vanilloids promotes pro-inflammatory cytokine production and cell death. The purpose of this study was to investigate the role of TRPV1-mediated calcium flux from extracellular sources as an initiator of these responses and to define additional cellular pathways that control cell death. TRPV1 antagonists and reduction of calcium concentrations in treatment solutions attenuated calcium flux, induction of interleukin-6 and 8 gene expression, and IL-6 secretion by cells treated with capsaicin or resiniferatoxin. Most TRPV1 antagonists also attenuated cell death, but the relative potency and extent of protection did not directly correlate with inhibition of total calcium flux. Treatment solutions with reduced calcium content or chelators had no effect on cytotoxicity. Inhibitors of arachidonic acid metabolism and cyclo-oxygenases also prevented cell death indicating that TRPV1 agonists disrupted basal arachidonic acid metabolism and altered cyclo-oxygenase function via a TRPV1-dependent mechanism in order to produce toxicity. These data confirm previous results demonstrating calcium flux through TRPV1 acts as a trigger for cytokine production by vanilloids, and provides new mechanistic insights on mechanisms of cell death produced by TRPV1 agonists in respiratory epithelial cells.  相似文献   

19.
Binding of proteins with SH2 domains to tyrosine-phosphorylated signaling proteins is a key mechanism for transmission of biological signals within the cell. Characterization of dysregulated proteins in cell signaling pathways is important for the development of therapeutic approaches. The AKT pathway is a frequently upregulated pathway in most cancer cells and the SH2-containing inositol 5-phosphatase SHIP1 is a negative regulator of the AKT pathway. In this study we investigated different mutations of the conserved FLVR motif of the SH2 domain and putative phosphorylation sites of SHIP1 which are located in close proximity to its FLVR motif. We demonstrate that patient-derived SHIP1-FLVR motif mutations e.g. F28L, and L29F possess reduced protein expression and increased phospho-AKT-S473 levels in comparison to SHIP1 wildtype. The estimated half-life of SHIP1-F28L protein was reduced from 23.2 h to 0.89 h in TF-1 cells and from 4.7 h to 0.6 h in Jurkat cells. These data indicate that the phenylalanine residue at position 28 of SHIP1 is important for its stability. Replacement of F28 with other aromatic residues like tyrosine and tryptophan preserves protein stability while replacement with non-aromatic amino acids like leucine, isoleucine, valine or alanine severely affects the stability of SHIP1. In consequence, a SHIP1-mutant with an aromatic amino acid at position 28 i.e. F28W can rescue the inhibitory function of wild type SHIP1, whereas SHIP1-mutants with non-aromatic amino acids i.e. F28V do not inhibit cell growth anymore. A detailed structural analysis revealed that F28 forms hydrophobic surface contacts in particular with W5, I83, L97 and P100 which can be maintained by tyrosine and tryptophan residues, but not by non-aromatic residues at position 28. In line with this model of mutation-induced instability of SHIP1-F28L, treatment of cells with proteasomal inhibitor MG132 was able to rescue expression of SHIP1-F28L. In addition, mutation of putative phosphorylation sites S27 and S33 adjacent to the FLVR motif of SHIP1 have an influence on its protein stability. These results further support a functional role of SHIP1 as tumor suppressor protein and indicate a regulation of protein expression of SH2 domain containing proteins via the FLVR motif.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号